
Supplementary Material: Deep Feedback Inverse
Problem Solver

Wei-Chiu Ma1,2 Shenlong Wang1,3 Jiayuan Gu1,4 Siva Manivasagam1,3

Antonio Torralba2 Raquel Urtasun1,3

1Uber Advanced Technologies Group
2Massachusetts Institute of Technology

3University of Toronto
4University of California San Diego

Abstract. This supplementary material provides more details and thor-
ough analysis of our deep feedback inverse problem solver. We hope the
readers can gain more insights into our approach. In the following, we
first showcase that our model can be combined with traditional optimiz-
ers to further improve the performance. Next, we provide more detailed
ablation studies regarding the design choices that we made. Then we
discuss in depth the relationships between our work and several previ-
ous approaches. To demonstrate that our method is not limited to the
tasks shown in the paper, we further apply it to a dense inverse image
reconstruction problem — JPEG image deblocking. Finally, we present
more qualitative results.

1 Analysis

Deep feedback network as initialization: Structure optimization approaches
are usually sensitive to initialization. The initial estimations have to be rea-
sonably close so that the optimizers can converge to reasonably good results.
Since our deep feedback network can bypass the local energy landscape and can
produce very accurate estimations within extremely short amount of time, one
natural solution is to exploit our model as an initialization and employ classic
solvers for the final optimization. As shown in Tab. 1, by combining with Soft-
Ras [4], we can reduce the error by a significant margin. To further understand
how robust the joint model is and how often it can converge to a certain error
range, we visualize the cumulative error in Fig. 1. The joint model significantly
outperforms all approaches at 90th, 95th, and even 99th percentile, verifying our
hypothesis that our deep feedback network is more robust to the initialization
as well as the curvature of the local energy landscape, and can serve as a good
initializer.

Effectiveness of unrolling steps: Tab. 2 shows the step by step performance
of our model on three different tasks. Through iterative feedback and update, our
deep feedback inverse problem solver can significantly reduce the overall error.
We also provide several side-by-side visualizations in the attached gif files. We
encourage the readers to watch the animations to see how the estimations evolve.



2 Wei-Chiu Ma et al .

Trans. Error Rot. Error Outlier
Methods Mean Median Mean Median (%)

NMR [2] 0.1 0.05 5.78 1.68 20.3
SoftRas [4] 0.05 0.003 4.14 0.5 8.03
Deep Regression 0.07 0.06 10.07 7.68 5

Ours 0.02 0.009 2.64 1.02 2.6
Ours + SoftRas 0.01 0.001 1.62 0.31 0.9

Table 1: Deep feedback inverse problem solver as initializer.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Trans Error

50

60

70

80

90

100

Am
ou

nt
 o

f D
at

a 
(%

)

NMR (3.67 sec)
SoftRas (25 sec)
Ours (0.02 sec)
Ours+SoftRas (15.02 sec) 

Fig. 1: Cumulative error for translation and rotation.

Shared weight vs non-shared weight: In the original paper, we argue that
a non-shared weight network can model the dynamic output scale much easily.
To corroborate our conjecture, we train a model following the exact same setting
except the weight-sharing scheme. As shown in Tab. 3, the non-shared weight
network has a larger capacity and can better capture the dynamic distribution.

Category-wise performance: As shown in Tab. 4, our model achieves simi-
lar performance across all categories except bed and cabinet. The two categories
are extremely challenging because of the large intra-class variance. For instance,
while hammocks, loft bed, and ordinary bed all belong to bed category, their
shape and appearance vary significantly. In contrast, the shape variations among
all cars are smaller and thus our model can pick up such shape prior much easily.

Influence of image size: Ideally we want to provide our model with as much
information as possible. One straightforward solution is to exploit a larger ren-
dered image. Unlike state-of-the-art differentiable renderers [2,4] whose runtime
increases significantly with image sizes, the computational overhead of pyrender
is almost negligible (see Fig. 2). This allows us to freely select the desired image

Unroll Steps
6 DoF Pose Est. 1 3 5

Trans. error 0.075 0.032 0.02
Rot. error 10.07 3.32 2.64

Unroll Steps
Illum. Est. 1 3 7

Dir. light 0.076 0.055 0.052
Point light 0.111 0.089 0.084

Unroll Steps
Inv. kinematics 1 2 3

Position error 2.76 1.11 0.64
Rotation error 2.04 0.94 0.88

Table 2: Effectiveness of unrolling steps.



Deep Optimizer 3

Tasks 6 DoF Pose Est. Illumination Est. Inv. Kinematics
Our model Translation Rotation Directional Point Position Rotation

Shared weight 0.03 4.24 0.077 0.103 0.99 1.57
Non-shared weight 0.02 2.64 0.052 0.085 0.64 0.88

Table 3: Effectiveness of not sharing weight across stages.

0 10000 20000 30000 40000 50000
number of faces

0

50

100

150

200

250

300

350

ra
st

er
iz

at
io

n 
tim

e 
(m

s)

Rasterization speed wrt number of faces
soft-ras (img size: 64)
soft-ras (img size: 256)
nmr (img size: 64
nmr (img size: 256)
pyrender (ours) (img size: 64)
pyrender (ours) (img size: 256)

Fig. 2: Runtime w.r.t. number of faces and image size.

size without sacrificing the speed. Tab. 4 shows the results of our model with
different input image sizes. The performance improves across all categories when
the input image size increases from 64 to 128. Yet the results remains roughly the
same when increasing the size from 128 to 256. Considering the slightly higher
memory cost and slower speed, we select 128 as our final rendered image size.

2 Related work

Connection to reinforcement learning (RL): Our method shares simi-
larities with RL. Indeed, both frameworks are closed-loop systems, where the
model takes the feedback from the “environment” and adjusts the next esti-

Optimization Couch Car Bench Monitor Chair
Image Size Runtime Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot.

64 16 ms 0.02 1.48 0.02 1.33 0.02 1.98 0.02 2.85 0.02 1.80
128 21 ms 0.009 0.81 0.008 0.60 0.009 1.10 0.01 1.49 0.01 0.95
256 35 ms 0.01 1.22 0.009 0.67 0.01 1.05 0.01 1.33 0.01 0.92

Memory Table Sofa Plane Bed Cabinet
Image Size Usage Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot.

64 583 MB 0.02 2.76 0.02 1.61 0.08 3.83 0.08 7.78 0.05 5.83
128 636 MB 0.01 1.28 0.009 0.85 0.05 1.98 0.07 4.56 0.02 3.69
256 712 MB 0.01 1.18 0.01 0.87 0.02 1.14 0.08 4.88 0.02 3.49

Table 4: Effectiveness of image size on 6 DoF pose estimation.



4 Wei-Chiu Ma et al .

mation accordingly. There exists, however, several key differences: First, the
training strategy is different. While our approach exploits GT xgt to directly
train the feedback network gw in a supervised fashion, RL agents learn by inter-
acting with the closed-loop environment. The training signals of RL come from
non-differentiable rewards y − yt. Second, our model is trained to aggressively
move towards the ground truth at each step. Thus we can accelerate the update
procedure and reach the target with much fewer iterations. In comparison, RL
agents are usually restricted to relatively small action space, due to the sampling
efficiency and exploration issue, and typically require many more steps to arrive
at the final solution. While one can augment the action space, it may bring
difficulties to train RL agents in a sample efficient manner.

Comparison with DeepIM [3]: In this paper, we present a generic frame-
work that is applicable to a wide range of inverse problems. While the instan-
tiation of our model on 6D pose estimation is similar to the method Li et al .
introduced in [3], there are a few key differences: (1) Li et al . implicitly model
the relationships between the estimation and the observation. In contrast, we ex-
plicitly consider the difference and predict an update based upon it. Empirically
we find that the explicit representation is crucial for learning and can drastically
reduce the size of the model. (2) Our model infers the 6d pose merely from sil-
houette images, yet [3] focuses on RGB images. (3) Our model is motivated by
classic optimization approaches. We borrow ideas from traditional literature to
improve the performance (i.e. adaptive update), whereas [3] simply unroll the
network.

Comparison with IEF [1]: Our approach is related to [1]. Both work leverage
feedback signals to refine the estimation iteratively. However, instead of relying
on the network to implicitly establish the relationships between the feedback
signal and the observation, we explicitly leverage the forward process to map
the estimation back to the observation space and compare the difference. We
empirically find that ensuring the inputs to lie in the same space is crucial for
learning and can drastically reduce the size of the model. Moreover, unlike [1],
our predicted update is not bounded. At each iteration, we aggressively move
towards the GT solution and hence we can converge within a few iterations.
While [1] argues that unbounded update is difficult, we find it possible thanks to
the rich information encoded in the difference image. Finally, we focus on a wide
range of inverse problems, whereas [1] is specialized to human pose estimation.

Comparison with Oberweger et al . [5]: While both work attempt to train
networks that take feedback signals as input, there are a few key differences:
(1) Instead of relying on the network to implicitly establish the relationships
between the feedback signal and the observation, we explicitly consider the dif-
ference and predict an update based upon it. (2) Rather than reusing the same
update network for each iteration (i.e., sharing weight), we train a separate
update function at different steps. This allows us to handle a variety of output



Deep Optimizer 5

scales across different iteration steps. (3) We directly supervise our feedback net-
work to move aggressively towards the ideal solution at each stage. In contrast,
Oberweger et al . [5] encourages the update network to improve the estimation,
no matter what scale it is. (4) Oberweger et al . [5] learn the synthesis function
and focus on hand pose estimation, whereas we target a wide range of inverse
problems where the forward process f is given.

Comparison with LiDO [6]: The two papers indeed share many similarities
despite developed independently. Both papers are motivated by energy-based
models; both discover that the difference image contains very rich information;
both learn a deep net to update the latent parameters. There, however, still
exists a few differences: (1) Rather than directly regressing the GT [6], we predict
the residual instead. (2) LiDO’s [6] prediction networks are the same across all
iterations, while our feedback network differs at each step. Furthermore, we adopt
a stage-wise training to explicitly condition the latter feedback network on the
previous ones to more effectively model the variety of output scales.

3 Other applications: JPEG image deblocking

Our approach is not limited to the tasks shown in the paper. It is designed in a
generic fashion such that it can be applied to various inverse problems so long
as the corresponding forward process f is given. This includes inverse image
reconstruction problems such as inverse halftoning, JPEG compression noise
removal, super resolution, etc. The underlying training and inference procedures
for these tasks are the same as in the paper with the latent variable x now being
high-dimensional (i.e., images).

To verify our claim, we test our approach on a classic inverse image process-
ing task - JPEG image deblocking. Let x be a clean image, and y = f(x) be
the compressed JPEG image generated by the forward non-differentiable JPEG
compressor f . Our goal is to learn an inverse network g that can restore the
original image x = g(y) from the low-quality observation.

We follow a similar experimental setup to [8], where we train our model on
BSD400 and evaluate it on BSD68 as well as Live29. We compare our method
against state-of-the-art DnCNN [8] as well as Deep Image Prior (DIP) [7]. Our
approach improves DIP by 2.33/4.15 db in PSNR and by 0.1076/0.1851 in SSIM
(BSD68/Live29). Compared to DnCNN, we improve the PSNR by 0.04/0.03 db
and SSIM by 0.001/0.001. We note that the above results are obtained by simple
plug-and-play, without hyper-parameter tuning. We unroll our model 3 times.

4 Qualitative results

We provide more qualitative results of our model in Fig. 3 and Fig. 4. Through
iterative feedback and update, our method is able to accurately infer the hidden
parameters of interest. Furthermore, it can even recover from incorrect predic-
tions in early stages. For instance, the initial pose estimations of the gray car and



6 Wei-Chiu Ma et al .

GT Init. Step 1 Step 3 Step 5 GT Init. Step 1 Step 3 Step 5

Fig. 3: Qualitative results on 6 DoF pose estimation: Our model can accu-
rately estimate the 6 DoF pose of the object from a variety of viewpoints. It can
also recover from incorrect estimation through iterative feedback. The images
are rendered with the estimated/gt pose, purely for visualization purpose. We
only exploit silhouette both during training and inference.

the air plane (last row in Fig. 3) are completely wrong. Yet with the feedback
signal, the model is able to iteratively refine the estimation and finally produce
decent results.

References

1. Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with
iterative error feedback. In: CVPR (2016) 4

2. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: CVPR (2018) 2
3. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching for

6d pose estimation. In: ECCV (2018) 4
4. Liu, S., Chen, W., Li, T., Li, H.: Soft rasterizer: Differentiable rendering for unsu-

pervised single-view mesh reconstruction. arXiv (2019) 1, 2
5. Oberweger, M., Wohlhart, P., Lepetit, V.: Training a feedback loop for hand pose

estimation. In: ICCV (2015) 4, 5
6. Romaszko, L., Williams, C.K., Winn, J.: Learning direct optimization for scene

understanding. Pattern Recognition (2020) 5
7. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018) 5



Deep Optimizer 7

GT Init. Step 1 Step 3 Step 7 GT Init. Step 1 Step 3 Step 7

Fig. 4: Qualitative results on illumination estimation. While the initial
estimations are not that accurate, our model is able to aggressively refine the
prediction based on the feedback signal and achieve decent results. The input
lights are visualized by rendering them onto a sphere (top-right).

8. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. TIP (2017) 5


