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Abstract

We introduce a novel probabilistic framework for im-
age registration. This framework considers, in contrast to
previous ones, local neighborhood information. We inte-
grate the neighborhood information into the framework by
adding layers of latent random variables, characterizing
the descriptive information of each image. This extension
has multiple advantages. It allows for a unified description
of geometric and iconic registration, with the consequen-
tial analysis of similarities. It enables to arrange registra-
tion techniques in a continuum, limited by pure intensity-
and feature-based registration. With this wide spectrum of
techniques combined, we can model hybrid registration ap-
proaches. The probabilistic coupling allows further to de-
duce optimal descriptors and to model the adaptation of de-
scription layers during the process, as it is done for joint
registration/segmentation. Finally, we deduce a new regis-
tration algorithm that allows for a dynamic adaptation of
the description layers during the registration. Excellent re-
sults confirm the advantages of the new registration method,
the major contribution of this article lies, however, in the
theoretical analysis.

1. Introduction

Registration is a fundamental process in computer vi-

sion. A common classification is to distinguish between

geometry- and intensity-based approaches. Geometric ap-

proaches establish the spatial relationship between images

based on extracted features, landmarks, surfaces, or point

clouds. Intensity-based or iconic approaches directly op-

erate on the images by comparing their pixel intensities

or photometric properties. For intensity-based registration,

unifying probabilistic frameworks [20, 28, 38] were pro-

posed. These frameworks are essential in better under-

standing and categorizing different types of registration ap-

proaches. With a strict deduction from a mathematical

framework, it is possible to detect implicitly incorporated

assumptions. Discovering such assumptions allows for bet-

ter adapting registration to specific applications and to jus-

tify the adequacy of an approach in a specific scenario. Con-

cepts from probability theory, such as maximum likelihood

or a posteriori estimation, were in this context shown to be

very useful to reason about image registration. The limita-

tion of currently existing probabilistic frameworks is, how-

ever, their focus on modeling the similarity measure.

Looking at registration in practice, we observe that pro-

cessing steps such as gradient calculation, multi-scale anal-

ysis, and noise reduction are applied to the images, before

performing the alignment. Further, the comparison of single

pixel information is prone to noise, leading to the introduc-

tion of context and spatial information in registration. With

the presented contextual, probabilistic framework we are

able to model these approaches. Moreover, we can model

geometric approaches through the introduction of layers of

latent random variables. Dealing with these representations

allows for differentiating between pure image processing

steps, such as smoothing and gradient calculation, and the

estimation of the similarity between images. This helps to

classify registration techniques and identify commonalities.

2. Probabilistic Registration Framework

In order to describe image registration from a probabilis-

tic point of view, we consider each image to be a random

variable U . The probability of the appearance of a con-

crete sample image u is p(U = u), with the simplified no-

tation p(u). Considering further that an image is defined

on a grid Ω, each spatial location U(x) with x ∈ Ω is a

random variable. Taking the set of intensity values I, e.g.

I = {0, 1, . . . , 255}, the probability of a location having

a certain intensity is p(U(x) = i) with i ∈ I. The goal

of registration is to find the transformation T that expresses

the spatial relationship between the two images u and v

u(x) = v(T (x)). (1)
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Figure 1. Left: Probabilistic graphical model showing the proba-

bility p(v|u, T ), where each of the images consists of a random

variable for each location x ∈ Ω, in this case 6. Right: Assump-

tion of i.i.d. coordinate samples,
∏

p(v(x)|u(x), T ), illustrated

as plate.

This is the underlying model of the generative, joint proba-

bility

T̂ = argmax
T∈T

p(u, v, T ), (2)

with T being the space of transformations and T̂ the opti-

mal transformation with respect to the model. The model

in equation (1) is commonly augmented with noise and an

intensity mapping [20]. Other noise distributions than the

standard Gaussian can be used to adapt the registration to

specific applications, such as speckle noise in ultrasound

images [29]. The intensity mapping accounts for multi-

modal registration and leads, e.g., to sum of squared differ-

ences (SSD), correlation ratio (CR), and mutual information

(MI), by assuming an identical, functional, or statistical in-

tensity relationship [28, 20], respectively.

2.1. I.I.D. Coordinate Samples

A general assumption of the unifying approaches [20,

28, 39] are independent and identically distributed (i.i.d.)

coordinate samples. With this assumption, equation (2)

simplifies tox

p(u, v, T ) =
∏
x∈Ω

p(u(x), v(x), T ). (3)

This is illustrated in figure 1 for the probability p(v|u, T ),
which is the likelihood term of the generative probability,

obtained with Bayes’ theorem [20]. Since each of the spa-

tial locations in the images corresponds to a random vari-

able, we use the plate visualization [6], permitting a com-

pact representation of the graph.

The i.i.d. assumption splits the general problem of sim-

ilarity estimation between images up into several subprob-

lems of similarity estimation between pixels. This simpli-

fication is necessary for the deduction of similarity mea-

sures such as SSD, CR, and MI [20], but does not accurately

model the real world. Objects in the image have a certain

size, which is rather rarely limited to the extent of one pixel,

so that the i.i.d. assumption is not justified.

Recent registration approaches show the increasing im-

portance of explicitly integrating context information, such

as shape context [5], local self-similarity [25], and con-

textual flow [33], into registration. Moreover, the addi-

tion of spatial information into the similarity estimation,
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Figure 2. Contextual graphical model as plate. Descriptors di and

ei are dependent on a local neighborhood Ni of the original im-

ages. Further, ei is dependent on di and the transformation T . Ob-

served random variables are filled blue, links indicate dependency.

as it is e.g. done with higher-order densities [22], neigh-

borhood patches [23], conditional mutual information [13],

local volume densities [37], Markov random fields [36], and

spatial-context mutual information [35], leads to improve-

ments. The i.i.d. assumption of current frameworks, how-

ever, prohibits their consideration.

2.2. Contextual Probabilistic Graphical Model

The key component of the novel probabilistic framework

is to replace the assumptions of independence of coordinate

samples in equation (3), by the Markov property. This leads

to a dependency of a pixel position on a local pixel neigh-

borhood. One could think of a variety of possibilities for

modeling the local neighborhood in a maximum likelihood

framework. We decided to introduce two additional lay-

ers d and e, because it facilitates the representation of the

neighborhood dependency. Each of the layers, we refer to

as description layers, consists of latent random variables

di and ei, respectively, with 1 ≤ i ≤ N and N = |Ω|.
The layers d and e are lying on the same grid as the images

do, so we have a dense set of descriptors. In our model,

we let each descriptor di be dependent on a local neighbor-

hood Ni of the image u(Ni), analogously, ei is dependent

on v(N ′i ). The relationship between descriptors di and ei is

one-to-one. The creation of the layer e is dependent on the

transformation T .

We utilize probabilistic graphical models [6] for estab-

lishing the relationship between random variables because

they are advantageous in representing the structure and de-

pendency for a multitude of variables. Further, we choose

a directed graphical model, where nodes represent random

variables and directed edges express probabilistic depen-

dency between them. The graphical model for our frame-

work is shown in figure 2 as plate with an exemplary 4- and

3-neighborhood, for u and v, respectively. Another illustra-

tion, not as plate, is shown in figure 3 without the consid-

eration of T due to clarity of presentation. The presented
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Figure 3. Graphical model of the registration framework. Ob-

served 1D images u and v. Latent description layers d and e.

u(Ni) neighborhood system of descriptor di.

graphical model factorizes to

p(u, v, d, e, T ) =p(T ) ·
N∏
i=1

p(u(xi)) · p(v(T (xi)))

· p(di|u(Ni)) · p(ei|di, v(N ′i ), T ). (4)

We deduce the term p(ei|di, v(N ′i ), T ) further by applying

the product rule and Bayes’ theorem. Moreover, we assume

the conditional independence of di and v(N ′i ) with respect

to ei, and the independence of di and v(N ′i )). Since the

description layer e is separating the two layers d and v, the

assumption is justified, leading to

p(ei|di, v(N ′i ), T ) =
p(di|ei) · p(v(N ′i ), T |ei) · p(ei)

p(di) · p(v(N ′i ), T )

=
p(ei|di) · p(ei|v(N ′i ), T )

p(ei)
. (5)

Setting this result in equation (4) leads to

p(u, v, d, e, T ) =p(T ) ·
N∏
i=1

p(u(xi)) · p(v(T (xi))) (6)

· p(di|u(Ni)) ·
p(ei|di) · p(ei|v(N ′i ), T )

p(ei)
.

Therein, the marginal terms p(T ), p(u(xi)), p(v(T (xi))),
and p(ei)

−1 represent the probabilities for the transforma-

tion, the images, and the description layer. The reason

that only the descriptor layer e appears in the formulation

is rooted in the asymmetric formulation of the registration

by only transforming the image v. This can be changed

with a symmetric formulation, by transforming both im-

ages, which is shown in the supplementary material for the

general case of groupwise registration.

The marginal terms are used to incorporate prior infor-

mation into the registration, with the purpose of improving

the robustness and capture range [38]. In most cases, we

do not have any a priori knowledge about the probability

distribution of these terms, so that we presume a uniform

distribution, leading to

p(u, v, d, e, T ) =

N∏
i=1

p(ei|di)︸ ︷︷ ︸
similarity

· p(di|u(Ni)) · p(ei|v(N ′i ), T )︸ ︷︷ ︸
coupling

.

(7)

It is mainly the interplay of these three probabilities that

determines the functionality of our model. The similarity
term p(ei|di) is the standard likelihood function as used in

previous unifying frameworks [20, 28, 39]. However, in-

stead of comparing the images u and v, it compares the de-

scription layers d and e. If we could arbitrarily modify the

description layers and just optimize p(e|d), we would sim-

ply change the layers to be totally exact. The coupling terms
p(di|u(Ni)) and p(ei|v(N ′i ), T ) prevent this simplistic so-

lution by expressing how well the description layers fit the

original images. In the optimization, they are counterbal-

ancing the influence of the similarity term like a regularizer.

The joint distribution, p(u, v, e, d, T ), we finally end up

with, is different from the one used in maximum likelihood

(ML) frameworks, p(u, v, T ). This can, however, be ob-

tained by marginalizing with respect to the descriptors

p(u, v, T ) =
∑
d,e

p(u, v, d, e, T ). (8)

Practically, it is not possible to sum over all possible de-

scriptors. Thus, the alignment is only optimal with respect

to a specific descriptor or a small set of descriptors, which

is discussed further in section 3.3 on hybrid approaches.

3. A Continuum of Registration Approaches
In this section, we discuss several approaches for

geometry- and intensity-based registration and show how

they fit into the proposed framework. These methods form,

in fact, a continuum of registration approaches, going all

the way from pure geometric to pure iconic registration.

On the one end, we identify landmark-based registration,

where users manually pick salient points in the image. The

description is optimal because we exactly know about the

correspondence of points. On the other end, we identify

intensity-based registration, with single intensity values as

minimalistic descriptors. The number of approaches in be-

tween can be arranged by the uniqueness of their descrip-

tors, as illustrates figure 4.

On the right-hand side of the spectrum, we consider

SIFT and GLOH with comparatively high uniqueness of

the descriptors. SIFT/GLOH correspondence hypotheses

are created without location information, therefore descrip-

tors must uniquely characterize the position they are ex-

tracted from. For DAISY [26], the dense arrangement

of descriptors relaxes this requirement, equally for self-

similarity [25]. Entropy images [31] extract structural in-

formation of images for multi-modal registration and re-
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Figure 4. Continuum between feature- and intensity-based registration, augmented with exemplary approaches. Arranged by the uniqueness

of descriptors.

semble gradient images. Scale-space images are close to the

original ones, because locally weighted averages are created

with an emphasis on the center location.

3.1. Intensity-Based Registration

Existing probabilistic frameworks for intensity-based

registration focus on similarity measures and do not model

common processing steps on the images. We demonstrate in

the following how these steps can be integrated in the new

framework. The proposed framework is a true extension

of previous maximum likelihood frameworks, which can be

obtained by setting Ni = (xi), di = u(xi), N ′i = (T (xi)),
and ei = v(T (xi)).

3.1.1 Image Filtering

Image filtering is a common pre-processing step for image

registration. One application of filtering is image enhance-

ment through operations such as sharpening, noise reduc-

tion, and contrast adjustment. Another application is the

creation of a scale-space [12]. Although these processing

steps are very popular, it has not yet been described under

which conditions they are optimal choices.

With the proposed framework, it is possible to deduce

optimal filters under the incorporation of certain assump-

tions, similar to the derivation of similarity measures. For

this, we focus on the maximization of the coupling term

p(d|u) with all considerations analogously for p(e|v, T ).
The MAP estimation reads as

d̂ = max
d

p(d|u) = max
d

N∏
i=1

p(di|u(Ni)) (9)

= max
d

N∏
i=1

p(u(Ni)|di) · p(di)
p(u(Ni))

, (10)

where we can maximize for each di separately in the fol-

lowing. Further, applying the logarithm leads to

d̂i = max
di

{log p(u(Ni)|di) + log p(di)− log p(u(Ni))}

= max
di

⎧⎨
⎩

∑
j∈Ni

log p(uj |di) + log p(di)

⎫⎬
⎭−

∑
j∈Ni

log p(uj)

≈ max
di

⎧⎨
⎩

∑
j∈Ni

log p(uj |di)

⎫⎬
⎭+ H[u(Ni)], (11)

where we obtain the entropy H from the asymptotic equipar-

tition property, which results from the application of the

weak law of large numbers [8]. The entropy has no influ-

ence on the maximization. It is, however, interesting to no-

tice that setting di = H[u(Ni)] corresponds to the recently

proposed entropy images for multi-modal registration [31].

Incorporating the assumption of a Gaussian noise into

the maximization

max
di

∑
j∈Ni

log p(uj |di) = max
di

∑
j∈Ni

−ωj(di − uj)
2, (12)

with weights ωj . Following standard maximum likelihood

estimation [6] leads to the optimal solution for d. This es-

timation was extended to the usage of various norms, con-

sidering for instance least absolute values, instead of least

squares. Further extensions resulted in M-estimators, and

later, generalized M-estimators [10]. We consider in the

following the minimization problem

min
di

‖Λ.(di1− u(Ni))‖ with Λ =

⎛
⎜⎝

ω1

...

ω|Ni|

⎞
⎟⎠ , (13)

a vector norm ‖.‖, the one vector 1 of length |Ni|, and

weights Λ. Calculating the derivative with respect to di and

setting it to zero leads to optimal descriptors. For different

norms and Λ = 1, this results in the following descriptors:

Norm Descriptor di

‖.‖22 E[u(Ni)]
‖.‖1 median[u(Ni)]

‖.‖∞ max[u(Ni)]−min[u(Ni)]
2

As an example for least squares ‖.‖22 and arbitrary

weights ωj , we obtain

di =
1

Π

∑
j∈Ni

ωjuj with Π =
∑
j∈Ni

ωj . (14)

Modifying the weights in this case allows for modeling ar-

bitrary linear filters. For creating linear scale-spaces, the

weights correspond the entries of a Gaussian filter mask.

3.1.2 Gradient-Based Similarity Measures

Gradient-based similarity measures are, for instance, of in-

terest in 2D-3D registration [17]. Example metrics are gra-

dient correlation and gradient difference. The gradients are



calculated with the Sobel operator represented as 3 × 3 fil-

ter mask. Subsequently, the correlation coefficient or dif-

ference is evaluated between the gradients of the images.

For modeling the Sobel operator in the maximum likelihood

framework, as described in section 3.1.1, we have to adapt

equation (14), because the weights for differential operators

sum up to zero. Consequently, we do not consider the nor-

malization factor Π and set the weights ωj according to the

Sobel mask. The description layers of our framework repre-

sent the gradient images, which are successively matched.

In a more recent article, Shams et al. [24] propose gradi-

ent intensity-based registration, where mutual information

between the gradient images is calculated. The descrip-

tion layers for both registration approaches [17, 24] are the

same, it is only the metric that is changing. This shows the

increased modularity provided by our framework due to the

explicit consideration of description layers.

3.2. Geometry-Based Registration

The integration of geometric registration in our frame-

work corresponds to embedding the feature points on a

dense grid. Once the descriptors are calculated for each im-

age, the next step is the comparison between the images.

Looking at the approaches for geometry-based registration,

we observe that typically SSD is evaluated between the de-

scriptors, which is derived from the similarity term p(e|d).
The difference to intensity-based registration is, however,

the focus on certain keypoint locations. To account for

this, we introduce indicator variables ki, li ∈ {0, 1}, where

ki = 1 signifies that descriptor di is located at a keypoint lo-

cation, analogously for li and ei. Location i is only consid-

ered if it corresponds to keypoint locations in both images,

leading the the approximation of the probability

p(.) ∝
N∏
i=1

⎛
⎜⎝1 + p(ei|di)︸ ︷︷ ︸

similarity

· p(di|u(Ni))p(ei|v(N ′i ))︸ ︷︷ ︸
coupling

⎞
⎟⎠
ki · li︸ ︷︷ ︸
keypoint

.

(15)

In the following, we describe landmark- and feature-based

registration in more details.

3.2.1 Landmark-Based Registration

The term landmark-based registration is ambiguously used

in the literature, where we consider it in the sense that ex-

perts identify the location of the keyoint and also provide

a distinctive description. Most important is the probabil-

ity p(ei | di), which evaluates the similarity that locations

with the same labels overlap. The terms p(di | u(Ni)) and

p(ei | v(N ′i )) can be used to model the confidence in the

assignment of the label to the keypoint location. For the

keypoint locations the values of ki and li are set to one.

3.2.2 Feature-Based Registration

While in landmark-based registration, the localization and

description of the keypoints takes place manually, and for

point clouds, the localization is automatic but no descrip-

tion is provided, feature-based registration performs the ex-

traction as well as the description automatically. The first

task, the keypoint localization, is to identify locations that

can repeatedly be assigned under different views of the

same object. Popular methods include the difference-of-

Gaussian (DoG) [14], Harris detector, Harris-affine, and

Hessian-affine detector [15]. Depending on the output of

these detectors the keypoint variables ki and li are set. The

second step, the feature description, has to represent the

characteristics of the point within its local neighborhood.

Frequently used image descriptors are e.g. Scale-Invariant

Feature Transform (SIFT) [14], Speeded-Up Robust Fea-

tures (SURF) [4], and Gradient Location and Orientation

Histogram (GLOH) [16]. The descriptors are assigned to

the corresponding locations on the description layers. The

last step is the feature matching, where descriptors of both

images at the corresponding locations are compared.

In our framework, the terms p(di|u(Ni)) and

p(ei|v(N ′i )) are applied for the deduction and calcu-

lation of the descriptors from the images. They ensure that

the descriptors well characterize the local image context.

p(ei|di) expresses the similarity of descriptors. ki and li
restrict the evaluation to keypoint locations.

Looking at the feature-based approaches, we clearly see

the local nature of these techniques. Considering SIFT as

an example, the keypoint localization with DoG is achieved

by searching for the local maximum in scale-space. The

DoG can be modeled by setting the appropriate weights in

the linear filtering in equation (14). The maximum search

only considers the direct neighbors. The SIFT descriptor

uses 4 × 4 blocks around the keypoint, where each block

consists of 4 × 4 pixels of the corresponding scale-space

level. So in total, a 16× 16 neighborhood of each keypoint

is considered for building the descriptor. This shows that

the descriptors are built using the local context. In our ML

framework we are able to describe them due to the extension

with neighborhood information and the integration of latent

layers.

3.3. Hybrid Methods

Hybrid registration approaches combine multiple align-

ment techniques to achieve an improved registration re-

sult. So far, it has not been possible to describe hybrid

approaches that combine techniques from geometric and

iconic registration in a common framework, because there

was no framework that enabled the modeling of both regis-

tration approaches. As seen in sections 3.1 and 3.2, the pro-

posed probabilistic framework enables the description of a

multitude of registration techniques by choosing different



descriptors. A possible differentiation of hybrid approaches

is to distinguish between the consecutive application of reg-

istration [2, 11, 21], or the coupling to a joint energy formu-

lation [7, 18, 30, 32]. For the joint formulation, we consider

the sets of descriptors D and E , which can contain descrip-

tors from geometric registration, such as SIFT, and from

iconic registration, such as entropy and gradient informa-

tion. The final marginalization is similar to equation (8)

p(u, v, T ) ≈
∑

d∈D,e∈E
p(u, v, d, e, T ). (16)

Since we marginalize only over finite sets and not all possi-

ble descriptors, we only achieve an approximation.

4. Dynamic Adaption of Description Layers
In the last section, we showed how registration tech-

niques can be modeled with the proposed framework. Fur-

ther, we illustrated a continuum of registration approaches,

classified by the uniqueness of their descriptors. We achieve

this increased flexibility by introducing layers of latent ran-

dom variables. For the approaches in the last section,

these layers were calculated with various deterministic al-

gorithms and did not change during the registration. In this

section, we illustrate the second advantage of the our model,

the dynamic adaption of the description layers. Instead of

reducing the optimization to the similarity term p(e|d), we

now rely on the interaction of coupling and similarity terms.

4.1. Joint Registration and Segmentation

Fundamental operations in image analysis include the

segmentation and registration of images. Although they are

most times solved separately, there are applications where

they can mutually benefit from each other and accordingly a

joint formulation is useful [1, 19, 27, 34]. The performance

of any segmentation approach is primarily dependent on the

discriminative power of the underlying likelihood model for

the data [34]. Multiple measurements with different imag-

ing modalities or viewpoints could therefore improve seg-

mentation. On the other hand, the alignment of segmented

images, instead of the original ones, significantly reduces

the influence of noise and consequently facilitates the reg-

istration. In our framework, the description layers represent

the segmented images. The similarity term p(e|d) drives the

correct global alignment and also provides the combination

of both image segmentations. The coupling terms p(d|u)
and p(e|v, T ) counterbalance the effect of letting both seg-

mentations looking as similar as possible, by ensuring the

segmentations to be close to the underlying data.

We show how the MAP MRF approach in [34] naturally

integrates into our framework. The MAP problem is stated

using Bayes

p(d, e, T |u, v) = p(u, v|d, e, T )p(d, e, T )
p(u, v)

(17)

with the images u, v given and the transformation T
and segmentations d, e to calculate. The likelihood term

p(u, v|d, e, T ) is represented with a Gaussian mixture

model and the prior p(d, e, T ) with an MRF using the Ising

model. At the beginning of the registration, when the im-

ages are far from being correctly aligned, the joint modeling

of both images is not meaningful. Therefore, the indepen-

dence of the images and consequently the labels is assumed,

leading to

p(d, e, T |u, v) = p(u|d)p(d)p(v|e)p(e)p(T )
p(u)p(v)

. (18)

For the joint optimization, an alternation is done between

solving for the optimal labeling with iterated conditional

modes and the alignment with the Powell method.

4.2. Registration with Dynamic Adaptation

Next to the analysis of existing registration algorithms,

we also want to illustrate the deduction of new methods

with the proposed framework. We create an instantiation of

the framework by assigning specific distributions to the in-

volved probabilities. More precisely, we consider the prob-

lem of images being distorted by severe artifacts. An appli-

cation where the registration of such images is required is

endovascular stent graft placement, where the bright stent is

only present in the intra-operative radiograph [3]. Instead of

pre-processing images as in [3], we deduce a registration al-

gorithm that is robust to such artifacts. This is advantageous

because we retain all the information during the registration

and the algorithm identifies artifacts automatically.

We incorporate a Gaussian distribution for the similar-

ity term p(e|d) leading to p(e|d) ∝ exp
(
−‖e−d‖22

σ2

)
, with

variance σ2. We allow the description layers to change dur-

ing the registration, integrating the local neighborhood in-

formation, by setting a uniform distribution

p(di|u(Ni)) ∝
{

c di ∈ u(Ni)
0 di /∈ u(Ni)

(19)

with constant c. Since we are interested in MAP estima-

tion, the partition function plays no role in the optimization.

Instead of assigning a constant likelihood to all patch loca-

tions, one could also choose weights that favor the selection

of locations close to the patch center.

For simplicity of presentation, we allow the dynamic

adaptation only on layer d. The log-likelihood of equa-

tion (7) reads as

log p(u, v, d, e) ∝
N∑
i=1

− (ei − di)
2

σ2
+

{
log c di ∈ u(Ni)
−∞ di /∈ u(Ni)

(20)



Figure 5. Five images with artifacts. Right: Illustration of selected locations in each local neighborhood. 0 corresponds to center location.

Due to the −∞ cost, this is equivalent to the restriction of

di to values in u(Ni). The optimization formulates as

max
T,d

−
N∑
i=1

(ei − di)
2 subject to di ∈ u(Ni), (21)

with e depending on T . We optimize simultaneously over

the layer d, which can select values in the local neighbor-

hoods, and the transformation T , which affects the layer e.

At each step of the Nelder-Mead simplex optimizer, we set

that value in the local neighborhood u(Ni) to di that mini-

mizes the squared difference (di−ei)
2. In our experiments,

we consider a 5 × 5 neighborhood. For a 1-neighborhood,

u(Ni) = {u(xi)}, the algorithm reduces to the standard

SSD registration.

We perform rigid registration experiments on five im-

ages, see figure 5. We set as the moving image v the origi-

nal, noise-free image. For u, we add the CVPR artifact and

white Gaussian noise to the image. Further, we displace u,

in our experiments by 10 pixel along the vertical direction.

This is the true transformation that we want to recover. We

start the registrations from random initial translations along

x and y axes, guaranteeing a root mean squared (RMS) dis-

tance from the true transformation of 30 pixel. For each

image, we run the registration 100 times from the random

positions and calculate the RMS error between the registra-

tion result and the true transformation. A statistical analysis

of the errors is presented in a box-and-whisker diagram in

figure 6. We compare the approach to the registration with

SSD, NCC, and MI 1. Our results show that the addition of

artifacts significantly influences the performance of SSD,

NCC, and MI. In contrast, the proposed algorithm with the

adaptation of description layers leads to excellent results.

Further, we illustrate in figure 5 the location of the local

neighborhood Ni that is assigned to di in the final step of

the optimization. Illustrated is the assignment for the regis-

tration with the butterfly image, with similar results for the

other images. The values range from -12 to 12, because it

corresponds to the vector indexing of the 5 × 5 patch. 0

is the center location. We observe that across the image

mainly the central location is selected. For the artifact re-

gion, however, locations in the neighborhood are selected to

1See supplementary material for results on NCC and MI. We plot SSD

because it performed best.
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Figure 6. Results of random registration study. The order of the

results is corresponding to the order of the images in figure 5.

maximize the cost function, as expected. This information

can be of value for further processing steps.

5. Conclusion

We presented a novel probabilistic framework for image

registration, which is general enough to describe intensity-

based, as well as, geometry-based registration. The pro-

posed framework allows us to move from just modeling the

similarity function towards modeling larger parts of the reg-

istration process. The key extension, with respect to previ-

ous frameworks, is the consideration of local neighborhood

information, so replacing the assumption of independent co-

ordinate samples by the Markov property. We reviewed

various registration approaches and showed their deduc-

tion within our framework. We further introduced a contin-

uum of registration approaches, limited by pure geometric

and iconic registration, arranged by the uniqueness of their

descriptors. We used the coupling terms in the proposed

framework to derive optimal descriptors, as well as, to inte-

grate the dynamic adaption of descriptors during the regis-

tration. Finally, we instantiated the framework with specific

distributions to deduce a novel registration algorithm. The

proposed framework provides further insights about the re-

lationship of various registration techniques, and moreover,

helps to understand and classify them.



In the supplementary material, we present the extension

of the proposed framework to groupwise registration and

additional experimental results.
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