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Abstract. High computational costs of manifold learning prohibit its
application for large datasets. A common strategy to overcome this prob-
lem is to perform dimensionality reduction on selected landmarks and to
successively embed the entire dataset with the Nyström method. The
two main challenges that arise are: (i) the landmarks selected in non-
Euclidean geometries must result in a low reconstruction error, (ii) the
graph constructed from sparsely sampled landmarks must approximate
the manifold well. We propose to sample the landmarks from determi-
nantal distributions on non-Euclidean spaces. Since current determinan-
tal sampling algorithms have the same complexity as those for manifold
learning, we present an efficient approximation with linear complexity.
Further, we recover the local geometry after the sparsification by as-
signing each landmark a local covariance matrix, estimated from the
original point set. The resulting neighborhood selection based on the
Bhattacharyya distance improves the embedding of sparsely sampled
manifolds. Our experiments show a significant performance improvement
compared to state-of-the-art landmark selection techniques on synthetic
and medical data.

1 Introduction

Spectral methods are central for a multitude of applications in medical image
analysis, computer vision, and machine learning, such as dimensionality reduc-
tion, classification, and segmentation. A limiting factor for the spectral anal-
ysis on large datasets is the computational cost of the eigen decomposition.
To overcome this limitation, the Nyström method [21] is commonly applied to
approximate the spectral decomposition of the Gramian matrix. A subset of
rows/columns is selected and based on the eigen decomposition of the result-
ing small sub-matrix, the spectrum of the original matrix can be approximated.
While the Nyström extension is the standard method for the matrix reconstruc-
tion, the crucial challenge is the subset selection. In early work [21], uniform
sampling without replacement was proposed. This was followed by numerous al-
ternatives including K-means clustering [22], greedy approaches [12], and volume
sampling [3,9]. A recent comparison is presented in [16].

Of particular interest for subset selection is volume sampling [9], equivalent
to determinantal sampling [3], because reconstruction error bounds exist. It is,



however, not used in practice because of the high computational complexity of
sampling from the underlying distributions [16]. Independently, determinantal
point processes (DPPs) have been proposed recently for tracking and pose es-
timation [15]. They were originally designed to model the repulsive interaction
between particles. DPPs are well suited for modeling diversity in a point set.
A sampling algorithm for DPPs was presented in [14,15], which has complexity
O(n3) for n points. Since this algorithm has the same complexity as the spectral
analysis, it cannot be directly used as a subset selection scheme.

In this paper, we focus on nonlinear dimensionality reduction for large datasets
via manifold learning. Popular manifold learning techniques include kernel PCA,
Isomap [19], and Laplacian eigenmaps [5]. All of these methods are based on a
kernel matrix of size O(n2) that contains the information about the pairwise
relationships between the input points. The spectral decomposition of the kernel
matrix leads to the low-dimensional embedding of the points. For large n, one
seeks to avoid the explicit construction and storage of the matrix. In contrast
to general rank-k matrix approximation, this is possible by taking the nature of
the non-linear dimensionality reduction into account and relating the entries of
the kernel matrix directly to the original point set.

We propose to perform DPP sampling on the original point set to extract
a diverse set of landmarks. Since the input points lie in a non-Euclidean space,
ignoring the underlying geometry leads to poor results. To account for the non-
Euclidean geometry of the input space, we replace the Euclidean distance with
the geodesic distance along the manifold, which is approximated by the shortest
path distance on the graph. Due to the high complexity of DPP sampling, we
derive an efficient approximation that runs in O(ndk) with input dimensional-
ity d and subset cardinality k. The algorithm restricts the updates to be local,
which enables sampling on complex geometries. This, together with its low com-
putational complexity, makes the algorithm well suited for the subset selection
in large scale manifold learning.

A consequence of the landmark selection is that the manifold is less densely
sampled than before, making its approximation with neighborhood graphs more
difficult. It was noted in [2], as a critical response to [19], that the approximation
of manifolds with graphs is topologically unstable. In order to improve the graph
construction, we retain the local geometry around each landmark by locally
estimating the covariance matrix on the original point set. This allows us to
compare multivariate Gaussian distributions with the Bhattacharyya distance
for neighborhood selection, yielding improved embeddings.

2 Background

We assume n points in high dimensional space x1, . . . , xn ∈ Rd and let X ∈ Rd×n

be the matrix whose i-th column represents point xi. Non-linear dimensionality
reduction techniques are based on a positive semidefinite kernel K, with a typical
choice of Gaussian or heat kernel Ki,j = exp(−‖xi − xj‖2/2σ2). The resulting
kernel matrix is of size O(n2). The eigen decomposition of the kernel matrix



is necessary for spectral analysis. Unfortunately, its complexity is O(n3). Most
techniques require only the top k eigenvectors. The problem can therefore also
be viewed as finding the best rank-k approximation of the matrix K, with the
optimal solution Kk =

∑k
i=1 λiuiu

>
i , where λi is the i-th largest eigenvalue and

ui is the corresponding eigenvector.

2.1 Nyström Method

Suppose J ⊆ {1, . . . , n} is a subset of the original point set of size k and J̄ is its
complement. We can reorder the kernel matrix K such that

K =

[
KJ×J KJ×J̄
K>

J×J̄ KJ̄×J̄

]
, K̃ =

[
KJ×J KJ×J̄
K>

J×J̄ K>
J×J̄K

−1
J×JKJ×J̄

]
(1)

where K̃ is the matrix estimated via the Nyström method [21]. The Nyström
extension leads to the approximation KJ̄×J̄ ≈ K>

J×J̄K
−1
J×JKJ×J̄ . The matrix

inverse is replaced by the Moore-Penrose generalized inverse in the case of rank
deficiency. The Nyström method leads to the minimal kernel completion [3]
conditioned on the selected landmarks and has been reported to perform well
in numerous applications [8,13,18]. The challenge lies in finding landmarks that
minimize the reconstruction error

‖K − K̃‖tr = tr(KJ̄×J̄)− tr(K>J×J̄K
−1
J×JKJ×J̄). (2)

The trace norm ‖.‖tr is applied because results only depend on the spectrum
due to its unitary invariance.

2.2 Annealed Determinantal Sampling

A large variety of methods have been proposed for selecting the subset J . For
general matrix approximation, this step is referred to as row/column selection of
the matrix K, which is equivalent to selecting a subset of points X. This prop-
erty is important because it avoids explicit computation of the O(n2) entries in
the kernel matrix K. We focus on volume sampling for subset selection because
of its theoretical advantages [9]. We employ the factorization KJ×J = Y >J YJ ,
which exists because KJ is positive semidefinite. Columns in YJ can be thought
of as feature vectors describing the selected points. Based on this factoriza-
tion, the volume Vol({Yi}i∈J) of the simplex spanned by the origin and the
feature vectors YJ is calculated, which is equivalent to the volume of the par-
allelepiped spanned by YJ . The subset J is then sampled proportionally to the
squared volume. This is directly related to the calculation of the determinant
with det(KJ×J) = det(Y >J YJ) = det(YJ)2 = Vol2({Yi}i∈J). These ideas were
further generalized in [3] based on annealed determinantal distributions

ps(J) ∝ det(KJ×J)s = det(Y >J YJ)s = det(YJ)2s. (3)

This distribution is well defined because the principal submatrices of a positive
semidefinite matrix are themselves positive semidefinite. Varying the exponent



(a) Swiss Roll (b) Standard (c) Geodesic (d) Efficient

Fig. 1: DPP sampling from 1,000 points lying on a manifold. We show results for
standard DPP sampling, geodesic DPP sampling, and efficient DPP sampling.
Note that the sampling is performed in 3D, but we can plot the underlying 2D
manifold by reversing the construction of the Swiss roll. Geodesic and efficient
sampling yields a diverse subset from the manifold.

s ≥ 0 results in a family of distributions, modeling the annealing behavior as used
in stochastic computations. For s = 0 this is equivalent to uniform sampling [21].
In the following derivations, we focus on s = 1. It was shown in [9] that for
J ∼ p(J), |J | = k

E
[
‖K − K̃‖tr

]
≤ (k + 1)‖K −Kk‖2F , (4)

where K̃ is the Nyström reconstruction of the kernel based on the subset J , Kk

the best rank-k approximation achieved by selecting the largest eigenvectors,
and ‖.‖F the Frobenius norm. It was further shown that the factor k + 1 is the
best possible for a k-subset. Related bounds were presented in [4].

3 Method

We first analyze the sampling from determinantal distributions on non-Euclidean
geometries. We then introduce an efficient algorithm for approximate DPP sam-
pling on manifolds. Finally, we present our approach for robust graph construc-
tion on sparsely sampled manifolds.

3.1 DPP Sampling on Manifolds

As described in Section 2.2, sampling from determinantal distributions is used
for row/column selection. Independently, determinantal point processes (DPPs)
were introduced for modeling probabilistic mutual exclusion. They present an
attractive scheme for ensuring diversity in the selected subset. Here we work with
the construction of DPPs based on L-ensembles [7]. Given a positive semidefinite
matrix L ∈ Rn×n, the likelihood for selecting the subset J ⊆ {1, . . . , n} is

PL(J) =
det(LJ×J)

det(L+ I)
, (5)



where I is the identity matrix and LJ×J is the sub-matrix of L containing the
rows and columns indexed by J . By associating the L-ensemble matrix L with
the kernel matrix K, we can apply DPPs to sample subsets from the point set X.

To date, applications using determinantal point processes have assumed Eu-
clidean geometry [15]. For non-linear dimensionality reduction, we assume that
the data points lie in a non-Euclidean space, such as the Swiss roll in Fig. 1(a).
To evaluate the performance of DPPs on manifolds, we sample from the Swiss
roll. Since we know the construction rule in this case, we can invert it and dis-
play the sampled 3D points in the underlying 2D space. The result in Fig. 1(b)
shows that the inner part of the roll is almost entirely neglected, as a conse-
quence of not taking the manifold structure into account. A common solution is
to use geodesic distances [19], which can be approximated by the graph shortest
path algorithm. We replace the Euclidean distance ‖.‖ in the construction of the
kernel matrix K with the geodesic distance Ki,j = exp(−‖xi − xj‖2geo/2σ

2) to
obtain the result in Fig. 1(c). We observe a clear improvement in the diversity
of the sampling, now also including points in the interior part of the Swiss roll.

3.2 Efficient Approximation of DPP Sampling on Manifolds

While it is possible to adapt determinantal sampling to non-Euclidean geome-
tries and to characterize the error for the subset selection, we are missing an
efficient sampling algorithm for handling large point sets. In [9], an approxima-
tive sampling based on the Markov chain Monte Carlo method is proposed to
circumvent the combinatorial problem with

(
n
k

)
possible subsets. Further approx-

imations include sampling proportionally to the diagonal elements Kii or their
squared version K2

ii, leading to additive error bounds [4,11]. In [10], an algorithm
is proposed that yields a k! approximation to volume sampling, worsening the
approximation from (k + 1) to (k + 1)!.

Algorithm 1 DPP sampling equivalent to [15]

Require: Eigen decomposition of K: {(vi, λi)}ni=1

1: Initialize V = ∅
2: for i = 1 to n do
3: Add eigenvector vi with probability λi

λi+1
to V

4: end for
5: B = V >

6: for 1 to |V | do
7: Select i ∈ 1 . . . n with probability P (i) ∝ ‖Bi‖2
8: J ← J ∪ i
9: Bj ← Proj⊥Bi

Bj for all j ∈ {1, . . . , n}
10: end for
11: return J

An exact sampling algorithm for DPPs was presented in [14,15], which re-
quires the eigen decomposition of K =

∑n
i=1 λiviv

>
i . Algorithm 1 states an



equivalent formulation of this sampling approach. First, eigenvectors are selected
proportionally to the magnitude of their eigenvalues and stored as columns in
V . Assuming m vectors are selected, V ∈ Rn×m. By setting B = V >, we use
Bi ∈ Rm to denote the rows of V . In each iteration, we select one of the n
points where point i is selected proportionally to the squared norm ‖Bi‖2. The
selected point is added to the subset J . After the selection of i, all vectors Bj are
projected to the orthogonal space of Bi. Since Proj⊥Bi

Bi = 0, the same point
is almost surely not selected twice. The update formulation differs from [15],
where an orthonormal basis of the eigenvectors in V perpendicular to the i-th
basis vector ei ∈ Rn is constructed. Both formulations are equivalent but pro-
vide a different point of view on the algorithm. This modification is essential to
motivate the proposed efficient sampling procedure. The following proposition
characterizes the behavior of the update rule in the algorithm.

Proposition 1 Let Bi, Bj ∈ Rm \ {0} be two non-zero vectors in Rm, and
θ = ∠(Bi, Bj) be the angle between them. Then

‖Proj⊥Bi
Bj‖2 = ‖Bj‖2 sin2 θ, (6)

where Proj⊥Bi
Bj is the the projection of Bj on the subspace perpendicular to Bi.

For Bi 6= 0 and Bj = 0 the projection is ‖Proj⊥Bi
Bj‖2 = 0.

Sampling from a determinantal distribution is not only advantageous because
of the presented error bounds but it also makes intuitive sense that a selection
of a diverse set of points yields a more accurate matrix reconstruction. The com-
putational complexity of Algorithm 1 is, however, similar or even higher than
that of manifold learning because the spectral decomposition of a dense graph
is required, whereas Laplacian eigenmaps operate on sparse matrices. An ap-
proach for efficient sampling proposed in [15] works with the dual representation
of K = Y >Y to obtain Q = Y Y >, with Q hopefully smaller than the matrix K.
Considering that we work with a Gaussian kernel matrix, this factorization cor-
responds to the inner product in feature space φ(xi)

>φ(xj) of the original points
xi, xj . The Gaussian kernel corresponds to an infinite dimensional feature space.
Since we work with symmetric, positive definite matrices, we can calculate a
Cholesky decomposition. In this case, the dual representation has the same size
as the original matrix and therefore yields no improvement.

To overcome the high computational costs of exact DPP sampling, we present
an efficient approximation in Algorithm 2. The computational complexity is
O(ndk). Vector D ∈ Rn models the probabilities for the selection of points as
does ‖Bi‖2 in the original DPP sampling algorithm. The algorithm proceeds
by sampling k points. At each iteration we select one point xi with probability
p(i) ∝ Di. Next we compute distances {∆j}j=1...n of the selected point xi to all
points in X. Based on these distances we identify a local neighborhood Ni of m
nearest neighbors around the selected point xi. The update of the probabilities
D is restricted to the neighborhood Ni, which proves advantageous for sampling
on manifolds. In contrast, Algorithm 1 updates probabilities for all points. If we
seek a similar behavior to Algorithm 1, the local neighborhood should include



Algorithm 2 Efficient approximation of DPP sampling

Require: Point set X, subset cardinality k, nearest neighbor count m, update function
f

1: Initialize D = 1n and J = ∅
2: for 1 to k do
3: Select i ∈ 1 . . . n with probability p(i) ∝ Di
4: J ← J ∪ {i}
5: Compute ∆j = ‖xi − xj‖, ∀j ∈ 1 . . . n
6: Set m nearest neighbors of xi as neighborhood Ni based on {∆j}j=1...n

7: Dj ← Dj · f(∆j), ∀j ∈ Ni
8: Optional: Compute covariance Ci in local neighborhood Ni around xi
9: end for

10: return J and optionally {Ci}i∈J

all points. The update function f takes distances ∆ as input, where we consider
f(∆) = sin2(∆/τ) and f(∆) = (1 − exp(−∆2/2σ2)), as motivated below. In
subsequent iterations of the algorithm, points close to xi are selected with lower
probability.

We initialize the vector D = 1n, since it was noted in [15] that the squared
norm of the vectors ‖Bi‖2 gives rise initially to a fairly uniform distribution be-
cause no points have yet been selected. For the update step, Proposition 1 implies
that the update of the probabilities of selecting specific points acts as sin2(θ).
The angle θ = ∠(Bi, Bj) correlates strongly with the distance ‖Bi − Bj‖, since
‖Bj‖ and ‖Bi‖ are initially the same. In Algorithm 1, the largest eigenvalues are
selected with high probability. We can therefore draw the analogy to multidimen-
sional scaling (MDS) [20] with a Gaussian kernel, where MDS selects the top
eigenvectors. Consequently, vectors Bi correspond to low-dimensional embed-
dings produced by multidimensional scaling of original points xi. MDS preserves
pairwise distances between the original space and the embedding space, enabling
the approximation ‖Bi − Bj‖ ≈ ‖xi − xj‖. We approximate the update based
on the distance of points in the original space, sin2(θ) ≈ sin2(‖xi − xj‖/τ). The
scaling factor τ ensures that values are in the range [−π/2;π/2]. This update
is similar to the Welsch function (1 − exp(−‖xi − xj‖2/2σ2)), which is directly
related to the weights in the kernel matrix and is commonly used in machine
learning. For subsequent iterations of the algorithm, the assumption of a simi-
lar norm of all vectors Bi is violated, because the projection on the orthogonal
space changes their lengths. However, this change is locally restricted around the
currently selected point. Since this region is less likely to be sampled in the sub-
sequent iterations, the assumption still holds for parts of the space that contain
most probability.

Remark: The proposed algorithm bears similarities to K-means++ [1], which
replaces the initialization through uniform sampling of K-means by a new seed-
ing algorithm. K-means++ seeding is a heuristic that samples points based on
their distance to the closest selected landmark. Initially, when only one landmark
is selected, our algorithm has a nearly identical update rule for a maximal neigh-



borhood Ni. In later iterations, the algorithms differ because K-means++ bases
the selection only on the distance to the nearest landmark, while all landmarks
influence the probability space in our algorithm. Consequently, our approach
potentially yields subsets with higher diversity.

3.3 Robust Landmark-based Graph Construction

After selecting the landmarks, the next step in the spectral analysis consists of
building a graph that approximates the manifold. Common techniques for the
graph construction include selection of nearest neighbors or ε-balls around each
node. Both approaches require the setting of a parameter, either the number of
neighbors or the size of the ball, which is crucial for the performance. Setting
the parameter too low leads to a large number of disconnected components,
while for many applications one is interested in having all points connected to
obtain a consistent embedding of all points. Choosing too high values of the
parameters leads to shortcuts, yielding a poor approximation of the manifold.
The appropriate selection of the parameters is more challenging on sparsely
sampled manifolds, obtained after the subset selection.

To address this issue, we propose a new technique for graph construction that
takes the initial distribution of the points into account. For each landmark xi,
we estimate the covariance matrix Ci around this point from its nearest neigh-
bors Ni, as indicated as optional step in Algorithm 2. This step implies a multi-
variate Gaussian distribution G(xi, Ci) centered at the landmark xi. A commonly
used distance to compare distributions is the Bhattacharyya distance, which in
case of Gaussian distributions corresponds to

B(Gi,Gj) =
1

8
(xi − xj)>C−1(xi − xj) +

1

2
ln

(
|C|√
|Ci||Cj |

)
, (7)

with C =
Ci+Cj

2 . This distance is less likely to produce shortcuts across the
manifold because points that fit the local geometry appear much closer than
points that appear as outliers from the local geometry. Consequently, we replace
the Euclidean distance for neighborhood selection in manifold learning with the
Bhattacharyya distance. Space requirements of this step are O(d2k). An alter-
native for limited space and large d is to only use the diagonal entries of the
covariance matrix, requiring O(dk) space.

4 Experiments

In our first experiment, we show that the proposed efficient DPP sampling algo-
rithm is well suited for subset selection in non-Euclidean spaces. The algorithm
restricts the update of the sampling probability D to a local neighborhood Ni

around the current point xi. This is in line with the motivation of many manifold
learning algorithms that assume that the space behaves locally like a Euclidean
space. In our experiment, we set the local neighborhood Ni to be the 20 nearest



Sampling 25 50 60 70 80 90 100

Uniform 70.384 8.006 4.838 2.785 1.676 0.731 0.442
K-means Uniform 28.124 3.848 2.319 1.393 0.756 0.403 0.235

K-means++ Seeding 50.114 5.832 3.033 1.655 1.013 0.683 0.347
K-means++ 24.954 3.575 1.915 1.018 0.711 0.383 0.222

Efficient DPP 33.036 3.371 1.466 0.844 0.488 0.312 0.202

Table 1: Average reconstruction errors over 50 runs for several sampling schemes
with subset sizes varying from 25 to 100. Best results are highlighted in bold face.

(a) 25 (b) 60 (c) 200 (d) 500

Fig. 2: Selection of 2,500 landmarks from a set of 10 million points. Embedding of
landmarks into 2D with Laplacian eigenmaps. Results for Euclidean (first row)
and Bhattacharyya neighborhood selection (second row) are shown.

neighbors around the selected point xi. The sampling result is shown in Fig. 1(d).
We obtain a point set with high diversity, covering the entire manifold. This il-
lustrates that the proposed algorithm provides diversity on complex geometries
and is therefore appropriate for subset selection in the context of non-linear
dimensionality reduction.

In our second experiment, we quantify the reconstruction error for matrix
completion as formulated in Eq. (2). We compare the efficient DPP sampling
result with uniform sampling [21] and K-means clustering with uniform seed-
ing [22], which represents current state-of-the-art [16]. Moreover, we compare
to selecting the subset with the K-means++ seeding and the K-means++ algo-
rithm, which we have not been used for landmark selection before. We construct
a Gaussian kernel matrix from 1,000 points on a Swiss roll (Fig. 1). We select
subsets of varying size between 25 and 100 and set the parameters σ = 1 and
m = 30 for the Swiss roll. Note that a further improvement can be achieved by
adapting these parameters to the size of the subset. For smaller subsets, larger σ
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Fig. 3: Classification accuracy for MNIST and head and neck data. Comparison
of different subset selection schemes for varying numbers of selected landmarks.
Bars indicate mean classification performance and error bars correspond to stan-
dard deviation. *, **, and *** indicate significance levels at 0.05, 0.01, and 0.001.

and m lead to improvements. We report the reconstruction error for the different
methods and datasets in Table 1, averaged over 50 different runs. The diverse set
of landmarks selected with efficient DPP sampling leads to the lowest average
reconstruction errors in almost all settings.

In our third experiment, we perform manifold learning with Laplacian eigen-
maps on a point set consisting of 10 million points on a Swiss roll. The dataset
is too large to apply manifold learning directly. We select 2,500 landmark points
with the efficient DPP sampling algorithm and estimate the local covariance
matrices, which we provide to the manifold learning algorithm. We vary the
number of nearest neighbors in the graph from 25 to 500. We compare the graph
construction with Euclidean and Bhattacharyya neighborhood selection with em-
bedding results shown in Fig. 2. The results show that the Bhattacharyya based
neighborhood selection is more robust with respect to the number of neighbors.

4.1 Image Data

After having evaluated each of the steps of the proposed approach separately, we
now present results for scalable manifold learning on image data. We work with
two datasets, one consisting of handwritten digits and a second one consisting
of patches extracted from 3D medical images. Each dataset is too large to apply
manifold learning directly. Consequently, we select landmarks with the discussed
method, perform manifold learning on the landmarks with the Bhattacharyya
distance, and use the Nyström method to embed the entire point set. We only
consider the diagonal entries of the covariance matrices due to space limitations.
The exact formula for the out-of-sample extension with the Nyström method
for Laplacian eigenmaps is derived in [6]. To evaluate the quality of the embed-
ding, we use the labels associated to the image data to perform nearest neighbor



classification in the low dimensional space. We expect advantages for the DPP
landmark selection scheme because a diverse set of landmarks spreads the entire
point set in the embedding space and helps the classification. We avoid sophis-
ticated pre-processing of the data, since we are only interested in the relative
performances across the different landmark selection methods.
We evaluate the method on the MNIST dataset [17], con-
sisting of 60,000 binary images of handwritten digits for
training and 10,000 for testing with a resolution of 28×28
pixels, and on CT scans with a resolution of 512×512×145
voxels. The CT scans were acquired for radiation therapy
of patients with head and neck tumors. The figure on the
right shows one cross sectional slice with segmentations
of three structures of risk: left parotid (red), right parotid
(blue), and brainstem (green). The segmentation of these
structures during treatment planning is of high clinical importance to ensure
that they obtain a low radiation dose. We extract image patches from the left
and right parotid glands, the brainstem and the surrounding background. We
aim to classify patches into these four groups, where the outcome can readily
serve in segmentation algorithms. We work with patches of size 7 × 7 × 3 to
reflect the physical resolution of the data which is 0.98 × 0.98 × 2.5 mm3. This
results in roughly 150,000 patches extracted from three scans. 80,000 patches
are used for training and the remaining ones for testing. We set m = 5000 and
σ = 5 in this experiment. We embed the images into 100 dimensional space
with Laplacian eigenmaps. Fig. 3 reports classification results over 20 repeti-
tions for several landmark selection schemes across different numbers of land-
marks k, as well as the Bhattacharyya based graph construction. The results
suggest that the K-means++ seeding outperforms the uniform initialization and
K-means++ cannot further improve the initialization. Moreover, we observe a
significant improvement in classification performance for approximate DPP sam-
pling compared to K-Means++ seeding. Finally, the Bhattacharyya based graph
construction further improves the results. In addition to the significant improve-
ment, our runtime measurements showed that our unoptimized Matlab code for
efficient DPP sampling runs approximately 15% faster than an optimized MEX
version of K-means.

5 Conclusion

We have presented contributions for two crucial issues of scalable manifold learn-
ing in large datasets: (i) efficient sampling of diverse subsets from manifolds and
(ii) robust graph construction on sparsely sampled manifolds. We analyzed the
sampling from determinantal distributions in non-Euclidean spaces and pro-
posed an efficient approximation of DPP sampling. Furthermore, we proposed
the local covariance estimation around landmarks to capture the local geometry
of the space. This enabled a more robust graph construction with the Bhat-
tacharyya distance and yielded low dimensional embeddings of higher quality.
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