
Seneff, Wang, and Burge, Applied Bioinformatics 1

Gene Structure Prediction Using an Orthologous Gene

of Known Exon-Intron Structure 1

�

Stephanie Seneff,
�

Chao Wang, and
�

Christopher B. Burge

Affiliation:

�

Spoken Language Systems Group

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

�

Department of Biology

Massachusetts Institute of Technology

1This article is published in Applied Bioinformatics 2004:3(2-3):81-90, copyright Open Mind Journals Ltd (2004). OMJ is
the only authorised source. All copying of this article including placing on another website requires the written permission of
the copyright owner.



Seneff, Wang, and Burge, Applied Bioinformatics 2

Send Correspondence to:

Stephanie Seneff

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, 32-G438

Cambridge, Massachusetts 02139 USA

fax: +1 617 258 8642

phone: +1 617 253 0451

email: seneff@csail.mit.edu

or

Chao Wang

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, 32-G362

Cambridge, Massachusetts 02139 USA

fax: +1 617 258 8642

phone: +1 617 253 7772

email: wangc@csail.mit.edu

or



Seneff, Wang, and Burge, Applied Bioinformatics 3

Christopher B. Burge

MIT Department of Biology

77 Massachusetts Avenue, 68-223

Cambridge, Massachusetts 02139 USA

fax: +1 617 452 2936

phone: +1 617 258 5997

email: cburge@mit.edu



Seneff, Wang, and Burge, Applied Bioinformatics 4

Number of pages: 30

Number of tables: 2

Number of figures: 10

Keywords: Gene prediction, comparative genomics, language models, exon length



Seneff, Wang, and Burge, Applied Bioinformatics 5

Abstract

Given the availability of complete genome sequences from related organisms, sequence conser-

vation can provide important clues for predicting gene structure. In particular, one should be able

to leverage information about known genes in one species to help determine the structures of related

genes in another. Such an approach is appealing in that high quality gene prediction can be achieved for

newly-sequenced species, such as mouse and puffer fish, using the extensive knowledge that has been

accumulated about human genes. Here, we report a novel approach to predicting the exon-intron struc-

tures of mouse genes by incorporating constraints from orthologous human genes using techniques that

have previously been exploited in speech and natural language processing applications. Our approach

uses a context-free grammar to parse a training corpus of annotated human genes. A statistical training

procedure produces a weighted recursive transition network (RTN) intended to capture the general fea-

tures of a mammalian gene. This RTN is expanded into a finite state transducer (FST) and composed

with an FST capturing the specific features of the human ortholog. This model includes a trigram

language model on the amino acid sequence as well as exon length constraints. A final stage uses the

free software package, CLUSTALW to align the top
�

candidates in the search space. For a set of 98

orthologous human-mouse pairs, we achieved 96% sensitivity and 97% specificity at the exon level on

the mouse genes, given only knowledge gleaned from the annotated human genome.
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1 Introduction

The biomedical research community is experiencing an enormous growth in the number of sequenced

genes that become available for research purposes every day. Looking to the future, it will become in-

creasingly important to leverage knowledge about one species to help in annotating the genome sequences

obtained for other species. At this time, the knowledge available for the human genome is much more pre-

cise and extensive than that for other vertebrates. However, with the recent determination of the complete

mouse genome sequence (Consortium 2003), it becomes of paramount importance to accelerate the pace

at which new genomic sequences can be accurately decoded. It is well known that there is remarkably

strong conservation of the nucleotide sequences within the coding exons for related species, on the order

of 97% for humans compared with other primates, and about 85% for pairs of human-mouse orthologs.

As discussed in (Batzoglou et al. 2000; Consortium 2003), there appears to be a remarkable conservation

of individual exon length between the human and the mouse. This feature makes it feasible to exploit

statistical methods that would otherwise be impractical because of an unwieldy search space.

1.1 Goals

Our goal in this work was to develop a statistical language model for gene finding by exploiting ortholo-

gous pairs, borrowing techniques previously applied to speech understanding. To begin our explorations,

we conducted a preliminary experiment in which we used simple � -gram statistics to attempt to match up

orthologous gene pairs. In particular, we trained an amino acid trigram language model for each human

gene of a pair of human-mouse orthologs and selected the highest scoring mouse protein (among 102 can-
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didates) as the proposed orthologous mouse gene. We found that the matching was nearly perfect. This,

together with the knowledge that the lengths of individual exons are strongly conserved across different

mammalian species (Batzoglou et al. 2000), inspired us to design a gene-finding procedure that makes use

of � -grams and exon length constraints as critical components. The other necessary ingredient to success

would be a generic statistical model of a typical mammalian gene, that would map from the raw nucleotide

sequence to the sequence of amino acids specifying the resulting protein.

1.2 Background

We have long exploited natural language techniques to aid in the process of understanding human speech.

Our methods are based on parsing a corpus of orthographic transcriptions of users’ utterances based on a

context free grammar formalism (Seneff 1992) , then inducing a language model for the recognizer from

an automatic analysis of the parse trees (Seneff et al. 2003). Our speech recognition framework (Glass

et al. 1999) makes use of a finite state transducer (FST) formalism (Pereira and Riley 1997; Mohri 1997)

to define the search space. This formalism defines a space of interconnected “states,” with a state transition

matrix characterizing the connections among the states and supporting simultaneously a mapping from an

input symbol to an output symbol, with an associated probability. For speech, we typically map in stages

from phonetic (e.g., “flap”) to phonemic (“/t/”) realizations, subsequently grouping phoneme sequences

into words (“guatemala”), then optionally concatenating words into multi-word units (“guatemala city”)

and finally word classes (“city name”). A class � -gram language model provides critical constraint for the

recognition task. A more sophisticated approach is to augment the FST with recursive transition networks

(RTNs) (Woods 1970), to support a hierarchical model where selected transitions on arcs are associated
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with an entire sub-network, identified by a unique name. This permits a direct encoding of a context free

grammar into the recognizer’s search space.

In our research on spoken dialogue systems, we have explored several options for integration between

speech recognition and natural language understanding, where our goals were to deduce an effective sta-

tistical language model for the recognizer directly from the natural language (NL) grammar. We have

recently been successful with two different techniques, both of which are based on parsing a large corpus

of utterances and tabulating counts in the parse trees to determine the probability model. The distinction

between the two approaches is in the complexity of the resulting recognizer language model. The sim-

pler technique (Seneff et al. 2003) induces a traditional class � -gram language model, whereas the more

complex alternative (Wang et al. 2000) includes component categories that are represented by a recursive

transition network (RTN) (Woods 1970), allowing a structured encoding of layers above the preterminal

layer in terms of a context-free grammar. We typically include bigram statistics on transitions within each

layer of such an RTN, computed directly from the parse trees acquired for the training corpus. For speech

applications, we have typically found that an RTN formulation is less successful. This is mainly because,

for most applications, the RTN can not be expanded into a finite state network, and therefore suffers from

performance loss in terms of computation required to evaluate the recursion on the fly.

Our first thought was that techniques that worked best for speech would also be preferred for the

genome parsing problem. In speech applications, words that form a natural set within a semantic class are

grouped and replaced by their class label in the training sentences, with a within-class unigram statistic ac-

counting for their internal distribution within the class. Word sequences must sometimes be concatenated

into artificial compound words in order to simplify class membership to a list of items. Thus “salt lake
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city” becomes “salt lake city.” The class then stands in for all of its member words (both singletons and

compounds) in the sentence-level bigram statistics. A parallel in genomics would be to create compound

words to account for all of the codings from nucleotides to amino acids. A properly constructed gram-

mar could be used to tag exon-internal sequences according to their triple-code protein transformations,

for example, producing “classes” like “ � Leu � ” containing “word sequences” like “t t a,” “t t g,” “c t t,”

“c t a,” “c t c,” “c t c,” and “c t g.” Nucleotides in introns could be tagged for the phase of the reading

frame, in order to retain knowledge of the phase across the gap between the individual exons.

The alternative approach is to select a subset of the non-terminal categories in the NL grammar as

classes in a class � -gram, and to expand those classes using a recursive transition network (RTN), coded

directly from the rules in the grammar subsumed by the specially selected categories. While this approach

is often impractical for speech applications, the complexity of grammars needed for genomics is consid-

erably reduced, and it has the advantage that statistics can be shared across similar contexts. For example,

it seems counterproductive to split the statistics on the introns into three distinct subgroups just because

of the phase of the reading frame in flanking exons. An RTN can easily be configured such that the three

intron classes can share a common nucleotide bigram model, which can also be used for the nucleotide

sequences flanking the outer edges of the gene.

It also becomes very straightforward to write rules to express positional bigram statistics in the ���

and ��� splice site motif patterns, which are then covered by a separate subnetwork within the RTN. We

found that an RTN constructed for genomic sequences in this fashion could be automatically expanded

into a finite state network, which could then be composed with FSTs representing other components of

our model to produce an efficient search graph. This thus became our preferred strategy for representing
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the generic mammalian gene model.

1.3 Overview of the Approach

Our approach makes use of a generic mammalian gene model as well as specific constraints from the

human orthologous gene when predicting the structure of a mouse gene. The generic gene model was

obtained by parsing a training corpus of 400 annotated human genes using a context-free grammar2. A

probabilistic training procedure produces a weighted recursive transition network (RTN) intended to ac-

count statistically for most of the distinct features of a typical gene (introns, exons, and � � and � � splice

sites). This network, converted into a finite state transducer (FST), defines the basic search space used

in predicting the structure of a mouse gene. The search space is further enhanced with exon length and

amino acid � -gram model constraints obtained from the corresponding human ortholog. A search through

the space, given an input mouse genomic sequence, produces an � -best list of alternative protein hy-

potheses, which can be sorted using standard sequence alignment tools, such as CLUSTALW (Thompson

et al. 1994). Thus a formal alignment between the human and mouse orthologs is deferred until the

post-processing stage.

All the models used in our approach make use of the finite state transducer representation, and the gene

prediction procedure utilizes the FST toolkit developed in the Spoken Language Systems group at MIT,

which is based on (Pereira and Riley 1997; Mohri 1997).

2Thus we are assuming that the human genome is representative of all mammals.
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2 Methodology

Central to our methodology is a statistical model for the genomic sequence, which is essentially a hidden

Markov model (HMM). The hidden states in the model correspond to various basic functional constituents

of a gene (e.g., exon, intron, splice sites, etc.), and the emission probability is defined as the likelihood

of observing a particular nucleotide sequence conditioned on the state. Thus, the joint probability of an

observed genomic sequence ( � ) and the corresponding state sequence ( � ) can be expressed as:

��� �������
	 ��� ���
� ��� �����������
������
����� ��� � � ��� ����� � ��� � � � � � � (1)

in which � � is the observed nucleotide sequence for state � � , and ! is the total number of states.

The problem of predicting the structure for a genomic sequence can then be solved by finding the state

sequence that maximizes this joint probability:

� � 	#"%$'&)(*",+- ��� ������� (2)

The state sequence encodes the proposed genetic structure of the input DNA sequence.

Although our gene model is equivalent to an HMM in the probability formulation, it was trained via

an efficient parsing mechanism (Seneff 1992) and encoded as a weighted Recursive Transition Network

(RTN). The top level of the RTN corresponds to the HMM model states ( � � ). Some of the top level

nodes are expanded recursively, down to a sequence of terminal nucleotides ( � � ), according to the rules of

the grammar. The emission probability of observing that sequence can be computed by multiplying the
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probabilities on all the arcs visited by the expansion of the sub-level RTNs. For example, the � � splice

site is represented as a top level node that eventually expands into a sequence of 20 nucleotides, and the

emission probability of this sequence, ��� � � � � � 	 ��� � �������	� � ��
�� � is computed as a product of the RTN

weights3. This generic gene model is enhanced with human ortholog-specific information, to provide

effective constraints in processing the orthologous mouse gene.

In the remainder of this section, we first give an overview of our gene prediction procedure, followed

by detailed descriptions of each component module.

2.1 Overview of gene prediction procedure
















Over-generate all possible splicings

Apply length constraints from human ortholog gene

Apply generic gene model and ortholog-specific LM constraints

Align with human ortholog

Raw nucleotide sequence

Ambiguously tagged nucleotide sequence

Length-constrained tagged nucleotide sequence

N-best hypotheses

Selected top-scoring hypothesis

Figure 1: Block diagram of procedure used to extract mouse gene structure by analogy with known
human ortholog.

3In practice, the weights on the RTN are negative log probabilities, so that a sum is used in computing the total probability.
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The procedure to process a single mouse gene through our model requires several steps, as outlined

in Figure 1. Each raw mouse sequence was pre-processed to over-generate all potential exons. This

FST is then pruned by imposing exon length structure constraints, obtained from the annotated human

orthologous gene4. The generic gene model is then applied to score alternative hypotheses available in

the graph, as well as translating them into amino acid hypotheses. An amino acid trigram model, trained

from the protein sequence of the human ortholog, is then applied. Finally, a hypothesized � -best list of

the top-ranking candidates can be re-ranked by aligning each hypothesis with the human ortholog amino

acid sequence, using a standard alignment tool such as CLUSTALW (Thompson et al. 1994). The final

highest scoring alignment provides a hypothesized protein sequence for the mouse ortholog, segmented

into a sequence of proposed exons.

2.2 Initial processing

Each raw mouse sequence was pre-processed to support hypothesized exon start and end positions wher-

ever they were possible according to strict rules for specific two- or three-nucleotide sequences at their

boundaries, as illustrated in Figure 2. This results in a finite state transducer mapping raw DNA sequences

to alternatively tagged sequences.

4Putative orthologs can be acquired using bidirectional BLAST search.



Seneff, Wang, and Burge, Applied Bioinformatics 14

� exoni � before every atg
� exon � after every ag
� /exon � before every gt
� /exonf � after every STOP (taa � tag � tga )

Figure 2: Special tags inserted into raw genomic sequences in the initial processing phase. � exoni �
= beginning of initial coding exon; � exon � = beginning of internal exon; � /exon � = end of internal exon;
� /exonf � = end of final coding exon.

2.3 Generic Gene Model

To train a generic gene model for the mammalian genome, we developed a context-free grammar that

encodes critical aspects of the genomic structure, including accounting explicitly for substructure in the

motif sequences at both the � � and � � splice sites of the intron, as outlined in Figure 3. The grammar also

preserves reading frames between adjacent exons.

3’ splice site (... ag) 5’ splice site (gt ...)

intron (0|1|2)

stop (taa|tag|tga)atgpre−gene region post−gene region

exon

Figure 3: Basic structure of the generic gene model. Internal introns remember the reading frame to
assure correct coding of the nucleotides into amino acids.

The portion of the grammar accounting for the amino acids, as illustrated in Figure 4, captures a

statistical map from nucleotide sequences to amino acid sequences. A nucleotide bigram language model

encodes the statistics of all introns. The model for the � � splice site motif, which takes into account the

18 nucleotides preceding the “ag” signature of exon onset, as illustrated in Figure 5. This model captures

positional bigram statistics, which is equivalent to an inhomogeneous first-order Markov model (Burge
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exon i start exon stop seq exonf end
AA ... AA

c ca Gln ... c cg Arg t1 a2 Stop
� exoni � a t g c a g ... c g a t a a � /exonf �

Figure 4: Schematic of our structural model for an exon, in the simple case of a very short single
exon gene. The preterminal symbol, “ca” stands for the specific situation of the nucleotide “a” following
the nucleotide “c” in the second position of the triplet code. The third position in the model uniquely
specifies the amino acid.

� � motif
Nt1 Nc2 Na3 .... Nt13 Nc14 Nc15 Nc16 Nc17 Nt18 ag

t c a .... t c c c c t a g � exon �

Figure 5: System’s statistical model for the � � splice site motif, consisting of the twenty nucleotide
sequence up to and including the obligatory “ag.”

1998). The model for the � � splice site motif is shorter, yet more intricate, as we wanted to account for

the known distinction between situations where the nucleotide “g” is present or absent at the position just

preceding the end of the exon (See Figure 2 in (Burge and Karlin 1997)). When the exon ends in phase �

with the reading frames, it seemed too difficult to encode this “g”/“not-g” distinction along with the protein

coding process, so this distinction was only made for the phase � and phase � exons. An example of the

parse tree for an exon which ends in phase 2 and in a “not-g” configuration, is illustrated in Figure 6.

Figure 7 shows that the distributions of the four nucleotides at the +5 position of the � � splice site motif

model are distinctly different for the “g”/“not-g” subsets, as reported previously.

The gene model is trained by parsing annotated human genes using this grammar. A corpus of about

400 human genes was used in estimating the parameters of the model. The training genes were truncated

at 1000 nucleotides preceding the first coding exon and 1000 nucleotides subsequent to the end of the last
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ab end
nuc1 h2 exon end h

exon end h1 h2 h3 h4
g a � /exon � g t g a g t

Figure 6: Model for the � � splice site motif in the case where two nucleotides of the split codon have
immediately preceded the exon boundary, and the last nucleotide before the boundary was not “g.”

Figure 7: Log probabilities obtained in the generic gene model for the four nucleotides in position
� � (labeled x) in the � � splice site motif: “n n g � h � /exon � g t n n x n”, conditional on “g” or “h”
( � act � ) at position -1, the last base of the exon (labeled “g � h”).

coding exon. Some characteristics of these genes are presented in Table 1. Statistics were tabulated from

the parse trees for this corpus, and an RTN model was produced encoding the grammar, with negative log

probabilities on transitions. This RTN was then expanded into a finite state transducer, such that it could

be combined with additional constraints from the human ortholog.
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2.4 Length constraints

As discussed in both (Consortium 2003) and (Batzoglou et al. 2000), it appears that the lengths of corre-

sponding exons of human and mouse orthologs are strongly conserved. Batzoglou et al. (Batzoglou et al.

2000) found that 73% of exon lengths were identical, and the differences, when they occurred, were quite

small and were nearly always a multiple of three. The introns, on the contrary, often have considerably

different lengths between the two species.

We used a finite state transducer to encode the intron/exon length constraints. In our FST length model,

the introns are represented by a single state supporting all possible nucleotides in a self-loop, resulting in

no length constraints for introns. The exons are represented as a cascade of one-nucleotide acceptors; the

length of the cascade encodes the exon length explicitly. Given an annotated genomic sequence, we could

derive a “strict” length model, essentially insisting that the length be conserved for all the exons in the

gene. A more general solution would be to allow insertions and deletions of up to � codons (multiples of

3 nucleotides) in each exon, to support the most common types of variations.

There are other types of exon length variations, including merging and splitting of exons, and lengths

differing by other than a multiple of three. We can account for the merging of two exons easily in our

model, by providing a transition that by-passes the intron state. The inverse problem of splitting an exon

into two is more difficult, due to the many possible sites at which splitting could occur. However, em-

pirical studies have shown that the problem of “exon-splitting” is likely to be very rare when comparing

mammalian genes. For example, in an analysis of 1,560 human-mouse orthologs and 360 mouse-rat or-

thologs, evidence was found for only about a half dozen intron loss events, and no intron gains (Roy et al.
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2003). From a practical consideration, we could account for all variations of exon structure change with

a more complex model, but at the expense of significantly increased ambiguity. We thus chose to ignore

the less common variations (except merging) in our model, recognizing that our approach will not be able

to recover those exons correctly. In Section 3, we will describe an experiment analyzing the trade-offs in

selecting � , the maximum number of codons we allow an exon to insert or delete.

Figure 8 illustrates our model (for � 	 � ) with a simple example.

a:a

c:c
g:g
t:t

a:a

c:c
g:g
t:t

a:a

c:c
g:g
t:t

c:cc:c c:c c:c c:c c:c c:c c:c c:c c:c c:c c:c
a:aa:a a:a a:a a:a a:a a:a a:a a:a a:a

g:gg:g g:g g:g g:g g:g g:g g:g g:g g:g g:g g:g
t:tt:t t:t t:t t:t t:t t:t t:t t:t t:t t:t t:t

<exoni>:<exoni>
</exon>:</exon> <exon>:<exon>

ε:ε

ε:ε

ε:ε
ε:ε

</exonf>:</exonf>
a:a a:a

Figure 8: An example length constraint FST for a hypothetical sequence “... � exoni � a t g t a
� /exon � g t ... a g � exon � a � /exonf � ...”. In this example, we allow up to one codon insertion or
deletion in each exon, as well as a merge of exons. In addition to the original exon length pattern “5 1”,
this FST also supports the following combinations: “2 1”, “8 1”, “2 4”, “5 4”, “8 4”, “3”, “6”, “9”, and
“12”.

2.5 Amino-acid language model

We applied an amino acid trigram model, also encoded as an FST, to adapt the generic gene model to the

particular ortholog under consideration. The model is estimated from the amino acid counts in each human

protein sequence. The Deleted Interpolation technique (Bahl et al. 1991) was used for smoothing, with
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probabilities estimated using a variation of the expectation maximization (EM) algorithm (Dempster et al.

1997). This technique is identical to that used for our speech applications. The vocabulary of this language

model is based on the 20 amino acids, but is enhanced with three phase markers at exon boundaries.

2.6 Post-processing via alignment

Global alignment between human and mouse orthologous protein sequences can in theory provide stronger

constraints than � -gram models, which are simply based on frequencies of localized patterns. Thus, it is

possible to further improve the system performance after the � -gram model is applied, by explicitly align-

ing the human ortholog with each of the � -best hypotheses produced by the system, in a re-ranking step.

For this purpose, we used the publicly available general purpose multiple sequence alignment program

CLUSTALW (Thompson et al. 1994). CLUSTALW can calculate the best match between multiple DNA or

protein sequences, and produce a score associated with each match. We converted the � -best hypotheses

into protein sequences and aligned each of them with the known protein sequence of the human ortholog.

The one with the highest alignment score is then chosen to be the system output. We used the default

settings of CLUSTALW, so that no special tuning was done to adapt the tool for aligning human-mouse

orthologs. The � -best list size was fixed to be 100 in our experiments, although one could optimize this

parameter if an independent set of development data were available.
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3 Results and Discussion

We evaluated our approach using the same set of human-mouse ortholog pairs that had been used in (Bat-

zoglou et al. 2000). The original data set contains a total of 117 pairs of orthologs. However, some of

the genes contain alternatively spliced coding sequences based on the GenBank “CDS” annotation. We

also found that there were about 3 mouse genes whose introns have the non-consensus terminal dinu-

cleotides (“gc..ag”), a recognized variant, and 6 mouse genes with dinucleotides other than “gt..ag” or

“gc..ag” (possibly due to sequencing or annotation errors). We could modify our algorithm to accom-

modate the “gc..ag” pattern. However, in our experience with related gene finding algorithms such as

GENSCAN (Burge 1998) and GENOMESCAN (Yeh et al. 2001), allowing “gc” dinucleotides at the � �

splice site dramatically increases the search space without a significant improvement in accuracy. We thus

evaluated our algorithm only on genes that have the “gt..ag” terminal dinucleotide pattern, leaving 102

ortholog pairs in our final test set. The human genes from the human-mouse orthologs in our test set are

on average shorter than the ones we used for training our generic gene model, as shown in Table 1.

Training Testing
Property MIN MAX MIN MAX
total length (nucleotides) 1500 17,000 700 13,500
total length of coding sequences (nucleotides) 200 4000 200 2100
total number of exons 2 25 1 18

Table 1: Distributions of the 400 human genes selected for training the generic mammalian gene
model, compared with distributions of the 102 human genes from the human-mouse ortholog test
pairs. There is no overlap in the two sets.

The criterion we used for evaluation is based on exactly matched coding exons. In particular, we use

the exon-level sensitivity and specificity measures (Burset and Guigó 1996), which correspond to precision
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and recall used in information retrieval evaluations. Sensitivity is defined as the ratio of the number of

correctly identified exons over the total number of exons in the test sequences; specificity is defined as the

ratio of the number of correctly identified exons over the total number of predicted exons.

3.1 Results
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Figure 9: Sensitivity and specificity on correctly identifying mouse exons as a function of � , the
maximum number of codon insertion/deletions allowed in the length FST model. � varies from 1 to
13 in the plots. The labels next to the data points indicate the total number of genes that our system is able
to predict under each � .

The only significant parameter we chose to tune in our system was � , the maximum number of codons

we allow to insert or delete in the exon length constraints. Figure 9 summarizes the impact of � on the

system performance. We were not always able to find an orthologous mouse exon-intron structure for

every human gene. For example, we are able to predict gene structures for 98 mouse sequences (out of

102 in total) when we allow up to 9 codon insertions/deletions in each exon. This is due to the restrictions

imposed by the length constraints; i.e., when the mouse exon length variation is beyond the coverage of



Seneff, Wang, and Burge, Applied Bioinformatics 22

the length constraints FST, the search could fail to find any gene in the mouse genomic sequence. We

consider this a desirable feature of our algorithm: it is probably better to fail than to produce an erroneous

result. For the failed cases, one can relax the length constraints, or adopt a different approach such as those

based on genomic sequence alignments.

The sensitivity and specificity measures in the plots were calculated on the subset of genes that our

system can produce an answer for, for different values of � . As shown in the figure, there is clearly a

trade-off in choosing � . Since we have no chance of correctly identifying those mouse exons that varied

by more than � codons, a small � will result in a significant number of errors due to those hard failures.

It also results in more null outputs due to total search failures. As we increase � , we can generally

produce outputs for more genes. However, with a large � , the performance could degrade due to increased

ambiguity, as indicated by the downward trend in the figure beyond � 	�� . The optimal performance was

96.2% sensitivity and 96.7% specificity for coding exons, which was achieved with � equal to 11 and with

post-processing using the CLUSTALW alignment tool.

3.2 Discussion

It is interesting to observe that post-processing using CLUSTALW did not yield any further improvement

over using the simple amino acid trigram model until � reaches 11. This seems to suggest that, when the

exon length constraints are relatively strict, the trigram model is adequate for incorporating human protein

sequence constraints. However, the explicit alignment with human protein sequence via CLUSTALW

provides stronger “language model” constraints than � -grams, and eventually out-performs the trigram
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model as � grows. (The trigram model, even though it was not able to predict the correct gene structure

as the top candidate, was able to produce the correct answer in its � -best outputs.)

Generic
Genome
Model

Mouse
Length
Constraints

Human
Ortholog
Trigram

ClustalW
Alignment

ClustalW
Alignment

GGM MLC TRI ALGN

System IV

System II

System I−aSystem III
System I−b

Figure 10: Schematic of experiments on different system configurations for gene prediction of the
mouse gene based on the human ortholog.

To help us analyze the relative contributions of the various components of our system, we experimented

with different system configurations, as outlined in Figure 10. All of these experiments were conducted

with length constraints derived exclusively from the annotated mouse gene. Results are provided in Ta-

ble 2. By replacing the length constraint with an exact length specification from the target mouse gene, we

can determine an upper bound on how well the rest of the system is performing. In fact, this configuration

(System I-a in the table) yielded 100% sensitivity and specificity, even without any CLUSTALW alignment

post-processing.

However, if we add even a small amount of perturbation from perfection in the mouse length con-

straints (System I-b), by allowing deviations of � � codons from the exact lengths on all exons, both

sensitivity and specificity are reduced to 98.4%. This reflects the tremendous ambiguity in allowable gene

structures for the genomic sequences. It also seems to suggest that the loss of performance due to imper-
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fect knowledge of mouse exon lengths (as deduced from human orthologs) is relatively small. We reach

this conclusion since, with sufficient relaxation of length constraints from the human ortholog predictor,

we are able to achieve results that are only slightly worse than the results for System I-b. As for most of

our real experiments, addition of � -best selection from CLUSTALW alignment (System II) resulted in a

slight degradation in performance.

The other question we were interested in addressing was the degree to which the trigram language

model based on the human ortholog improves the quality of the � -best list. If the trigram is omitted from

the above configuration, performance degrades significantly, down to only 87% sensitivity and specificity

(System III). However, it is interesting that the correct hypotheses are often available within the 100-best

list, since, in this case (System IV), CLUSTALW plays a much more critical role to bring the performance

to the same level that is achieved by its analog, System II.

Exon-level Exon-level
System Configuration Sensitivity (%) Specificity (%)

I-a MLC(exact) + GGM + TRI 100 100
I-b MLC( � � ) + GGM + TRI 98.4 98.4
II MLC( � � ) + GGM + TRI + ALGN 97.9 98.1
III MLC( � � ) + GGM 87.2 87.2
IV MLC( � � ) + GGM + ALGN 98.1 98.1

Table 2: Results for various experiments discussed in text. See Figure 10 for definitions of terms.
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4 Relevance of Approaches and Results

Even though our algorithm was developed within the context of predicting mouse gene structure using

information from the human orthologous gene, it can be easily extended to compare multiple species. We

can simply run the procedure on all pairs of species for which the structure is known in one but not in the

other and compare the results. This could provide additional confirmation in the typical cases when the

predictions agree, or indicate uncertain exons or splice sites (or true changes in gene structure) in cases

where the predictions disagree.

We expect that the techniques developed here will be useful for future tasks of gene annotation for

newly sequenced genomes. For example, if a predicted exon structure for a mouse gene homologous to a

known human disease gene can be obtained with high accuracy, then this information could be of value

in designing knockout or transgenic mouse experiments to help in understanding the underlying disease

process. Another exciting possibility is to use these techniques to improve genetic modeling in species

such as the zebra fish (Gaiano et al. 1996), which hold promise for genetic dissection of developmental

processes through retroviral-induced mutations.

The algorithm described in this paper can also be applied to harvest genomic data for research on

alternatively spliced genes, or isoforms. It is an interesting question as to what determines whether an

exon can be alternatively spliced. A promising approach to addressing this problem is to study alternatively

spliced orthologous genes: if an exon exhibits similar behavior in the orthologs, the factors would likely

be conserved across the two species (Modrek and Lee 2003). However, ortholog information is generally

available only on the gene level. Our technique could contribute by matching orthologs on the isoform
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level with high accuracy.

We are not aware of any reported research on the topic of gene prediction by analogy with a known

orthologous exon-intron structure, although a related but harder problem of gene prediction for both human

and mouse based on a joint genomic sequence model has been addressed by several groups. For example,

Meyer and Durbin (Meyer and Durbin 2002) took the approach of a “probabilistic pair HMM” to jointly

model the two sequences. In the “exon” state, the HMM used known human-mouse confusion statistics

to score the joint hypotheses for amino acids deduced from the paired human/mouse genes in two parallel

coding sequences. Their best results were 80% sensitivity and 79% specificity on the exon level, realized

after a post-processing step to remove implausible hypotheses. Batzoglou et al. (Batzoglou et al. 2000)

aligned the human-mouse orthologs through a novel iterative procedure that relies on exact matches of � -

mers, with the value of � decreasing with each iteration. They made use of standard dynamic programming

methods to completely score the final alignments that emerged from the iterative process. Statistical

methods were used to score the quality of the candidate splice sites, as in our work, but they also made use

of human-mouse confusion statistics for the codons, as did Meyer and Durbin. Their length constraints

were similar to ours except that they penalized lengths that did not match exactly. Their results for internal

exons were nearly perfect, but performance degraded substantially on initial and final exons, where only

one of the splice site motif patterns is available. Here they obtained 71% prediction accuracy.

These results can not be directly compared with our results, because the problem is formulated as a

joint prediction of two related genes rather than a prediction of one gene based on its similarity to a known

ortholog. One would expect better performance for our system, which is confirmed by our results. It is

interesting to note, however, that we have not yet utilized any known confusion statistics between human
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and mouse orthologous genes/proteins, except as they might be embedded in the CLUSTALW alignment

algorithm. We could conceivably obtain improvements by building explicit models for these confusions

into our final alignment stage. For this we could make use of another set of speech-based tools we have

developed to account for a probabilistic mapping between the idealized phonemes of a word and their

phonetic realizations in casual speech (Seneff and Wang ).
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