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Abstract

In this paper we tackle the problem of scene flow estima-
tion in the context of self-driving. We leverage deep learn-
ing techniques as well as strong priors as in our application
domain the motion of the scene can be composed by the
motion of the robot and the 3D motion of the actors in the
scene. We formulate the problem as energy minimization in
a deep structured model, which can be solved efficiently in
the GPU by unrolling a Gaussian-Newton solver. Our ex-
periments in the challenging KITTI scene flow dataset show
that we outperform the state-of-the-art by a very large mar-
gin, while being 800 times faster'.

1. Introduction

Scene flow refers to the problem of estimating a three-
dimenional motion field from a set of two consecutive (in
time) stereo pairs. It was first introduced in [40] to describe
the 3D motion of each point in the scene. Through scene
flow, we can gain insights into the geometry as well as the
overall composition and motion of the scene. It is of par-
ticular importance for robotics systems, such as self-driving
cars, as knowing the 3D motion of other objects in the scene
can not only help the autonomous systems avoid collision
while planing its own future movements, but also improve
the understanding of the scene and predict the intent of oth-
ers. In this work, we focus on estimating the 3D scene flow
in autonomous driving scenarios.

In the world of self-driving, the motion of the scene can
be mostly explained by the motion of the ego-car. The pres-
ence of dynamic objects which typically move rigidly can
also be utilized as strong priors. Previous structure predic-
tion approaches often exploit these facts and fit a piece-wise
rigid representations of motion [4 1, 44, 28, 4]. While these
methods achieve impressive results on scene flow estima-
tion, they require minutes to process each frame, and thus

IThe uncompressed version of this paper can be found at
http://bit.ly/CVPR-DRISF
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Figure 1: Performance vs runtime on KITTI SceneFlow
dataset: Our approach is much faster and more accurate.

cannot be employed in real-world robotics systems.

On the other hand, deep learning based methods have
achieved state-of-the-art performance in real time on a va-
riety of low level tasks, such as optical flow prediction
[12, 32, 38] and stereo estimation [406, 27, 25]. While they
produce ‘accurate’ results, their output is not structured and
cannot capture the relationships between estimated vari-
ables. For instance, they lack the ability to guarantee that
pixels on a given object produce consistent estimates. While
this phenomenon may have little impact in photography
editing applications, this can cathastrophic in the context
of self-driving cars, where the motion of the full object is
more important than the motion of each individual pixel.

With these problems in mind, we develop a novel deep
rigid instance scene flow (DRISF) model that takes the best
of both worlds. The idea behind is that the motion of the
scene can be composed by estimating the 3D rigid motion
of each actor. The static background can also be modeled as
a rigidly moving object, as its 3D motion can be described
by the ‘ego-car’ motion. The problem is thus reduced to es-
timating the 3D motion of each traffic participant. Towards
this gaol, we first capitalize on deep neural networks to esti-
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Figure 2: Overview of our approach: Given two consecutive stereo images, we first estimate the flow, stereo, and seg-
mentation (Sec. 3.1). The visual cues of each instance are then encoded as energy functions (Sec. 3.2) and passed into the
Gaussian-Newton (GN) solver to find the best 3D rigid motion (Sec. 3.3). The GN solver is unrolled as a recurrent network.

mate optical flow, disparity and instance segmentation. We
then exploit multiple geometry based energy functions to
encode the structural geometric relationship between these
visual cues. Through optimizing the energy function, we
can effectively reason about the 3D motion of each traffic
participant. As the energy takes the form of weighted sum
of squares, it can be efficiently minimized via Gaussian-
Newton (GN) algorithm [6]. We implement the GN solver
as layers in neural networks, thus all operations can be com-
puted efficiently on the GPU in an end-to-end fashion.

We demonstrate the effectiveness of our approach on the
KITTI scene flow dataset [28]. As shown in Fig. 1, our deep
rigid instance scene flow model outperforms all previous
methods by a significant margin in both runtime and accu-
racy. Importantly, it achieves state-of-the-art performance
on almost every entry. Comparing to prior art, DRISF re-
duces the D1 outliers ratio by 43%, the D2 outliers ratio by
32%, and the flow outliers ratio by 24%. Comparing to the
existing best scene flow model [4], our scene flow error is
22% lower and our runtime is 800 times faster.

2. Related Work

Optical flow: Optical flow is traditionally posed as an en-
ergy minimization task. It dates back to Horn and Schunck
[18] where they define the energy as a combination of a
data term and a smoothness term, and adopt variational in-
ference to solve it. Since then, a variety of improvements

have been proposed [7, 5, 30]. Recently, deep learning has
replaced the variational approaches. Employing deep fea-
tures for matching [2, 43] improved performance by a large

margin. However, as the matching results are not dense,
post-processing steps are required [35]. This not only re-

duces the speed, but also limits the overall performance.

Pioneered by Flownet [12], a variety of end-to-end
deep regression based methods have been proposed [22].
Flownet2 [2 1] stacks multiple networks to iteratively refine
the estimated flow and introduces a differentiable warping
operation to compensate for large displacements. As the re-
sulting network is very large, SpyNet [32] propose to use
spatial pyramid network to handle large motions. They re-
duce the model size greatly, yet at the cost of degrading per-
formance. Lite-Flownet [20] and PWC-Net [38, 37] extend
this idea and incorporate the traditional pyramid processing
and cost volume concepts into the network. Comparing to
previous approach, the resulting model is smaller and faster.
In this work, we adapt the latest PWC-Net as our flow mod-
ule.

Stereo: Traditional stereo methods [17, 23] follow three
steps: compute patch-wise feature, construct cost volumes,
and final post-processing. The representation of the patch
plays an important role. Modern approaches leverage CNN's
to predict whether two patches are a match [45, 46]. While
they showed great performance in challenging benchmarks,
they are computationally expensive. To speed up the match-
ing process, Luo et al. [25] propose a siamese matching
network which exploits a correlation layer [10] to extract
marginal distributions over all possible disparities. While
the usage of the correlation layer significantly improves effi-
ciency, they still require post-processing techniques [ 16, 47]
to smooth their estimation, which largely limits their speed.
In light of this, networks that directly regress sub-pixel dis-
parities from the given stereo image pair have been pro-
posed. DispNet [27] exploits a 1D correlation layer to ap-
proximate the stereo cost volumes and rely on later layers



Flow

SF Error

DXOVEORERN RV 0.38-0.74  0.75- 1.49

Figure 3: Qualitative results on val set: Our model can estimate the background motion very accurately. It is also able to
estimate the 3D motion of foreground objects in most scenarios. It fails in challenging cases as show in last column.

for implicit aggregation. Kendall er al. [24] incorporate
3D conv for further regularization and propose a differen-
tiable soft argmin to enable sub-pixel disparity from cost
volumes. PSM-Net [9] later extend [24] by incorporating
stacked hourglass [29] and Pyramid spatial pooling [48, 15].
In this work, we exploit PSM-Net as our stereo module.

Scene flow: Scene flow [40] characterizes the 3D motion
of a point. Similar to optical flow estimation, the task is
traditionally formulated as a variational inference problem
[39, 31, 19, 3]. However, the performance is rather lim-
ited in real world scenarios due to errors caused by large
motions. To improve the robustness, slanted-plane based
methods [44, 28, 41, 26] propose to decompose the scene
into small rigidly moving planes and solve the discrete-
continuous optimization problem. Behl ez al. [4] build upon
[28], and incorporate recognition cues. With the help of
fine-grained instance and geometric feature, they are able to
establish correspondences across various challenging sce-
narios. Similar to our work, Ren et al. [34] exploit multiple
visual cues for scene flow estimation. They encode the fea-
tures via a cascade of conditional random fields and itera-
tively refine them. While these methods have achieved im-
pressive performance, they are computationally expensive
for practical usage. Most methods require minutes to com-
pute one scene flow. This is largely due to the complicated
optimization task. In contrast, our deep structured motion

estimation model is able to compute scene flow in less than
a second, which is two to three orders of magnitude faster
than existing approaches.

3. Deep Rigid Instance Scene Flow

In this paper we are interested in estimating scene flow
in the context of self-driving cars. We build our model on
the intuition that in this scenario the motion of the scene can
be formed by estimating the 3D motion of each actor. The
static background can be also modeled as a rigidly moving
object, as its 3D motion can be described by the ‘ego-car’
motion. Towards this goal, we proposed a novel deep struc-
tured model that exploits optical flow, stereo, as well as in-
stance segmentation as visual cues. We start by describing
how we employ deep learning to effectively estimate the ge-
ometric and semantic features. We then formulate the scene
flow task as an energy minimization problem and discuss
each energy term in details. Finally, we describe how to
perform efficient inference and learning.

3.1. Visual Cues

We exploit three types of visual cues: instance segmen-
tation, optical flow and stereo.

Instance Segmentation: We utilize Mask R-CNN [14] as
our instance segmentation network, as it produces state-of-
the-art results in autonomous driving benchmarks such as



Dispairty 1 Dispairty 2 Optical Flow Scene Flow

Methods Runtime  bg fe all bg fe all bg fe all bg fe all

CSF [26] 1.3mins 4.57 13.04 598 792 20.76 10.06 1040 2578 1296 1221 3321 15.71
OSF [28] 50mins 4.54 12.03 579 545 1941 7777 562 1892 7.83 7.01 2634 10.23
SSF [34] S5mins 355 875 442 494 1748 7.02 563 1471 7.14 7.8 2458 10.07
OSF-TC*[1] 50mins 4.11 9.64 503 5.18 1512 6.84 576 1331 7.02 7.08 20.03 9.23
PRSM* [42] 5mins 3.02 1052 427 513 1511 6.79 533 1340 6.68 6.61 20.79 8.97
ISF [4] 10mins 4.12  6.17 446 488 1134 595 540 1029 622 658 1563 8.08
Our DRISF 0.75sec 2.16 449 255 290 9.73 4.04 359 1040 473 439 1594 6.31

Table 1: Comparison against top S published approaches: Our method acheives state-of-the-art performance on almost
every entry while being two to three orders of magnitude faster. (*: Method uses more than two temporally adjacent images.)

KITTI [13] and Cityscapes [| | ]. Mask R-CNN is a proposal
based two stage network built upon Faster R-CNN [33]. For
each object proposal, it predicts the object class, regresses
its 2D box, and infers the bg/fg segmentation mask.

Stereo: We exploit the pyramid stereo matching network
(PSM-Net) [9] to compute our stereo estimates. It consists
of three main modules: fully convolutional feature module,
spatial pyramid pooling [15, 48] and 3D cost volume pro-
cessing. The feature module computes a high-dimensional
feature map in a fully convolutional manner; the spatial
pyramid pooling aggregates context in different scales and
locations to construct the cost volume; the 3D cost volume
module then performs implicit cost volume aggregation and
regularizes it using stacked hourglass networks. Compared
to previous disparity regression networks, PSM-Net learns
to refine and produce sharp disparity images that respect
object boundaries better. This is of crucial importance as
over-smoothed results often deteriorates motion estimation.

Optical Flow: Our flow module is akin to PWC-Net [38],
which is a state-of-the-art flow network designed based on
three classical principles (similar to stereo networks): pyra-
midal feature processing, warping, and cost volume reason-
ing. Pyramidal feature processing encode visual features
with large context; the progressive warping reduces the cost
of building cost-volume through a coarse-to-fine scheme.
Cost volume reasoning further boost performance by sharp-
ening the boundaries. We implement PWC-net with one
modification: during the warping operation, we use the fea-
ture of the nearest boundary pixel to pad if the sampling
point falls outside the image, rather than 0. Empirically we
found this to improve performance.

3.2. Energy Formulation

We now describe the energy formulation of our deep
structured model. Let £, R?, £, R! be the input stereo
pairs captured from two consecutive time steps. Let D%, D!

be the estimated stereo, and F ., Fr be the inferred flow.
Denote S2 as the instance segmentation computed on the
left image £°. Assume all cameras are pre-calibrated with
known intrinsics. We parametrize the 3D rigid motion with
& € se(3), the Lie-algebra associated with SE(3). We
use this parametrization as it is a minimal representation
for 3D motion. For each instance ¢ € Sg, we aim to find
the rigid 3D motion that minimizes the weighted combina-
tion of photometric error, rigid fitting and flow consistency,
where the weights are denoted as A. ;. For simplicity, let
T = {£° RO LY, R, D, D, Fr, Fr} be input images
and visual cues. We denote the set of pixels belonging to
instance i as P; = {p|S%(p) = i}. Note that background
can be considered as an ‘instance’ since all the pixels in it
undergo the same rigid transform. We obtain the 3D motion
of each instance by minimizing

ngin{)\photo,iEphoto,i(& I) + Arigid,iErigid,i(g; I) (D)
+ /\ﬂow,iEﬂow,i(g; I)}

The three energy terms are complementary. They capture
the geometry and appearance agreement between the obser-
vations and inferred rigid motion. Next, we describe the
energy terms in more details.

Photometric Error: This energy encodes the fact that
correspondences should have similar appearance across all
images. In particular, for each pixel p € P; in the reference
image, we compare its photometric value with that of the
corresponding pixel in the target image:

Epnooi(§Z) = Y app(L2(p) = L'(P)) (@)

PEPR;

where a, € {0,1} is an indicator function representing
which pixel is an outlier. We refer the reader to section 3.3
for a discussion on how to estimate cv,. p is a pixel in the
reference image and p’ stands for the projected image co-
ordinate on another image, given by inverse depth warping
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Figure 4: Qualitative comparison on test sest: Our method can effecitvely handle occlusion and texture-less regions. It is
more robust to the illumination change as well as large displacement.

followed by a rigid transform £. Specifically,
P =mx(§omg (p.D(p))) 3)

where Tk (+) : R? — R? is the perspective projection func-
tion given known intrinsic K and mic' (+,-) : R? x R — R3
is the inverse projection that convert a pixel and its asso-
ciated disparity into a 3D point; £ o x transforms a 3D
point xrigidly with transformation exp(&€)x. p is a robust
error function that improves the overall robustness by reduc-
ing the influence of outliers on the non-linear least squares
problems. Following Sun et al. [36], we adopt the general-
ized Charbonnier function p(z) = (22 + €2)® as our robust
function and set o« = 0.45 and ¢ = 1072, Similar to [36],
we observe the slightly non-convex penalty improves the
performance in practice.

Rigid Fitting: This term encourages the estimated 3D
rigid motion to be similar to the point-wise 3D motion ob-
tained from the stereo and flow networks. Formally, given
correspondences {(p, g = p + Fr(p))|p € P;} defined by
the output of optical flow network and the disparity maps
DY, D', the energy measures rigid fitting error of &:

where ¢ = p + F.(p) and 7TI_<1 denotes the inverse projec-
tion function, and p is the same robust error function.

Flow Consistency: This term encourages the projection
of the 3D rigid motion to be close to the original flow es-
timation. This is achieved by measuring the difference be-
tween our optical flow net, and the structured rigid flow,
which is computed by warping each pixel using D° and the
rigid motion &.

Epowi(&T) =Y p((0 —p) — Fe(p)) (4

PEPR;

2D Rigid flow  optical flow

where p’ is the rigid warping function defined in Eq. (3),
and p is the same robust error function.

3.3. Inference

Uncertain Pixel Removal: Due to viewpoint change,
flow/stereo prediction errors, etc, the visual cues of some
pixels are not reliable. For instance, pixels in one image
may be occluded in another image due to viewpoint change.
This motivates us to assign oy, to each pixel p as an indi-

FErigia,i(&;T) = Z O‘Pp(goﬁ_(l (p, DO (p)) _771_<1 (q, pl(q)))’ cation of outlier or not. Towards this goal, we first exclude

(p.q)

pixels which are likely to be occluded in the next frame.
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errors often happen at farther distances where the vehicles are small and less points are observable.

Specifically, pixels are labeled as occluded if the warped 3D
disparity of the second frame significantly differs from the
disparity of the first frame. The intuition is that the disparity
of a pixel cannot change drastically in real world due to the
speed limit. We empirically set threshold to 30. Next, we
employ the RANSAC scheme to fit a rigid motion for each
instance. We only keep the inlier points and prune out the
rest. Despite simple, we found this strategy very effective.

Initialization: Due to the highly non-convex structure of
the energy model, a good initialization is critical to achieve
good performance. As previous step already prune out most
unreliable points, we directly exploit the rigid motion ob-
tained by RANSAC as our robust initial guess.

Gaussian Newton Solver: The energy function is non-
convex but differentiable w.r.t. & defined over continuous
space. In order to handle the robust function, we adopt an
iterative reweighted least square algorithm [8]. For each
iteration, we can rewrite the original energy minimization
problem of each instance ¢ as a weighted sum of squares:

€(n+1) = arg nginEtotal,i(f) = argmﬁlnzwl(é(n))r?(é(n))7

Eng

where r denotes the residual function, w reweights each
sample based on the robust function p, and Eng refers to
summing over the energy terms. We employ Gaussian-
Newton algorithm to minimize the function. Thus we have

0 — €™ o ITWIHDITWI(E™)  (5)

where o is a pose composition operator and J
5r(eog(™) |
de

«=0. In practice, we unroll the inference steps as
a recurrent neural network and define its computation graph
as in Eq. (5). The full pipeline including the matrix inverse
is differentiable. Please refer to the supp. material for the
derivation of the Jacobian matrix of each term and more de-
tails on the Gaussian-Newton solver.
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Figure 6: Odometry from background motion: On aver-

age, our ego-car drifts 1.3cm and 0.04° every 1m of drive.

Final Scene Flow Prediction: Given the final rigid mo-
tion estimation for each instance £, we are able to com-
pute the dense instance-wise rigid scene flow. Our scene
flow consists of three component, namely the first frame’s
stereo D°, warped stereo to second frame DV'P as well as
the instance-wise rigid flow estimation 784, Specifically,
for each point p we have:

D°(p) = D°(p)
D" (p) = 2k €5y ) © T (P D (P)))
Figd(p) = p' — p =k (€0 (0.D°(P))) — P

(6)

where zx () computes the disparity of the 3D point; m" is
the inverse projection function; and £ o x transforms a 3D
point x using the rigid motion &.

3.4. Learning

The whole deep structured network can be trained end-
to-end. In practice, we train our instance segmentation,
flow estimation, and stereo estimation module respectively
through back-propagation. To be more specific, Mask R-
CNN model is pre-trained on Cityscapes and fine-tuned on
KITTI. The loss function includes ROI classification loss,
box regression loss as well as the mask segmentation loss.
PSM-Net is pre-trained on Scene Flow [27] and fine-tuned
on KITTI with L1 regression loss. PWC-Net is pre-trained



Employed energy Background outliers (%)
Epho Eflow Erigid D) D2 Fl SF

v 1.92 2,69 371 4.30
v v 1.92 256 472 5.28
v v v 1.92 256 4.63 521

Employed energy Foreground outliers (%)
Epho  Efiow FErigia D1 D2 Fl SF
v 1.70 425 7.57 9.00
v v 1.70 458 698 8.67
v v v 1.70 4.56 6.73 8.39

Table 2: Contributions of each energy: As foreground objects sometimes are texture-less and have large displacement,
simple photometric term is not enough. In contrast, background is full of disriminative cues. Simple photometric error would
suffice. Adding extra terms will introduce noises and hurt the performance. Please refer to the supp. material for full table.

Methods Di-all D2-all Flall SF-all
PSM + PWC 189 (47.0) 110 (50.8)
Deep+tRANSAC 189 275 765 826
OurFull DRISF  1.89 289 4.10 4.84

Table 3: Improvement over original flow/stereo estima-
tion on validation set: The numbers in parenthis are ob-
tained by simply warping the disparity output with optical
flow, without interpolation, occlusion handling, etc.

on FlyingChairs [12] and FlyingThings [27] then fine-tuned
over KITTI, with weighted L1 regression loss.

4. Experiments

In this section we first describe the experimental setup.
Next we evaluate our model based on pixel-level scene flow
metric and instance-level rigid motion metric. Finally we
comprehensively study the characteristic of our model.

4.1. Dataset and Implementation Details

Data: We validate our approach on the KITTI scene flow
dataset [28]. The dataset consists of 200 sets of training
images and 200 sets of test images, captured on real world
driving scenarios. Following [9], we divide the training data
into train, val splits based on the 4:1 ratio.

Implementation details: For foreground objects, we use
all energy terms. The weights are set to 1. For background,
we only use photometric term (see ablation study). We run
RANSAC 5 times and use the one with lowest mean en-
ergy as initialization. We unroll the GN solver for 50 steps.
The solver terminates early if the energy reaches plateau. In
practice, best energy are often reached within 10 iterations.

4.2. Scene Flow Estimation

Comparison to the state-of-the-art: We compare our
approach against the leading methods on the benchmark”:

2As the validation performance of our PWC-Net (fine-tuned on 160
images) performs slightly worse than the official one (fine-tuned on all 200
images), we use their weights instead when submitting to the benchmark.
All other settings remain intact. We thank Deqing Sun for his help.

Module Stereo Optical Flow Segmentation
Inference time 409 ms / pair 30 ms / pair 251 ms / pair
Module RANSAC GN Solver Total

Inference time 93 ms/instance 244 ms/instance 746 ms / pair

Table 4: Runtime analysis. Modules within each building
block can be executed in parallel (see text for more details).

ISF [4], PRSM [42], OSF+TC [1], SSF [34], OSF [28], and
CSF [26]. Note that in addition to the standard two adjacent
frames, PRSM and OSF+TC rely on extra temporal frames.
As shown in Tab. 1, our approach (DRISF) outperforms all
previous methods by a significant margin in both runtime
and outliers ratio. It achieves state-of-the-art performance
on almost every entry. DRISF reduces the D1 outliers ratio
by 43%, the D2 outliers ratio by 32%, and the flow outliers
ratio by 24%. Comparing to ISF model [4], our scene flow
error is 22% lower and our runtime is 800 times faster. Fig.
1 compares the performance and runtime of all methods.

Qualitative results: To better understand the pros and
cons of our approach, we visualize a few scene flow results
on test set in Fig. 4. Scene flow estimation is challenging
in these scenarios due to large vehicle motions, texture-less
regions, occlusion, and illumination variation. For the left-
most image, prior methods fail to estimate the vehicle’s mo-
tion and adjacent area due to the sun reflection and occlu-
sion. The saturated, high intensity pixels hinder photomet-
ric based approaches [28] from matching accurately. With
the help of detection and segmentation, ISF [4] is able to im-
prove the foreground estimation. Yet it still fails at the oc-
cluded background. In comparison, our approach is robust
to illumination changes and is able to handle the occlusion
by effectively separating the vehicle from the background.
It can also accurately estimate the motion of the small car
far away, as well as those of the traffic sticks aside. As we
only train our Mask R-CNN on vehicles, it fails to segment
the train and hence the failure of our model. For the middle
image, the texture-less car has a large displacement and is
occluded in the second frame. While previous approaches
failed substantially, our method is able to produce accurate
motion estimation through the inferred flow and disparity of
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Figure 7: Improvement over original flow/stereo: DRISF improves the overall performance. It is especially effective on
texture-less regions (e.g. window of the black car on the left) and occluded areas (right).

the remaining non-occluded part. The middle failure mode
is again due to the inaccurate segmentation.

4.3. 3D Rigid Motion Estimation

We now evaluate how good our DRISF model is at esti-
mating the 3D rigid motion. Towards this goal, we exploit
the ground truth optical flow, disparity, and instance seg-
mentation provided in the KITTI scene flow dataset to fit a
least square rigid motion for each object instance in order
to create the ground truth rigid motion.

Curating KITTI scene flow:  During fitting, we dis-
cover two critical issues with KITTI: first, there are mis-
alignments between GT flow/disparity and GT segmen-
tation. Second, the scale fitting of the same 3D CAD
model employed to compute ground truth changes some-
times across frames. The first issue is due to the fact that
the GT are collected via different means and thus not con-
sistent. While the GT flow and GT disparity are obtained
from the fitted 3D CAD models, the GT segmentation are
based on human annotation. To address this, we first use
the GT segmentation mask to define each object instance.
We then fit a rigid motion using the GT flow and GT dispar-
ity of each instance via least squares. Since some boundary
pixels may be mis-labeled by the annotators, for each pixel
around the boundary we search if there are other instances
in the surrounding area, and if there are, we transform the
pixel with their rigid motion. If their rigid motion better
explains the pixel’s 3D movement, i.e. the 3D distance is
closer, then we assign the pixel to that instance. At the end,
we perform the least square fitting again with the new pixel
assignment. Unfortunately, even after re-labeling, there are
still a few vehicle instances where the rigid motion cannot
be explained. After careful diagnose, we notice that this is
because the scale of the CAD model changes across frames.
To verify our hypothesis, we compute the eigen decompo-

sition for the same instance across frames. Ideally if the
scale of the instance does not change much, the eigen value
should be roughly the same. Yet we discover a few exam-
ples where the largest eigen value changes by 7%. We sim-
ply prune those instances as the GT is not accurate.

3D Motion evaluation: Most scene flow methods are
pixel-based or adopted a piece-wise rigid setting. It is un-
clear how to aggregate their estimation into instance-based
motion model without affecting their performance. In light
of this, we exploit the motion initialization of our GN Solver
as baseline. We take the output of the deep nets and ap-
ply RANSAC to find the best rigid motion. We denote
it as Deep+RANSAC. As shown in Tab. 3, this baseline
is very competitive. Its performance is comparable to, or
even better than prior state-of-the-art. We evaluate our mo-
tion model based on translation error and angular error. As
shown in Fig. 5, over 80% of the vehicles have translation
error less than 1m and angular error less than 1.3°. Further-
more, most vehicles with translation error larger than 1m is
at least 20m away. In general, both error slightly increase
with distance. This is expected as the farther the vehicle
is, the less observations we have. The translation error and
angular error are also strongly correlated.

Visual odometry: The odometry of the ‘ego-car’ can be
computed by estimating the background movement. As a
proof-of-concept, we compute the per frame odometry error
on the validation images. On average our motion model
drifts 0.13m and 0.4° every 10m. Fig. 6 shows the detailed
odometry error w.r.t. the travel distance. We note that the
current result is without any pose filter, loop closure, etc.
We plan to exploit this direction further in the future.



4.4. Analysis

Ablation study: To understand the effectiveness of each
energy term on background and foreground objects, we
evaluate our model with different energy combinations. As
shown in Tab. 2, best performance is achieved for fore-
ground objects when using all energy terms, while for back-
ground the error is lowest when employing only photomet-
ric term. This can be explained by the fact that vehicles
are often texture-less, and sometimes have large displace-
ments. If we only employ photometric term, it will be very
difficult to establish correspondences and handle drastic ap-
pearances changes. With the help of flow and rigid term, we
can guide the motion and reduce such effect, and deal with
occlusions. In contrast, background is full of discriminative
textures and has relatively small motion, which is ideal for
photometric term. Adding other terms may introduce extra
noise and degrade the performance.

Comparison against original flow/disparity: Through
exploiting the structure between visual cues and occlusion
handling, our model is able to improve the performance
both quantitatively (Tab. 3) and qualitatively (Fig. 7).
The object motion estimation is better, the boundaries are
sharper, and the occlusion error is greatly reduced, sug-
gesting that incorporating prior knowledge, such as pixels
of same instance should have same rigid motion, into the
model is crucial for the task.

Potential improvement To understand the potential gain
we may enjoy when improving each module, we sequen-
tially replace the input to our solver with ground truth, one
by one, and evaluate our model. Replacing D1 and flow
with GT reduce the scene flow error rate by 8% and 21%
respectively, while substituting GT for segmentation does
not improve the results. This suggests that there are still
space for flow and stereo modules to improve.

Runtime analysis We benchmark the runtime of each
component in the model during inference in Tab. 4. The
whole inference pipeline can be decomposed into three se-
quential stages: visual cues extraction, occlusion reason-
ing, and optimization. As modules within the same stage
are independent, they can be executed in parallel. Further-
more, modern self-driving vehicles are equipped with mul-
tiple GPUs. The runtime for each stage is thus the max
over all parallel modules. In practice, we exploit two Nvidia
1080Ti GPUs to extract the visual cues: one for PSM-Net,
and the other for Mask R-CNN and PWC-Net. Currently,
the stereo module takes more than 50% of the overall time.
This is largely due to the 3D CNN cost aggregation and
the stacked hourglass refinement. In the future, we plan to
investigate other faster yet reliable stereo networks. The

runtime of the GN solver depends highly on the number
of steps we unroll and the number of points we consider.
Please refer to the supp. material for detailed analysis.

Limitations: DRISF has two main limitations: first, it
heavily depends on the performance of the segmentation
network. If the segmentation module fails to detect a vehi-
cle, the vehicle will be treated as background and assigned
an inverse ego-car motion. In this case, the 3D motion
might be completely wrong, even if the optical flow net-
work accurately predicts its flow. In the future we plan to
address this by jointly reasoning about instance segmenta-
tion and scene flow. Second, the current energy functions
are highly flow centric. Only the photometric term is in-
dependent of flow. If the optical flow network completely
failed, it would be difficult for the solver to recover the cor-
rect motion. One possible solution is thus adding more
flow-invariant energy terms, such as instance association
between adjacent frames.

5. Conclusion

In this paper we develop a novel deep structured model
for 3D scene flow estimation. We focus on the self-driving
scenario where the motion of the scene can be composed by
estimating the 3D rigid motion of each actor. We first ex-
ploit deep learning to extract visual cues for each instance.
Then we employ multiple geometry based energy functions
to encode the structural geometric relationship between
them. Through optimizing the energy function, we can rea-
son the 3D motion of each traffic participant, and thus scene
flow. All operations, including the Gassian-Newton solver,
are done in GPU. Our method acheives state-of-the-art per-
formance on the KITTI scene flow dataset. It outperforms
all previous methods by a huge margin in both runtime and
accuracy. Comparing to prior art, DRISF is 22% better
while being two to three orders of magnitude faster.
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Supplementary Material: Deep Rigid Instance Scene Flow

Abstract

This material provides more details and thorough anal-
ysis of our deep rigid instance scene flow (DRISF) model.
We hope the readers can gain more insights into our ap-
proach. We first provide the derivations of the Jacobians
employed in our Gaussian-Newton (GN) solver in Sec. 1.
Next, we discuss how the performance and runtime vary
with the maximum number of optimization steps in Sec 2.
Sec. 4 demonstrates the mis-alignment issue we encounter
in the KITTI dataset. Sec 5 showcases more qualitative re-
sults as well as a few failure cases. Finally, we provide the
screenshot of the leaderboard in Sec. 6.

1. Derivation of the Solver

In this section, we first derive the Jacobian of the energy
function in a general form. Then we describe the specific
formulation for each term.

1.1. Gauss-Newton Solver

The proposed energy terms can all be expressed in the
following form:

)= p(r(p,&1))

where p refers to the pixels belonging to an instance, p is
a robust penalty function, and r is a residual function. The
goal is to find a transformation £ that minimizes the energy,
or equivalently the sum of square residuals:

¢ = argmin £(§;7) = arg ngin%jp(r(p,s;zn.

As mentioned in the paper, we use the same p for all energy
terms where p(z) = 7(2?) = (22 + €2)~.

As the residual function is non-linear and cannot be
solved exactly, we iteratively approximate it with a first or-
der Taylor series expansion and search for the local mini-
mum. More formally, the residual function can be approxi-
mated as

or(p, &)

' (p, AE) = r(p, £+ A& T) ~r(p, &) + o€

AE.

For convenience, we define the Jacobian
Thus we can solve the following surrogate optimization
problem instead:

AE* = arg Inln Z p(r
= arg mln Z
= arg mln Z

where we simply denote p(x) = 7(2?). The minimum hap-
pens at the point where the gradient is equal to zero. Let
us denote Ly, = 7' (p, A&)Tr'(p, A€) and r, = r/(p, A£).
Thus we have:
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Since the equation now takes a linear form w.r.t. A§, we
can solve exactly in close form. In particular, the minimum
occurs when

oT(L

§T(Lp) T
0L, J

p) y7
Py, AL = T

p,§ 1),
AE =

p p

where W is a diagonal matrix with diagonal entries equal to
%. We hence take a step and update the transformation

€ €o0AE.

We next describe the residual function and the Jacobian
for each term. We use the same notations as in the paper.
We further define x = [33 y z}T = €o7r;<1 (p,D(p)) as
the 3D coordinate of the pixel p after inverse depth warping
and applying rigid transform &.

_(Z ngp‘]p)(_l) Z ngpr(Pa &I),



1.2. Jacobian of Each Energy Term

Photometric error: The residual function of the photo-
metric error is simply the RGB pixel value difference. For-
mally, it is defined as:

r(p,&1) = LY (p") — L°(p).
The Jacobian is defined as:

_orp.&T) _ oL'@) — Lp)
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Rigid fitting: The residual function of the rigid fitting
term is simply the 3D distance between the 3D point and
its correspondence. Formally, it is defined as:

r(p,&I) =€&omg' (p,P(p) — k' (a,D'(q))
=x— 7TI_<1 (q,Dl(q)) .

The Jacobian is thus:
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Flow consistency: The residual function of the flow con-
sistency term is simply the difference between the estimated
flow and the projection of the estimated 3D motion. For-
mally, it is defined as:

r(p,&1) = (p' — p) — Fe(p).
The Jacobian is defined as:
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2. Impact of Unrolling Steps in GN Solver

In this section, we study the trade-off between perfor-
mance and runtime with respect to the maximum number of
unrolling steps in the GN solver. As shown in Fig. 1, our
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Figure 1: Performance vs unrolling steps. While fore-
ground requires 30 steps to converge, background achieves
best results within 10 steps. As a consequence, the overall
performance reaches plateau after 10 steps, with only minor
improvement. We note that despite the foreground outliers
reduce quite a bit after 10 steps, it is mainly caused by a few
instances. Most instances converges within 10 steps.
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Figure 2: Runtime vs unrolling steps. At first the runtime
scales linearly with the maximum number of steps. As more

instances converge (i.e. the energy reaches plateau) and ter-
minate, the runtime becomes faster.

model can achieve very good performance within 10 steps.
The overall performance still improves a bit as the optimiza-
tion procedure proceeds, since a few foreground instances
require longer time to converge. In practice, many instances
converge within 10 steps, which leads to the speed boost
in Fig. 2. To gain more intuition, we also visualize the
scene flow error map at different iterations in Fig. 3. For
more qualitative results, we refer the readers to the attached
video.
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Figure 3: Scene flow error at different GN iterations. At first the estimated foreground motion is not accurate (see the
orange/red cars in the first row). With our carefully designed energy terms, we are able to handle the outliers in the inferred
visual cues and recover the accurate motion (see how the cars gradually turn into blue). Click the image to see the gif
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animation.

3. Impact of energy functions

To understand the effectiveness of each energy term on
background and foreground objects, we evaluate our model
with different energy combinations. The full ablation table
is shown in Tab. 1. While best performance is achieved for
foreground objects when using all energy terms, the error
is lowest for background when employing only photomet-
ric term. This can be explained by the fact that vehicles
are often texture-less, and sometimes have large displace-
ments. If we only employ photometric term, it will be very
difficult to establish correspondences and handle drastic ap-
pearances changes. With the help of flow and rigid term, we

can guide the motion and reduce such effect, and deal with
occlusions. In contrast, background is full of discriminative
textures and has relatively small motion, which is ideal for
photometric term. Adding other terms may introduce extra
noise and degrade the performance.

4. Curating KITTI Scene Flow

While creating the instance-wise 3D rigid motion ground
truth (GT) from KITTI scene flow dataset, we discover two
critical issues: firstly, there are mis-alignments over in-
stance boundaries between the GT scene flow and GT in-
stance segmentation; secondly, we find that the scale of the
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Employed energy Background outliers (%) Employed energy Foreground outliers (%)
Epho  Etiow Erigia D1 D2 Fl SF Epho FEfiow FEriggg D1 D2 Fl SF
v 1.92 2,69 371 4.30 v 1.70 425 7.57 9.00
v 1.92 257 473 531 v 1.70 5.53 839 105
v 1.92 259 592 645 v 1.70 3.72 149 16.1
v v 1.92 257 425 482 v v 1.70 5.18 797 9.85
v v 1.92 256 472 528 v v 1.70 458 698 8.67
v v 192 255 469 525 v v 1.70 3,70 798 9.24
v v v 1.92 256 4.63 5.21 v v v 1.70 456 6.73 8.39

Table 1: Contributions of each energy: As foreground objects sometimes are texture-less and have large displacement,
simple photometric term is not enough. In contrast, background is full of discriminative cues. Simple photometric error
would suffice. Adding extra terms will introduce noises and hurt the performance.

same 3D instance changes across two frames, which is im-
possible in practice.

Fig. 4 shows two examples where the GT scene flow
and GT segmentation mis-align. For each pixel, we deter-
mine its scene flow based instance label by finding if its
scene flow better fits the rigid motion of a foreground in-
stance or the background scene. We also get another source
of labels from instance segmentation task. If a point is
defined as foreground instance by both scene flow and the
instance segmentation, it is colored in yellow. It is colored
in green/red if only the scene flow/segmentation indicates it
belongs to foreground object. If both agree it is background,
we colored it in blue. In general, the mis-alignment happens
at the boundaries. It is expected as the amount of CAD
models (employed to compute GT flow/disparity) and their
underlying transformations are limited and it is difficult to
cover all types of cars on the road while GT instance are
labeled by humans through polygons. The mis-alignment
will also result in incorrect rigid motion', especially when
there are many outliers. We thus re-label the points and
compute the rigid motion again. This greatly reduces the
outliers ratio.

Even after fixing the instance boundary mis-alignment
issue, we find it is still difficult to fit a rigid transform for
a few instances that makes GT flow and GT disparity agree
with each other. We suspect this is due to the fact that some
instances do not undergo rigid transform in the data. To
solidify our claim, we further compute the 3D distance be-
tween the same pair of points from an instance at different
time step. To be more specific, we obtain the correspon-
dences at different frames using GT flow and exploit GT
disparity to compute their respective 3D coordinates. As
shown in Fig. 5, the 3D distance between the points changes
quite a bit for the vehicle. It seems like the underlying trans-

I As there are no GT for the rigid motion, we evaluate its quality using
the scene flow metric. To be more specific, we use the GT D1 and the fitted
rigid motion to compute scene flow via Eq. 6 and measure the number of
outliers.

formation across the frames is not rigid. We verify with the
authors [4] and they confirm that an additional scale param-
eter is employed to fit the 3D CAD model to each frame
independently during the GT creation stage. Several ob-
jects thus do not undergo a rigid transform. To address this,
we simply treat them as don’t care regions, and ignore them
when computing our metrics.

5. Qualitative Results

Fig. 6 and Fig. 7 provide more qualitative comparison
against the baselines. Fig. 8 and Fig. 9 show a few exam-
ples where our model fails.

6. KITTI Scene Flow Benchmark

Fig. 10 shows the screenshot of the KITTI scene flow
leaderboard at the time of paper submission. Our method
outperforms all previous methods, including anonymous
submissions, by a significant margin in both runtime and
performance.
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Figure 4: Mis-alignment between the GT scene flow instance and the GT segmentation. We show two examples of the
mis-alignment. A point is colored in yellow if both scene flow instance and GT segmentation agree it is foreground. Red

means only segmentation agrees, and green suggests only scene flow instance agrees. A point is blue is both agree it is
background. Points where the two disagree are shown in white in bottom left.
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Figure 5: Instances does not follow rigid transform. The 3D distance between exact same two points changes across frames.

The distance increases by 5.4% within 0.1 second which is quite significant. Note that 3D position and correspondence are
computed using GT disparity and GT flow.
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Figure 6: Qualitative comparison on test set. We compare with the competitive, top leading methods on KITTI leaderboard:
FSFMS [6], SSF [5], CSF [3], OSF [4], OSFTC [1], PRSM [7], ISF [2]. Our method can effectively handle occlusion and
texture-less regions. It is more robust to the illumination change as well as large displacement.
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Figure 7: Qualitative comparison on test set. We visualize the results and error maps of each component of OSF [4], PRSM
[7], and ISF [2]. Our method can effectively handle occlusion and texture-less regions. It is more robust to the illumination
change as well as large displacement.
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Figure 8: Failure case of the scene flow model. Our energy model takes the inferred visual cues (i.e. flow, disparity) as
input. If the original estimation is completely wrong, our model fails to recover the actual motion. In the first row, the flow
estimation of the largely occluded vehicle is completely wrong. For background, the flow error has less impact, as we can
recover its motion from other reliable background points. It however still relies heavily on D1 (see Eq. 6 in the paper). If
D1 estimation is incorrect, our model can hardly work. To address this issue and avoid being bounded by the visual cues, we
plan to optimize both the disparity and flow in the solver. We leave this for future study.




Figure 9: Failure case of the inferred 3D rigid motion model. The small blue car is partially occluded by the white van
in the first frame, and is completely invisible in the second. The estimated visual cues are thus completely wrong (unlike
background it cannot benefit from other observations). It leads to 5 m translation error and 17.5 degree angular error.
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Figure 10: Screenshot of the KITTI scene flow leaderboard at the time of paper submission. Our model (named DSSF
previously) achieves state-of-the-art performance on almost every entry (bold) while being significantly faster.



