
Extracting from F* to C: a progress report

Peng Wang
MIT, Microsoft Research

Karthikeyan Bhargavan
Jean-Karim Zinzindohoué

INRIA

Abhishek Anand
Cornell University

Cédric Fournet Bryan Parno Jonathan Protzenko Aseem Rastogi Nikhil Swamy
Microsoft Research

F* [5] is a language in the tradition of ML equipped
with dependent types, monadic effects, refinement types and
a weakest precondition calculus. Together, these features
enable the F* programmer to prove functional correctness
using a combination of automation via SMT solving and
manual program proofs.

In the context of the greater Everest project [4], we are
using F* to prove, build and deploy miTLS [1], a verified,
efficient implementation of the Transport Layer Security
(TLS) 1.3 protocol.

While the current extraction to OCaml may seem suffi-
cient for most use-cases, our ambition is to see our provably-
secure code execute in the “real world”; that is, servers (such
as Apache, Nginx or IIS) and browsers (such as Chrome,
Firefox or Edge). In that context, extracting to OCaml is
not an option. The first reason is performance: switching
to the OCaml value representation at ABI boundaries, and
GC pauses are a hard sell for performance-conscious browser
vendors. Second the target audience will most likely not be
familiar with OCaml. Thus, for social and technical reasons,
our aim is to extract to C or C++.

This extended abstract presents our work in progress. We
are currently focusing our efforts on proving the memory
safety and functional correctness of Elliptic Curve Cryptog-
raphy (ECC) primitives, and on extracting this code to C.
ECC primitives are a good candidate: the upcoming TLS-
1.3 standard makes a significant move towards using ECC
in the main ciphersuites. Additionally, crypto routines are
extremely performance sensitive and extracting verified im-
plementations to anything other than native code is gen-
erally considered unacceptable. As such, we program ECC
primitives in a first-order fragment of F*, closely following
existing C implementations of those primitives, and after
verification extract the code back to C.

The original C code has a straightforward memory man-
agement strategy, and only uses stack-based allocation. The
ECC primitives are thus written against an F* library that
models stacks, and models pushing and popping a new
stack frame; suitable pre- and post-conditions ensure that
no memory errors can occur. Once this is done, we prove
functional correctness of the code (i.e. the math is correct),
still using the automation and proving facilities of F* [6].
Finally, knowing that the F* code has been proven memory
safe, we can translate the it back to C, thus obtaining a fully
verified C implementation of elliptic curves.

1. Modeling stack-based allocation
Consider the following sample program that exercises our
stack library.

open FStar.Int32
open FStar.HyperStack (* for :=, ! and alloc *)

let incr (): STL unit =
with_frame (fun () ->

let y = alloc 1ul in
y := !y + 1ul;

)

Since the original program is shown to perform proper stack-
based memory management, the extraction facility need not
worry about lifetimes, and can safely translate the original
program into the following C code.

void incr() {
int32_t y = 1;
y = y + 1;

}

Extraction is sound because:
• the definition of the STL effect guarantees that the caller’s

stack is preserved, that is, the function neither pushes
more than it pops, nor allocates within its caller’s stack;

• no integer operation overflows thanks to the FStar.Int32.+
operator (this would be undefined C behavior);

• the alloc operation tags y as living within the current
stack frame;

• the := and ! operations operate on a stack reference y
whose frame (the current one) is still alive.
The stacked memory is modeled on top of hyperheaps [5].

A hyperheap divides memory into nested sub-trees; any
function whose effect modifies a given sub-tree can be shown
(by virtue of the memory model) to leave any disjoint
sub-tree untouched. In short, hyperheaps provide framing
guarantees. Each sub-tree is assigned a region-id (rid), and
a hyperheap maps an rid to a heap.

A stack of regions is a specific hyperheap that has a list-
like structure, starting at the root down to the tip, that is,
the top-most stack frame. The is_tip predicate guarantees
the list-like shape.

module HH = FStar.HyperHeap

type mem =



| HS: h:HH.t{Map.contains h HH.root /\ HH.map_invariant h}
-> tip:HH.rid{is_tip tip h} -> mem

val push_frame: unit -> ST unit
(requires (fun m -> True))
(ensures (fun (m0:mem) _ (m1:mem) ->

not (Map.contains m0.h m1.tip)
/\ HH.parent m1.tip = m0.tip
/\ m1.h = Map.upd m0.h m1.tip Heap.emp))

val (!) #a:Type -> r:sref a -> STL a
(requires (fun m -> is_above r.id m.tip))
(ensures (fun s0 v s1 -> s1=s0 /\ v=HyperStack.sel s0 r))

The push_frame combinator allocates a new tip, that is,
allocates a new stack frame, which is initially empty. The
(!) combinator requires that the stack reference r live in
a region whose id is equal to, or above, the id of the top-
most stack frame. It ensures that that the memory remains
unchanged, and it returns the value found at address r.
Other combinators are modeled in a similar manner.

2. Relating F* and C*
We formalize a subset of F* in which effects are represented
à la Haskell, that is, as fully functional transformations that
take state as an input parameter and return an updated
state as an output. This is our reference semantics; the re-
duction rules only mention expressions. In that context the
state effect ST is generic; we instantiate it with HS (hyper-
stacks) and define monadic actions push_frame, pop_frame,
!, (:=) and alloc.

At the end of the pipeline is C*, a well-behaved subset of
C: this is the target of our extraction. C* is designed to be
as faithful as possible to the C semantics (as in Compcert’s
Clight). To that effect, memory is represented as blocks;
pointers are made up of a block identifier along with an
offset.

Our goal, naturally, is to relate the semantics of the orig-
inal F* program to the extracted C* program. We proceed
as follows.

First, we define an erasure procedure that removes
computationally-irrelevant code (e.g. calls to lemmas). The
erasure procedure is modeled after Coq’s and also inserts
casts as needed. We also perform a few other transforma-
tions, such as A-normal form, enforcing the evaluation order
of impure arguments, removing nested let-bindings, etc. We
prove that the erasure is a bisimulation and preserves the
dynamic semantics.

Next, we define F∗
0, a loosely typed version of F* with a

primitive semantics for state; that is, the reduction rules are
now of the form (H, e), where H is the (imperative, effectful)
hyperstack. We show the dynamic semantics of F* and F∗

0

are equivalent through the use of a logical relation.
Finally, we define a first-order subset of F∗

0 called Low*
and show that the compilation of Low* to C* is a bisimula-
tion.

… F*ST(HS)
F∗
0 + push

+ pop + …

Low*C*

erasure

∼

= (at first order)
≈

If the original program is well-typed in F*, and if it is in
the subset we know how to translate (i.e. uses stack-based
allocation), then we obtain two end-to-end results:

• safety: the resulting C* program will not get stuck;
• preservation of semantics: the extracted C* program

refines the original Low* program.
We reuse a proof strategy in the style of Compcert [2]

that relates Low* and C* through the use of a bisimulation.
More precisely, we prove that C* is a refinement of Low*;
that is, for every step a C* program may take, it corresponds
to a legitimate Low* reduction sequence, hereby justifying
that we have generated a faithful extraction.

Following the Compcert style, we first prove the opposite
direction, that is, Low* is a refinement of C*. Based on
the fact that C* is deterministic, we get the main theorems
above.

3. Implementation and conclusion
F* was equipped last summer with a proper extraction
mechanism in the style of Coq [3] that targets both OCaml
and F#. This extraction mechanism performs the transfor-
mations mentioned earlier, with the exception of A-normal
form transformation, and inner let-binding lifting.

At this stage, the the AST is handed off to an external
tool dubbed KreMLin. KreMLin performs the rest of the
transformations and deals with other mundane matters,
such as avoiding name collisions.

Our ambition for KreMLin is manyfold. First, the im-
mediate goal is to extend its input language to handle more
ML-like constructs, such as data types and pairs. Sum types
can be translated using the classic “tagged union” scheme;
records and pairs can be translated using structs. F* does
not have mutable record fields; we can thus pass the latter
structs by value, which means no proof obligations for the
F* programmer.

Second, we hope that the KreMLin tool can prove useful
to other languages. Should anyone want to mimic our stack
formalization in, say, Coq, then the effort required to hook
onto the existing tool and get a C backend for free should
be minimal.

Finally, we naturally want to mechanically prove the
soundness of the translation. We hope to perform this task
using F* itself.

References
[1] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss,

Alfredo Pironti, Pierre-Yves Strub, and Santiago Zanella-
Béguelin. Proving the TLS handshake secure (as it is).
In Advances in Cryptology–CRYPTO 2014, pages 235–255.
Springer, 2014.

[2] Xavier Leroy. A formally verified compiler back-end. Journal
of Automated Reasoning, 43(4):363–446, 2009.

[3] Pierre Letouzey. A new extraction for Coq. In Types for proofs
and programs, pages 200–219. Springer, 2002.

[4] Microsoft Research and INRIA. Everest: VERifiEd Secure
Transport. https://project-everest.github.io/, 2016.

[5] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Ras-
togi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan
Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
et al. Dependent types and multi-monadic effects in F*. In
ACM Symposium on Principles of Programming Languages
(POPL’16), 2016.

[6] Jean Karim Zinzindohoue, Evmorfia-Iro Bartzia, and Karthikeyan
Bhargavan. A verified extensible library of elliptic curves. In
IEEE Computer Security Foundations Symposium (CSF),
2016.

http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
https://project-everest.github.io/

	Modeling stack-based allocation
	Relating F* and C*
	Implementation and conclusion

