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1. The fundamental problem in the theory of partial difference approxima
tions to hyperbolic equations is the question of convergence to the true solution 
through the use of an increasingly fine mesh. We shall examine this question for 
those explicit methods of greatest interest, the most accurate ones. Happily, 
our answer is very different in kind from that given by Dahlquist [2] to a similar 
question for ordinary differential equations. There, the order of accuracy that 
appears feasible must be reduced by nearly half to achieve stability. In our case, 
the most exact methods prove to be stable under quite reasonable restrictions 
on the mesh ratio. 

Both the statement and the proof of our chief analytical result (Theorem 1) 
can be presented without drawing on the possibly unfamiliar vocabulary of the 
theory discussed above. We therefore do so immediately, hoping the theorem 
will be found interesting in itself. 

Bernstein's inequality for the derivative of a trigonometric polynomial is 
applied in the latter half of the paper to establish the connection between two 
standard necessary conditions for convergence. For systems of equations, we 
reverse the reasoning to obtain a sort of Bernstein theorem (Theorem 6) for 
the spectral radius when the polynomial's coefficients are matrices. 

We owe to Professor Szego the idea which has very much improved the last 
step in ,the proof of Theorem 1, namely to expand a polynomial in terms of its 
differences. We are also grateful to Professor McCarthy for a good many useful 
discussions, and to Professor Lax for a copy of his important paper [4] in ad
vance of its publication. 

2. Consider the polynomial p(y, (J) L~N aj(y)eij8, N > 0, defined by 
either of the properties: 

i) p = ei811 + O( (J2N+l) 

ii) p has degree 2N in y, per, (J) = eiT8 for r = -N, -N + 1, ... ,N. 

If condition i) is met, equate the coefficients of (In to find L~n raj yn, 

o ~ n ~ 2N. The coefficients aj are evidently those needed for Lagrange's 
interpolation formula at 2N + 1 equally spaced points, which is exactly the 
assertion of condition ii). To be specific, 

a· = IT y - k 
J k!1"j .-

J - k 
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Similarly, we define q(y, (J) ""N b ( ) i(2j-l)8 b . h f 
"'-'-N+l i Y e Y mt er 0 

i) q = ei811 + O( (J2N) 
ii) q has degree 2N - 1 in y, q(r, (J) = eir8 for r = ±1, ±3, ... , ±2N - 1. 

Theorem 1. If (J is real and -1 ~ Y ~ 1, then 1 p 1 ~ 1 and 1 q 1 ~ 1. 
PROOF. We first write out explicitly p = c + is, where c(y,(J) = ];ai(y)cosj(J, 

s(y, (J) = ];aj(y) sin j(J, to see that 
a) c is even and s is odd in y (using aj( -y) = a-i(Y)) so that in particular 

s has degree < 2N, 
b) 1 p 12 = c2 + S2 is even in (J and y, with period 271' in (J, and p(y, 0) = 1, 

so it will be sufficient to show that for 0 ~ y ~ 1 and 0 ~ (J ~ 71', we have 
(fJ/fJ(J) (c2 + S2) ~ O. 

The key step is the fact that c and s share the following property of cos (Jy and 
sin (Jy: 

(1) fJc ~. "(J ~ .. fJ(J = -ys, or - Jaj smJ = -y aj smJ(J. 

Both sides have degree ~2N in y, and there is agreement at y = 
so they are identically equal. Therefore 

(2) fJ ( 2 2) (fJC fJs) (fJs) - c + s = 2 c - + s - = - 2s yc - -fJ(J fJ(J fJ(J fJ(J . 

We take the factors on the right separately; first we show 

-N, "',N, 

(3) yc - :: = ~(y - j)aj cosj(J = (;~t (2 sin ~yN tJ (y - j). 

Since both sides vanish at y = -N, ... ,N, we need only verify that the coeffi
cients of y2N+l are equal. On the left we have 

t cosj(J = f ( -1 )N-i cosj(J = Re f (_I)N-
j
e
ij8 

( 2N ) 
-N llk,.&j(j - k) -N N - j! N + j! -N 2N! N + j 

_ (ei8/2_e-i8/2)2N _ (_l)N( . (J)2N 
- Re - - _. - 2N! 2 sm 2" 

(4) 

We remark that another way to establish the (J-dependence is to use c = cos (Jy+ 
O( (J2N+2), S = sin (Jy + O( (J2N+l) , so that yc - fJs/fJ(J = O( (J2N). In the same 
way, we get fJc/fJ(J + ys = O«(J2N+l) , which yields an alternative proof of (1). 

The final step is to find an expression for the other factor in (2), namely s. 
We first calculate, for -N ~ t ~ t + k ~ N, 

(5) t:;.kp(t) = p(t + k) - G)P(t + k - 1) + ... = eiBt(eiB - Il. 

Now substituting in the Gauss forward formula for an odd polynomial of degree 
<2N we get 
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8(Y) = t (y ~ ~ ~ 1) !12k-18( -k + 1) 

(6) = 1m t (y ~ ~ ~ 1) eiB(l-k}(e,B - 1)2k-l 

_. ~ y(12 _ y2) ... «k _ 1)2 _ y2) ( . 8)2k-2 
- sm 8 7 (2k _ I)! 2 sm 2 

Since (3) and (6) are non-negative if 0 ~ y ~ 1 and 0 ~ 8 ~ 1r, we have from 
(2) that (aja8) (c2 + 8

2
) ~ o. 

The proof that 1 q 1 ~ 1 follows the same linej this time 1 q 12 = C2 + S2 
has period 1r in 8, and to show that (aja8)(C2 + S2) ~ 0 if -1 ~ Y ~ 1 and 
o ~ 8 ~ 1rj2, we derive the following formulas: 

(7) 

(8) 

(9) 

(10) 

as 
- =yC 
a8 

a(C2 + S2) = 2C (s + ac) 
a8 y a8 

S + ac = (_1)N-l sin
2N

-
1
8 rrN 

( 2 _ (2· _ 1)2) ::;;; 0 
y a8 (2N - I)! 1 Y J -

C = 8 [1 + ~l (12 - y2)(32 
- y2) ..• «2k - 1)2 - y2) . 2k8] > 0 

. cos "'T 2k! sm =. 

The applications to follow require that we make a note of two details: 

i) For 0 < y < 1,0< 8 < 1r, we have (aja8)(c2 + 82
) < OJ therefore 1 P 1 < 1 

if 0 < 1 y 1 < 1 and 8 ¢ 0 (mod 21r) . 

ii) 1 P 12 = 1 - 4N + 2 y\12 _ y2) ... (N2 _ y2)82N+2 + O(82NH) for 
(2N + 2)! 

8 near O. 

3. We consider now certain difference analogues of a hyperbolic differential 
equation of the form 

(11) au 
au = G(x, t) ax' at u(x,O) = I(x), - 00 < x < 00. 

G is a matrix with real eigenvalues Ai(X, t), and u represents a vector variable. 
An approximation Un(x) '" u(x, n!1) is provided by the system 

(12) Un+1(x) = Lf=-N Aj(x, t, !1) Un(x + j!1), Uo(x) = I(x) 

if we choose the matrices Aj appropriately. 
Suppose first that G is constant. Substituting a solution u of (11) into (12) 

and equating coefficients of !1 n in a Taylor expansion gives 

(13) ~jnAj = G" n = 0, 1, ... 
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Clearly the only way to satisfy (13) for n ~ 2N is to take Ai = ai(G), where 
ai is the Lagrange coefficient from Theorem 1. Of course this formal local ac
curacy, of maximum order, is insufficient per se to assure the convergence of 
U to u, which we measure in the norm 

(14) I U - U 12 = sup 1'" I Un(X) - u(x, nd) 12 dx. 
n6~1 -00 

Theorem 2. If G is similar to a diagonal matrix, and every eigenvalue satis
fies I Ai I ~ 1, then for the most accurate difference method I U - u I ~ 0 with 
d for all f in L2 . 

For the proof, we repeat in summary an argument suggested by von Neumann 
and developed in detail in [5] for our present case of constant coefficients. Denote 
by Sed) the linear operator on L2 defined by the difference equation (12), that is 

Un+l(x) = Sed) Un(X). 

Under a Fourier transformation of L 2 , taking Un(x) into On(~), the operator 
Sed) is unitarily equivalent to multiplication by the amplification matrix 

(15) Sa, d) = 2:Aieiit4 = p(G, ~ d). 

Now diagonalize G, say rlGT = diag (AI, ... , Ak). Then rlsnT = diag 
(p(A~ , ~ d), ... , peA; , ~ d». Since all I Ai I ~ 1, we may use Theorem 1 
to obtain II rlSnT II ~ 1, or II sn II = II sn II ~ II T 1111 rl II. 

Thus the powers of S are uniformly bounded; this is called stability, and 
invoking the Equivalence Theorem of [5], we have established Theorem 2. 

Theorem 3. If every eigenvalue of G satisfies I Ai I ~ 1, and the data f is 
sufficiently differentiable in L2 , then for the most accurate difference method 
IU - ul = O(d2N

). 

PROOF. We again need to estimate II Sn II for nd ~ 1, where S = p(G, ~ d). 
Suppose M is a unitary matrix, chosen so that U-1GM is triangular. Then 
~lSM = p(~lGM, ~ d) will also be triangular, and the diagonal entries 
satisfy I p(Ai' ~ d) I ~ 1 as before. We can easily bound the off-diagonal 
elements independently of ~ and d by the corresponding elements of 
~ I ai 1(1 U-1GM I), taking the modulus of every coefficient of the ai and 
every entry in ~lGM. Since now ~lSM is majorized by a fixed matrix with 
k-fold eigenvalue 1, we conclude 

(16) II Sn II = II Sn II = II(M-1SM)n II = O(nk
-

1
) = O(d1

-
k
). 

We called this property s-slability in [6], and proved its equivalence to the 
conclusion we now reach, that I U - u I = O(d2N

) for sufficiently smooth 
initial data. 

Notice that when G has non-simple eigenvalues, the original differential 
problem (11) is well-posed only in a norm which takes account of enough 
derivatives of f, so that some differentiability condition in the theorem was to be 
expected. 

With a powerful assist from [4] we can extend these results to certain cases 
when G = G(x, t) is a smoothly varying matrix function. To maintain the local 
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order of accuracy at 2N we certainly must vary the coefficients Aj in the differ
ence scheme. If, for example, we take Aj(x, t, 6) to be a polynomial of degree 
2N in 6, then the sort of formal Taylor expansion of the difference equation 
described earlier gives the conditions to be satisfied by the Ai to provide maxi
mum accuracy. Our whole concern is with the conditions on Aj(x, t, 0), the 
principal part of Aj(x, t, 6). Those conditions are precisely 

L~N FAj(x, t, 0) = Gn(x, t), 0 ;& n ;& 2N, 

so we again find Aj(x, t, 0) = aj(G(x, t». 
Theorem 4. If G(x, t) is real and symmetric, with eigenvalues satisfying 

o < I Ai(X, t) I < 1, then for a most accurate difference method I U - u I = 
O(62N), provided G andfhave a sufficient number of bounded derivatives in L2 . 

All that the proof requires is the observation that by Theorem 1 and the 
notes which follow it, the hypotheses of Theorem 3.1 of [4] are satisfied; more 
precisely, we verify that for S = peG, ~6), 

i) S is Lipschitz continuous in x, uniformly in ~, if G has a single bounded 
derivative; 

ii) the eigenvalues of S satisfy I p(A.(X, t), ~A) I < 1 for all x, t, if ~6 ~ 0 
(mod 211"); 

iii) S* S = 1- I';~ -: :)! G2(I - G2) .•• (N2[ - G2) a6)2N+2 + O[CE6) 2N+4] , 

and the coefficient of (~6)2N+2 is negative definite for all x and t. 
Lax's theorem asserts that such a method is stable, from which it follows that 

I U - u I = O(A2N) for smooth enough G andf. 
It is perhaps noteworthy that the most accurate wholly implicit scheme, 

namely 

'J;aj(G) Un+I(x - jA) = Un(X) , 

is completely unstable if 0 < I A; I < 1 for any Ai , since the stability condition 
is here reversed to I peA; , ~6) I ~ 1. This is a rather unexpected consequence of 
Theorem 1, since in familiar parabolic problems implicit methods are the more 
stable. 

A number of inessential conventions were introduced in our formulation of 
the difference equation (12). The use of different mesh sizes for space and time 
would involve only the replacement of the condition I A. I ;& 1 by I Ai Atl.:lx I ;& 1. 
Translation is just as easy; if Un+I(X) = 'J;AjUn(x + Xo + j6), the most accu
rate methods are stable provided Xo - 1 ~ Ai ~ Xo + 1. It is convenient, but 
not important, that U should be defined for all x; this point is discussed at some 
length in [5J. Finally, if U,,+l is determined from the values of Un at an even 
number of equally spaced points, we deal with q instead of p, and the conclusions 
parallel those of our three previous theorems. 

4. Our concern now is with the simplest equation of the form Ut = Gu." that 
is, when G is a scalar constant. The difference analogue 
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(17) U,,+I(X) Ef.!Nl BjU,,(x + j~), BNIBN2 ~ 0, 

is consistent (has a positive order of accuracy) if 

(18) '1;B j = 1, '1;jBj = G. 

In this scalar case, von Neumann's condition 

(19) I '1;B jeii8 I ~ 1 for all real 8 

is equivalent to stability, and therefore (18) and (19) are necessary and suffi
cient for convergence. So it is not surprising that we can prove 

Theorem 5. The von Neumann necessary condition for the stability of (17), 
together with the consistency conditions, implies the Courant-Friedrichs-Lewy 
necessary condition. 

PROOF. Consider the polynomial F(8) = e-HN1+N2)812'1;B;eii8. The classical 
Bernstein inequality for trigonometric functions of degree (N 2 - N 1) /2 is 

s~pl~:1 ~ (N2; Nl)S~p IFI 

We evaluate the left side at 0 = 0, and use (18) and (19) to obtain 

I" .(. - Nl + N2)B.\::5; N2 - Nl 
£....~ J 2 1 - 2 

(20) 

IG - Nl + N21 < N2 - Nl 
2 = 2 ' Nl ~ G ~ N 2 • 

This result is easily interpreted as the Courant-Friedrichs-Lewy condition [1] 
that the domain of dependence of U,,(x) should contain that of u(x, n~). On 
the one hand, U,,(x) depends on U,,-l along the segment from x + Nl~ to 
X + N2~, and thus ultimately on the initial data Uo = f on the segment between 
x + nNl~ and x + nN2f:1. Solving the original equation Ut = Gu"" we have 
u(x, nf:1) = f(x + Gnf:1), so that the second domain of dependence is the single 
point (x + Gnf:1, 0). Obviously this point lies in the first domain exactly when 
Nl ~ G ~ N 2 • 

One can obtain the same result with several independent variables, where the 
only new device needed is a suitable rotation of coordinates. If there are k 
dependent variables, k > 1, the situation is quite different. It is easy to gen
eralize the Bernstein inequality to polynomials F(8) = E~NB;eii8 with matrix 
coefficients: 

(21) s~p II ~~ II ~ N s~p II F II 

in any matrix norm induced by a vector norm. Unfortunately, it is with the 
spectral radius (the maximum modulus of the eigenvalues), and not with any 
norm, that the Courant-Friedrichs-Lewy condition has to do. The inequality 
(21) becomes false if the norm is replaced by the spectral radius; the simplest 
example is 
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F = _lei8 ~1 ' ( 
-i8) 

p(F) = 0, ( aF) = 1. 
p ao 

However, we may use the theory of difference equations to find in this context 
a partial analogue of Bernstein's inequality. 

Theorem 6. If F(O) = I, andp(F(O» ~ 1 for all 0, thenp[(aFjaO)(O)] ~ N. 
PROOF. If we define G = L~N jBj , then (17), with -Nl = N2 = N, is a differ

ence analogue of Ut = Gu", which satisfies von Neumann's condition p(F( 0» ~ 1. 
For each 0, F( 0) is unitarily similar to an upper triangular matrix T( 0). As in 
the proof of Theorem 3, we may construct a single triangular matrix T, say 
Tij = sup 1 T(O);j I, which majorizes all the T(O). Since peT) = 1, II Tn II = 
O(nk-l) = O(A1

-
k
). The difference method is thus s-stable, and will converge 

for sufficiently smooth initial data. 
Therefore the Courant-Friedrichs-Lewy condition on the domains of de

pendence must hold, or we could modify the data outside the domain of de
pendence of U without destroying differentiability, and discover that the same 
approximation U converged to a variety of true solutions u. The domain of 
dependence of u(x, nA) is easy to determine; it is the set of points (x + >-.nA, 0), 
where the >-; are the eigenvalues of G. These points lie on the segment from 
x - nNA to x + nNA provided 

N ~ sup I >-; I = p(G) = p[(aFjaO)(O)]. 

It should be remarked that for the most accurate methods studied in the 
previous section, the restriction I ;\, 1 ~ 1 which we were compelled to impose is, 
for N > 1, stricter than the Courant-Friedrichs-Lewy condition would require. 

Our final application of the Bernstein theorem is to difference analogues of 
the (scalar) heat equation 

(22) Ut guxx , u(x, 0) = f(x) , g> o. 
A consistent approximation Un(x) r-.J u(n, xAt) is furnished by 

(23) Un+1(x) = L~~ CjUn(x + jAx) 

under the conditions 

(24) "1:.C j = 1, "1:.jC j = 0, "1:.(j.6.x)2Cj = 2gAt. 

Theorem 7. If the difference method (23) is convergent, then 2gAt ~ 
-NIN2(.6.x)2. 

PROOF. Convergence implies, as usual, that 1 "1:.C jeij8
1 ~ 1 for all o. Applying 

the Bernstein theorem twice to e-i(Nl+N2)8/2"1:.Cjeij8, and evaluating the second 
derivative at 0 = 0, we have 

ILi2 0 - Nl ~ N2y Cjl ~ (N2; Nly 

(25) 

1

2gAt + (Nl + N2)21 ::;; (N2 - Nl)2 
(AX)2 2 - 2 

2gAt ~ -N1N 2(AXl. 
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In the case of a three-point method in which - Nl = N2 = 1, this restriction 
has long been known. 
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