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Abstract: Although specific object detection has undergone great advances in recent years, its application to critical 
real-time circumstances like those in automated vehicle controlling is still limited, especially when facing 
strict speed and precision requirements. This paper uses a hybrid of various computer vision techniques 
including color space analysis, Haar-wavelet cascade detector, contour analysis and RANSAC shape-fitting, 
to achieve a real-time detection speed while maintain a reasonable precision and false-alarm level. The 
result is a practical system that out-performed most rivals in an automated vehicle contest and an indication 
of feasible CV application to speed critical areas. 

1 INTRODUCTION 

1.1 Motivation 
The real time road sign detection system introduced 
by this paper was motivated as a subsystem of an 
automatic driving system for vehicles. Road sign 
detection is a crucial component of automated 
vehicle controlling, especially when one wants the 
car to have certain ‘intelligence’ to sense its 
environment like a human being does and to decide 
its movement based on the encircling environment 
other than external helps like GPS. Three challenges 
arise in designing such a real time object detection 
application which cannot be fulfilled together by a 
single existing computer vision algorithm. They are 
the strict requirement of speed, of precision and the 
diversity of target objects. 

When building a subsystem used by a vehicle, 
in order for the car to travel at an acceptable velocity, 
the detection system must run at a speed much 
higher than typical CV algorithms can usually 
achieve, while at the same time subject to a limited 
onboard computation power.  

Also, in order that the car can rely on the output 
of the detection subsystem to make subsequent 
decisions, such a subsystem must strive to miss road 
signs as few as possible while give false detections 
as few as possible.  

Current object detection algorithms mostly deal 
with one specific target object category. Algorithms 
like the cascade classifier (Viola 2004) described in 
Section 2 were designed for a single kind of visual 
objects such as human faces, pedestrians or cars. In 
the contrast, our targets, the road signs, are a 
conceptual category which, in fact, consists of very 
different visual objects. Our detection task hence lies 
in between specific object detection and general 
object detection. Though we can principally train a 
detector for each kind of road signs and use them 
simultaneously to tackle the multi-category problem, 
the speed and computational resource constraints do 
not allow for such an amount of detectors. 
 
1.2 Outline 
To tackle all these three challenges, we designed a 
combination of various computer vision techniques 
to utilize color, shape and appearance information 
all together. The design principle of our system is to 
rely on a stable detection algorithm, which may be 
time consuming, to act as the main detector, while 
utilize various kinds of pre-processing and post-
processing stages to shrink the area of regions 
performed on by this main detector as much as 
possible. The reduction in regions of interests 
compensates the slow speed of the main detector, 
and thus makes the realtime-ness of the whole 
system possible. For orthogonality, these pre and 



 

 

post processing stages should exploit information 
different from that used by the main detector. 

We designed a pipeline architecture to combine 
these pre and post processing stages and the main 
detector. The pipeline of our road sign detection 
system consists of 4 stages, as shown in Figure 1. At 
the first stage, color space analysis is used to spot 
approximate regions of interest, regions having the 
potential to contain road signs. After that, the 
potential regions are tested against contour analysis 
to shrink the number and size of candidate regions. 
At the third stage, a Haar-wavelet cascade detector 
plays the major role of detecting road signs. At the 
final stage, these detected signs (with their bounding 
boxes) are checked by a RANSAC shape-fitting 
algorithm as a post-validator.  

Section 3 describes each stage in details. Section 
4 describes some additional optimization techniques 
to further boost the system’s speed. Experiment 
results and performance in a real world contest are 
shown in Section 5. 

 

Figure 1: The 4-stage pipeline 
 

2 RELATED WORK 

As a particular instance of specific object detection 
in the field of computer vision, road sign (or traffic 
sign) detection has been studied for years in the 
literature. Existing methods can be approximately 
classified into two categories: color-based and 
shape-based. All methods in (Broggi 2007, Escalera 
1997, Escalera 2003) use thresholds within certain 
color-space to pick up the pixels that comprise the 
target object, and utilize image processing 
techniques to derive the final bounding boxes from 
these identified pixels and regions. The differences 
between them lie in the different color space they 
use and various post-processing procedures.  

The biggest problem of color-based methods is 
the poor distinguishing power and weak robustness 
of sole color information, and hence the difficulty in 
distinguishing road signs from noises like cars and 
buildings in a similar color, and in adjusting the 
parameters to different weathers and lighting 
conditions. 

Among the shape-based methods, most of them 
borrow ideas and techniques from the field of human 
face detection. Researches in recent years showed 
that compositions of simple features like Haar-
wavelet (Papageorgiou 2000) turned out to have 
great advantage in speed while do not suffer much 
from precision drop. Above basic Haar-wavelets, 
Bahlmann (2005) proposed colored Haar-wavelets, 
which split a color image into 7 channels and extract 
Haar features in each channel. Lienhart (2002) 
introduces diagonal Haar-wavelets along with their 
fast computing method, giving Haar-wavelets a 
bigger expressive power regarding to diagonal 
changes. Barczak (2005) discusses the possibility 
that a Haar-wavelet at arbitrary orientation can be 
expressed as a linear combination of two basic, that 
is to say, orthogonal Haar-wavelets, which they 
called ‘pair of equivalent features’. 

Given that all of these methods use Haar-
wavelets as the building blocks, the classifiers they 
utilize are different. Authors in (Viola 2004) 
introduced the canonical Cascade Classifier, which 
has multiple stages with each stage containing a 
weaker classifier. Each stage classifier rules out 
some false samples subject to the constraint that it 
must let most true samples pass. A sample that 
makes it through all stages will finally be considered 
positive. The beauty of this architecture is that it can 
exclude a large volume of false samples at earlier 
stages, which consist of the cheapest and fastest 
classifiers. Such a feature makes cascade classifier 
particularly suitable for situations where there are 
much more false samples than true samples, of 
which object detection is one. 

Besides that, in attacking road sign detection 
problem, Soetedjo (2005) proposes 6 local features 
to form an ellipse detector, which is used then to 
detect road signs. Paclik (2000) uses Laplace Kernel 
methods as classifiers. Bahlamann (2005) uses LDA 
classifiers. 

The problem of shape-based methods is that they 
are all aimed for one specific kind of visual object. 
For example, the Viola cascade classifier introduced 
in (Viola 2004) was originally designed to detect 
human faces. It can be trained to detect other kinds 
of objects, but not a mix of them. If we force the 
training samples to contain various kinds of objects, 
the output will be a detector poor in both hit rate and 
false-alarm rate. If we train a detector for each kind 
of objects, the computational resources required 
during detecting will be overwhelming, as 
mentioned in Subsection 1.1. 

Color 
Space Contour Cascade RANSAC 



 

 

3 PIPELINE 

3.1 Color Space Analysis 
Many color spaces can be used for color space 
analysis, and among the most widely used are RGB, 
HSV and Lab. Our system selects HSV color space 
because it is the most coherent with the intuition of 
human conception. HSV has three channels, namely 
Hue, Saturation and Value. The total space spanned 
by these three channels can be presented by a HSV 
Cone, as shown in Figure 2. 
 

 
Figure 2: The HSV Color Space. Copied From 

Matlab Documentation 
 
Converting formula from RGB to HSV is expressed 
as Equation (3-1). 
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After converting an image into HSV color 

space, we should inspect whether our target objects, 
namely road signs, are contained in a distinctive 
region in that space. Rendering an image captured 
from the real world road in each of the H, S, V 
channel, we found that road signs stand out 
prominently in H and S channels, but not so much in 
V channel. This indicates that H and S channels are 
more useful in distinguishing our target objects. Via 
setting upper and lower thresholds on these two 
channels, we can approximately pick out pixels that 
belong to a road sign. These pixels will connect with 
each other to form irregular regions, which, after 
certain image processing techniques like Erode, 
Dilate, Open and Close, can be used to calculate 
bounding boxes that most tightly contain them. 
These bounding boxes form the regions of interests 
(ROIs) for the next pipeline stage. 

 
3.2 Contour Analysis 
Computer Vision toolset like OpenCV usually 
provides some contour analysis tools, which can be 
used to extract contours from a binary image, to 
match a contour against a template contour, etc. 
Contour analysis can be helpful in reducing possible 
detection candidates when the target objects are 
simple shapes, such as rectangles, circles or ellipses. 
Most road signs are in this case, so contour analysis 
can be applied here. 

A road image after color analysis can be sent to 
contour extracting algorithm. An example output is 
shown as Figure 3. Contour analysis is based on the 
binary image (mask image) output of color 
thresholding. Contour matching algorithms usually 
take as input two contours and output a real number 
indicating the extent to what they match. A threshold 
can be put on this number to rule out candidates 
whose contours are too far away from the wanted 
contour. Contour algorithms do not use sliding 
window, thus is much faster than algorithms that are 
performed in a sliding window manner, like the 
cascade detector in stage 3. 

 

 
Figure 3: A mask image output by color 

thresholding (left), the contour extraction result 
(middle), and result after removing small contours 

(right) 



 

 

 
This stage can be viewed as a filter or validator 

of the previous stage. Some of the ROIs output by 
the previous stage will be rejected by this stage, 
because the mask (pixels selected by color 
thresholding) in that ROI does not have a wanted 
contour. But this rejection may be mistaken in 
situations where a sign is merged into its 
background with a similar color and the mask’s 
contour represents the contour of the background 
rather than the sign. Thus a decision of whether to 
turn on this stage should be made for specific signs 
and specific conditions. 

 
3.3 Haar-wavelet Cascade Detector 
 
3.3.1 Cascade Classifier 
The basic intuition of a cascade classifier is that 
when false samples are much more than true 
samples and most of the false samples can be easily 
precluded, it is very economical to firstly use some 
simple and cheap classifiers to exclude most of the 
false samples, leaving only the hardest ones to 
complex and expensive classifiers. 

Every stage of a cascade classifier is an 
individual classifier, with more complexity and 
stronger classifying ability at higher stages. During 
operation, samples travel through each stage from 
lower to higher, and whenever a sample is classified 
as false at a stage, it won’t go on to the next. A 
sample passing through all the stages is regarded as 
true. 

Via such design, the average computation spent 
on each sample can be largely reduced. Suppose the 
probability for a sample to pass a stage is𝑝, then the 
average number of stages a sample can pass is: 

 
    1 + 𝑝 + 𝑝2 + ⋯+ 𝑝𝑁−1 

=
1 − 𝑝𝑁

1 − 𝑝
 

(5-1) 
 
where 𝑁is the number of all stages. 
Lower stages have smaller computation 

complexity than higher stages. Suppose the 
computation complexity at stage 𝑛 is 𝑛, then if we 
apply the most complex classifier, namely the 𝑁-th 
stage classifier, directly to every sample, the average 
computation for each sample will be 𝑁. However, if 
we use cascade classifier, the average computation 
for each sample will be: 

 
     1 + 2𝑝 + 3𝑝2 + ⋯+ 𝑁𝑝𝑁−1 

=
1 − 𝑝𝑁

(1 − 𝑝)2 −
𝑁𝑝𝑁

1 − 𝑝
 

≈
1

(1 − 𝑝)2 

(5-2) 
 
Next let’s consider the precision of a cascade 

classifier. Suppose each stage’s hit rate (the 
proportion of true samples that are correctly 
classified as true over all true samples) is ℎ , and 
each stage’s false-alarm rate (the proportion of false 
samples that are mistakenly classified as true over 
all false samples) is 𝑓, then the cascade classifier’s 
overall hit rate 𝐻 and false-alarm rate 𝐹 is: 

 
𝐻 = ℎ𝑁  
𝐹 = 𝑓𝑁 

(5-3) 
 
The above equation implies that as the number 

of stages gets larger, both hit rate and false-alarm 
rate will drop. In order for the overall cascade 
classifier to have a high hit rate and low false-alarm 
rate, ℎ should be extremely high, while 𝑓 needn’t to 
be very low (since it will drop quickly thanks to the 
power operation). 

We use ‘cascade detector’ and ‘cascade classifier’ 
interchangeable in this paper, because once we have 
a cascade classifier, we can do a sliding-window 
scanning on the whole image, at each position 
extracting a local patch and sending it to the 
classifier to decide whether we have a detect at that 
position. In this way we will have a cascade detector. 
Because cascade detector is used in a sliding 
window manner, it is the biggest time consumer of 
the whole system, and the major way of speeding up 
is thus to reduce of area of regions this sliding 
window is performed on, namely the ROIs. And that 
is what Stage 1 and 2 are mainly aimed for. 

 
3.3.2 Stage Classifier 
The design of each stage’s classifier is similar to that 
in (Viola 2004). A stage classifier is composed of a 
set of single-feature Haar classifiers. A single-
feature Haar classifier contains a Haar feature 
(described below) and a threshold. It matches the 
sample under classifying against its Haar feature to 
obtain a match score, and compares this score with 
its threshold to decide whether it classifies this 
sample as true or false. The stage classifier assigns a 
weight to each of its single-feature Haar classifiers, 
and uses the weighted average of the outputs of its 
little member classifiers to form its overall output. 
      The training of the stage classifier involves 
selecting a handful of single-feature Haar classifiers 
as its member classifiers from a large pool of 
possible single-feature Haar classifiers (due to the 
large number of possible Haar-wavelets), and in the 



 

 

meantime deciding the threshold of each member 
classifier and the weights assigned to them. This 
procedure is accomplished by AdaBoost (Freund 
1995)  algorithm. Usually AdaBoost is used as a 
composer to generate a strong classifier from a 
bunch of weak classifiers, but it can also be regarded 
as a feature selecting algorithm, to pick out several 
good features (or single-feature classifiers) from a 
large candidate pool. 
      We use basic Haar-wavelets in our system. A 
basic Haar-wavelet can be one of four patterns as 
shown in Figure 4. For the first pattern (the top-left 
one on the right of Figure 4), six parameters are 
needed to describe it, namely the 4-tuple (left, top, 
right, bottom) to describe the outer rectangle, one 
number to describe the ‘splitting position’, and one 
number to indicate which side is black (and/or how 
black it is). The match score of a Haar-wavelet 
against a sample is the sum of pixel values in the 
region of the sample covered by the ‘white’ area of 
the Haar wavelet, minus that covered by the ‘black’ 
area.  
 

 
Figure 4: Basic Haar-wavelets 

 
       The benefit of basic Haar-wavelet comes from a 
fast calculating method of its match score, called 
Integral Image Method. Let 𝐼(𝑥,𝑦)denotes the pixel 
value at position (𝑥,𝑦), and 𝑆(𝑥,𝑦) denotes the sum 
of pixel values within the rectangle (0, 0, 𝑥,𝑦), then 
the sum of pixel values covered by rectangle 
(𝑥1,𝑦1,𝑥2,𝑦2)can be calculated as: 
 

 𝑆(𝑥1,𝑦1, 𝑥2,𝑦2) 
= 𝑆(𝑥2,𝑦2) + 𝑆(𝑥1,𝑦1) − 𝑆(𝑥1,𝑦2) − 𝑆(𝑥2,𝑦1) 

(5-3) 
 
Therefore, for a sample image, once we calculated 
and stored its integral image 𝑆(𝑥,𝑦) , we can 
compute its match score against any basic Haar 
wavelet in constant time. 
 
3.3.3 Training of Cascade 
The training algorithm of the overall cascade 
classifier is the same as that in (Viola 2004). The 
algorithm is described in Algorithm 1. 

 

 
Algorithm 1: Training of cascade classifier 

 
3.4 RANSAC Shape-Fitting 
When we get some points that are believed to be 
generated from the edge of certain shape, in 
principle we can recover the generating shape (i.e. 
its parameters) from the information provided by 
these points. The perquisite is that we must presume 
of what category that shape is. For example, if we 
assume that these points come from a circle, only 
three points are needed to calculate the parameters 
of the circle, namely the coordinate of the center and 
the radius. A regular ellipse (long and short axes 
parallel to x and y axes correspondingly) needs 4 
points, and an arbitrary ellipse needs 5. Typically we 
will have much more points than theoretically 
needed. RANSAC (RANdom SAmple Consensus) 
(Fischler 1981) is a method that exploits this 
redundant information to improve the precision and 
stability of shape fitting. It randomly selects points 
that are mathematically enough to calculate the 
shape parameters, and repeat this procedure certain 
times to get multiply sets of calculated parameters. 
The final values of parameters are decided by a 
voting among these calculated parameter sets.  

Input: PosSamples 
Input: NegSamples 
Input: Fmax: The maximum tolerable 
overall false-alarm rate 
Input: fmax: The maximum tolerable 
stage false-alarm rate 
Input: hmin: The minimum tolerable 
stage hit rate 
Output: Cascade: The cascade 
classifier 

 
Cascade = {} 
F := 1 
while F > Fmax do 
Stage = {} 
f := 1 
while f > fmax do 

Use Adaboost to find a single-feature 
Haar classifiers Haar that best 
classifies {PosSamples, 
NegSamples} 

Stage += Haar 
Tune Haar’s threshold to make 

Stage’s hit rate larger than hmin 
f := Stage’s false-alarm rate 

end 
Cascade += Stage 
F := F * f 

end 
return Cascade 

Image 



 

 

In addition to gaining the values of shape 
parameters, RANSAC can also be used to check our 
presumption of shape category. For example, if we 
assume the generating shape is a circle, but the 
calculated parameter sets differ too much from each 
other, i.e. the statistical deviation exceeds some 
criteria, then we should forgo our previous 
assumption and claim that the shape would not be a 
circle. RANSAC is used in this way as a shape 
validator in our system. When our target road signs 
are ellipses (circles views from some perspective) 
and the fitting results of a detect deviate too much, 
we drop that detect. 

4 OPTIMIZATION 

The four-stage pipeline is still not enough to meet 
the strict speed requirement of automatic vehicle 
controlling. Three main problems regarding speed 
exist. They are the high variance of the size of ROIs 
returned by color space analysis in different 
environments (due to the color of the background), 
the dramatic drop of speed of the cascade detector 
when false-alarm rate is high, and the diversity of 
the target road signs. 
When the background falls within the range of color 
space thresholds, a large region of interests will be 
returned by the color space analysis, leading to a big 
drop of speed of the total system. To stabilize the 
size of regions of interests, we implemented some 
tracking mechanism. A naïve implementation of a 
tracking mechanism could be that when a sign is 
detected and ensured (for example by a consecutive 
series of appearances), subsequent detection could 
be performed only on its neighborhood, with a 
thorough detection every several frames to allow for 
new signs. An advanced mechanism can utilize 
some tracking algorithms such as Markov chains or 
particle filters to predict next appearing position of a 
sign based on its previous observations. For our 
purpose, a naïve mechanism is good enough. 
According to Equation (5-2), the speed of a cascade 
detector is determined by the probability of a sample 
passing a stage. If the system’s total false-alarm rate 
is high, indicating that this probability is high, the 
speed of the cascade detector will drop sharply. And 
since cascade detector is the main time consumer of 
the whole system, the system’s speed will also suffer 
much. As a result, we prefer lowering false-alarm 
rate to lifting hit rate during parameter adjusting, 
because a low false-alarm rate can serve both to 
precision and speed, and a moderate hit rate is 
somewhat tolerable in object detection, since the 

detection is measured object-wise, that is to say, the 
detection of an object should be considered 
succeeded as long as one of its many appearances is 
detected. 
The diversity of the target road signs can be viewed 
in Figure 5 of Section 5. Intuitively there are four 
major categories, namely the red circular signs, the 
yellow triangular signs, the blue circular signs, and 
the blue rectangular signs, and some singular ones 
(like the red octagon sign). A cascade detector is 
based on the target object’s whole appearance, 
including its inner texture and patterns, not just its 
contour shape, so theoretically we should train one 
cascade detector for each sign in Figure 5, leading to 
25 cascade detectors in total, and run them all in 
detecting. The speed requirement cannot afford such 
an amount of computing, thus we trained one 
cascade detector for each of the four major 
categories, and one cascade detector for each 
singular sign, resulting in  9 cascade detectors in 
total. Multiple detectors also open the possibility of 
parallelization, and hence a large effort of our 
development was devoted into parallelizing our 
pipeline using techniques like OpenMP, which will 
not be covered in details in this paper. 

5 EXPERIMENT RESULTS 

To measure our system’s precision and speed, we 
conducted a suite of experiment on a set of videos 
captured from real road. The set consists of 33 
pieces of videos with solution 1280*960, containing 
totally 11345 frames. About 20% of the frames 
contain one or more road signs. A road sign is one of 
the 25 target road signs used in this experiment, as 
shown in Figure 5. Note the diversity of the colors, 
shapes and appearance patterns of these signs, which 
put a significant challenge on the system’s precision 
and speed, as stated in Section 4. We thoroughly 
annotated the bounding boxes of the signs on all 
frames, and used them as ground truth for testing. 
We did the annotation deliberately in a way to make 
detection tasks ‘hard’ in that a sign was marked as 
long as it could be discerned by human eyes, some 
of them being only several pixels in size, and some 
partly occluded. Usually targets that are too small or 
occluded are not required in a detection task. The 
hardness of the dataset makes the current hit rate 
figures low but leaves space for future improvement. 
The training samples were extracted from a different 
set of videos other than this 33-video testing set, 
making the training data and testing data 
uncorrelated. 
 



 

 

 
Figure 5: Road signs used in this experiment 

 
      For measurement, we defined several criteria. A 
detect (the bounding box of a sign) is treated as 
‘correct’ or ‘hit’ is it intersects with a ground truth 
rectangle, and the area of intersection is larger than 
both 80% of the area of the detect and 80% of the 
area of the ground truth. A series of consecutive 
appearances of the same sign is annotated as an 
‘object’ in the ground truth files. The testing dataset 
has 61 objects in total. An object’s hit rate is defined 
as the proportion of the number of frames where it is 
hit over the number of frames where it appears. The 
overall hit rate of the whole dataset can be defined in 
two ways. In one way, it can be defined as a 
weighted average of the objects’ hit rates, using the 
number of frames of each object’s appearance in 
ground truth as the weights. (This definition can be 
equivalently stated as the proportion of the number 
of the ground truth bounding boxes been hit over the 
number of all ground truth bounding boxes, since the 
same sign appears no more than once in each frame). 
The second way is to define it as the simple 
arithmetic mean of the object’s hit rates, which 
eliminated the domination of objects that appear in 
much more frames than others. We reported results 
in both definitions. The overall number of false-
alarms is the number of detects that do not hit any 
ground truth. We reported it in the form of false-
alarms per frame (number-of-false-alarms / number-
of-all-frames, number-of-all-frames = 11345 in this 
experiment). We reported the speed of the system as 
Frames Per Second (FPS), which is measured over 
the whole running duration on the whole testing 
dataset. The speed is measured on a quad-core Intel 
i7 CPU with 2.8GHz main frequency. 
      In order to vary the trade-off between hit rate 
and false-alarm rate to get a ROC curve, we adjust 
the parameter of Minimum Neighbours, which is 
defined as the following. Because the detection is 
carried out in a sliding window manner, adjacent 
positions will trigger similar detection output, and 
hence the neighbouring positions of a sign would all 
tend to report detects. We can use this phenomenon 
to enhance our detection stability, requiring that a 

detect is acknowledged only if the number of 
neighbouring positions reporting detects exceeds a 
specified threshold. Adjusting this threshold, we can 
trade-off between hit rate and false-alarm rate (low 
threshold favours high hit rate while high threshold 
favours low false-alarm rate). 
 
5.1 Full System Performance 
Turning on all four stages of the pipeline, and 
adjusting Minimum Neighbours from 1 to 7, we 
have results listed in Table 1. 
 
MN HR1 HR2 FA FPS 

1 0.586 0.475 0.132 7.86 
3 0.572 0.467 0.131 7.87 
5 0.557 0.455 0.131 7.58 
6 0.532 0.432 0.138 7.18 
7 0.516 0.419 0.136 7.90 

Table 1: Performance of the full system. MN means 
the Minimum Neighbors parameter. HR1 means hit 
rate in the first definition. HR2 means hit rate in the 

second definition. FA means false-alarms per second. 
FPS means frames per second. 

 
In Table 1 the header MN means the Minimum 

Neighbors parameter. HR1 means hit rate in the first 
definition. HR2 means hit rate in the second 
definition. FA means false-alarms per second. FPS 
means frames per second. The first observation is 
that hit rate in definition 2 is usually lower than 
definition 1, indicating that the system performs 
better on some dominating objects in the testing data. 
These objects are some long and well captured signs 
that are clear and stable in the videos. On the 
contrary, many objects in the testing data are minor 
objects which are far and small and whose appearing 
sequences are short. Some of them were not detected 
at all. As the MN parameter rises, hit rates in both 
definitions go down, indicating that it’s harder to 
fulfill a detecting criterion. However, the false-alarm 
rate doesn’t drop much in return for the sacrifice of 
hit rate, and it even increases when MN goes above 
5. This means that in practice setting MN to 1 is 
good enough for both hit rate and false-alarm rate. 
The speed (FPS) doesn’t change so much among the 
settings, considering randomness of system 
environment. A FPS of about 8 is a conservative 
estimate, which doesn’t take advantage of the 
optimization techniques like tracking described in 
Section 4, whose results will be reported in 
Subsection 5.5. A false-alarm rate of about 0.13 is 
good enough to be based by further process such as 
consecutive appearing validation during tracking and 
validation during recognition. 

 



 

 

5.2 Effect of Contour Analysis 
Turning off the Contour Analysis stage and thus 
letting all the ROIs output by the previous stage to 
reach the next stage, we got results shown in Table 2. 
 
MN HR1 HR2 FA FPS 

1 0.782 0.729 0.244 3.834 
3 0.777 0.723 0.247 3.845 
5 0.764 0.714 0.248 3.748 
7 0.733 0.676 0.255 3.960 

Table 2: Performance with Contour Analysis stage 
turned off. Meanings of the headers are the same as 

Table 1. 
 

Note the increase of hit rate, but also the 
increase of false-alarm and the drop of FPS. It can 
be explained in that as a validating or filtering stage 
like the Contour Analysis stage is removed, more 
ROIs will be scanned in the cascade detector stage, 
leading to a higher hit rate as well as a higher false-
alarm rate. More importantly, the increment in the 
number of ROIs will dramatically increase the 
computation amount for the cascade detector, which 
uses a sliding window procedure. As the FPS was 
nearly halved as a result of the removal of Contour 
Analysis, and dropped to an intolerable level, we can 
prove that the Contour Analysis stage is really a 
crucial component of the whole system, especially 
when it is intended to be used in a real-time 
circumstance. It also justifies our bias stated in 
Section 4 that in object detection tasks, we should 
better prefer a low false-alarm rate to a high hit rate, 
because a moderate hit rate can be tolerable since an 
object is detected as long as some of its appearances 
are detected, while a high false-alarm rate will lead 
to drops in both precision and speed, in systems like 
ours. 
 
5.3 Effect of Color Space Analysis 
 
The effect of removing Color Space Analysis is very 
obvious, so we just show one set of results, which 
are shown in Table 3. (Because the Contour 
Analysis is based on the output mask image of color 
thresholding, that stage have to be also removed.)  
 
MN HR1 HR2 FA FPS 

1 0.572 0.533 1.446 0.694 
Table 3: Performance with Color Space Analysis 
stage turned off. Meanings of the headers are the 

same as Table 1. 
 

Putting the nearly unchanged hit rate and the 
dramatic boost of false-alarm rate aside, the FPS 

alone would make the system unworkable. This 
simple result is enough to show that Color Space 
Analysis is a fundamental part of our system.  
 
5.4 Effect of RANSAC 
 
Turning off the RANSAC stage, we got results 
shown in Table 4. 

 
MN HR1 HR2 FA FPS 

1 0.583 0.485 0.154 7.93 
3 0.574 0.478 0.149 7.82 
5 0.560 0.468 0.147 7.73 
7 0.517 0.428 0.154 7.70 

Table 4: Performance with RANSAC stage turned 
off. Meanings of the headers are the same as Table 1. 
 
We can draw these results together with those in 
Table 1 to compare the differences more intuitively, 
as shown in Figure 6 for hit rate definition 1 and 
Figure 7 for hit rate definition 2.  

 

Figure 6: Comparison of precision between full 
system and that with RANSAC stage turned off. Hit 

rate uses definition 1. Curves are generated by 
adjusting MN parameter. 

 

 
Figure 7: Comparison of precision between full 

system and that with RANSAC stage turned off. Hit 



 

 

rate uses definition 2. Curves are generated by 
adjusting MN parameter. 

 
As can be seen both in Table 4 and Figure 6 or 7, 
turning off RANSAC stage doesn’t affect hit rate 
much, but increases false-alarm rate by about 15%. 
Equally saying, introducing RANSAC can lower 
false-alarm rate by about 9% without sacrificing hit 
rate. The speed is not affected much either. This 
proves that RANSAC is a safe and feasible post 
processing stage for the system, though the influence 
is not as dramatic as color and contours. 
 
5.5 Effect of Tracking 
In addition to the full system tested in Subsection 
5.1, we can add simple tracking mechanism 
described in Section 4 to stabilize the performance 
and further boost the speed. It constrains the 
scanning region of each frame to the neighborhood 
of the detects in the previous frame (and do no 
detection if the previous frame’s detection result is 
empty). It will perform a thorough scan every 
several frames (3 in this experiment) to allow for 
new objects. The results of this addition are shown 
in Table 5. 
 
MN HR1 HR2 FA FPS 

1 0.535 0.432 0.081 11.750 
3 0.517 0.421 0.080 11.757 
5 0.509 0.409 0.081 11.580 
7 0.474 0.384 0.070 11.641 
Table 5: Performance with tracking mechanism 
added. Meanings of the headers are the same as 

Table 1. 
 

Surprisingly and happily, both precision and 
speed enjoy a significant enhancement. The 
precision is enhanced in that the false-alarm rate 
drops by more than 60% without the hit rate 
suffering much. The FPS is increased by about 50%. 
The reason for this double effects is that by 
constraining the scanning region to the previous 
results’ neighborhood, we on the one hand reduced 
the amount of computing and the possibility of false 
-alarms, and on the other hand ensured that the 
wanted sign was contained in the ROIs, which may 
have been mistakenly precluded by Color Space 
Analysis or Contour Analysis, and thus stabilized 
the continuous hitting of an already detected target. 
In this way, hit rate, false-alarm rate and speed can 
all benefit (or at least not suffer) from the tracking 
mechanism. 

An example detecting result is shown as Figure 
8. 

 

 
Figure 8: An example of detecting result. 

 
5.6 Experiment Summary 

The results of this experiment is conservative in 
that because the system is highly configurable for 
each sign or each set of signs to have its own 
configuration of the pipeline, further fine tuning is 
possible to enhance the performance on each 
specific sign (for example some signs are suitable 
for Contour Analysis while some are not). We used 
only one setting for all signs in this experiment in 
order to just show the effectiveness of each stage in 
principle. Also some additional information could be 
utilized in specific circumstances, for example, the 
guarantee that there will be no more than one sign in 
each frame, or a smaller view or solution of the 
video, or a narrower candidate pool than the whole 
25 signs. In an automatic driving vehicle contest, our 
system reached an FPS higher than 20 with fine 
tuning and further information utilized. 

6 CONCLUSION 

In this paper we presented a system that can fulfill 
the task of road sign detection in real-time and real 
world circumstances. By effectively utilizing various 
computer vision techniques, we proved that though 
there may not be a single algorithm that can tackle 
all the challenges in a real world task, a wise 
selection and hybrid of existing techniques can still 
produce a feasible and robust application. 
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