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Hardware specialization is becoming a key enabler of energy-efficient performance. Future systems will be

increasingly heterogeneous, integrating multiple specialized and programmable accelerators, each with dif-

ferent memory demands. Traditionally, communication between accelerators has been inefficient, typically

orchestrated through explicit DMA transfers between different address spaces. More recently, industry has

proposed unified coherent memory which enables implicit data movement and more data reuse, but often

these interfaces limit the coherence flexibility available to heterogeneous systems.

This paper demonstrates the benefits of fine-grained coherence specialization for heterogeneous systems.

We propose an architecture that enables low-complexity independent specialization of each individual coher-

ence request in heterogeneous workloads by building upon a simple and flexible baseline coherence inter-

face, Spandex. We then describe how to optimize individual memory requests to improve cache reuse and

performance-critical memory latency in emerging heterogeneous workloads. Collectively, our techniques en-

able significant gains, reducing execution time by up to 61% or network traffic by up to 99% while adding

minimal complexity to the Spandex protocol.

CCS Concepts: • Computer systems organization→Multicore architectures; Heterogeneous (hybrid)

systems; • Hardware→ Emerging architectures; Emerging interfaces;

Additional Key Words and Phrases: Shared memory systems, coherence, GPUs, caches

ACM Reference format:

Johnathan Alsop, Weon Taek Na, Matthew D. Sinclair, Samuel Grayson, and Sarita Adve. 2022. A Case for Fine-

grain Coherence Specialization in Heterogeneous Systems. ACM Trans. Archit. Code Optim. 19, 3, Article 41

(August 2022), 26 pages.

https://doi.org/10.1145/3530819

This work is supported in part by the National Science Foundation under grant CCF 16-19245, by DARPA through the

Domain-Specific System on Chip (DSSoC) program, a Google Faculty Research award, and by the Applications Driving

Architectures (ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA.

Authors’ addresses: J. Alsop, AMD Research 2002 156th Ave NE #300 Bellevue, WA 98007; email: johnathan.alsop@amd.com;

W. T. Na, MIT CSAIL 32 Vassar Street, 32-G786 Cambridge, MA 02139; email: weontaek@mit.edu; M. D. Sinclair, Uni-

versity of Wisconsin-Madison Computer Sciences Department 1210 West Dayton Street Madison, WI 53706; email:

sinclair@cs.wisc.edu; S. Grayson and S. Adve, Siebel Center for Computer Science University of Illinois at Urbana-

Champaign 201 North Goodwin Avenue Urbana, IL 61801-2302; emails: {grayson5, sadve}@illinois.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

1544-3566/2022/08-ART41

https://doi.org/10.1145/3530819

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 41. Publication date: August 2022.

https://orcid.org/0000-0001-5272-2396
https://orcid.org/0000-0002-1303-2461
https://orcid.org/0000-0003-0189-7895
https://orcid.org/0000-0001-5411-356X
https://orcid.org/0000-0002-3403-5119
https://doi.org/10.1145/3530819
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3530819


41:2 J. Alsop et al.

1 INTRODUCTION

In nearly all compute domains, hardware specialization and parallelism have become important dri-
vers of compute performance. GPUs, FPGAs, and other specialized devices are being incorporated
into systems ranging from mobile and IoT devices to supercomputers and datacenters. However,
the conventional SoC accelerator integration process is inefficient and complex. Communication
with a new accelerator often uses explicit copies to and from DRAM. This enables simple integra-
tion and the use of specialized memories for each accelerator, but it prevents implicit reuse, limits
programmability, and makes inter-device communication inefficient. As accelerators become a
more important part of emerging applications and the memory wall increases the importance of
efficient cache reuse, coherence specialization is becoming just as important to performance as
compute specialization.

In order to efficiently adapt to emerging workloads and systems, mechanisms for coherence
optimization must be both flexible and simple. There have been many coherence extensions pro-
posed over the years (discussed further in Section 2), but these generally build upon conventional
hardware protocols originally designed for CPUs such as MESI. Such protocols are effective for a
wide range of CPU workloads, but these complex coherence strategies often incur unacceptable
overheads for accelerators such as GPUs [35, 36, 78]. In addition, the complexity of MESI-based
protocols makes validating protocol changes expensive, requiring that the cost of any coherence
extension be amortized over a broad range of general-purpose applications. A simpler baseline
protocol would make it practical to validate coherence extensions for an individual application
domain or class of accelerators.

Recently, the Spandex protocol was proposed as a simple and flexible alternative to MESI-based
coherence for heterogeneous systems [9]. Spandex is based on the DeNovo protocol [26], and is de-
signed to simply and flexibly interface a diverse set of devices (CPU cores, GPUs, and accelerators),
each with different static coherence strategies (e.g., MESI, GPU, or DeNovo coherence protocols).
Spandex achieves this by identifying an interface consisting of a set of coherence request types
that represent the diversity of the above protocols. Spandex avoids many of the pitfalls of a com-
plex MESI-based approach, but it misses out on an entire dimension of coherence flexibility: the
ability to mix and match specialized coherence request types from a device based on the properties
of each individual access of that device.

In this work we advocate for fine-grain coherence flexibility in heterogeneous memory sys-
tems. By choosing a Spandex request type used for every access individually rather than at device
granularity, we can motivate new coherence specializations that increase cache reuse, reduce data
movement, and favor critical accesses over non-critical accesses. This flexibility motivates two
coherence optimizations: update propagation and owner prediction. We show that these can be
added to the simple Spandex protocol while avoiding much of the complexity required to extend
conventional MESI-based protocols. These specialized coherence policies and coherence optimiza-
tions have different tradeoffs, and identifying which policy is best for each individual access is not
trivial. We therefore propose a trace-based technique for automatically determining the best spe-
cialized request type to be used for each memory access, and we show that this can improve cache
efficiency relative to device granularity coherence specialization for common access patterns.

Overall, we make the following contributions:

• We propose specializing coherence request types at the granularity of an individual access,
rather than at the granularity of a device. In our initial fine-grain coherence specialized
system, we enable, within a device, all request types supported by Spandex.
• We describe two opportunities for further coherence specialization (update forwarding and

owner prediction) that can be used to improve cache performance for certain access patterns
when fine-grained coherence specialization is enabled.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 3, Article 41. Publication date: August 2022.



A Case for Fine-grain Coherence Specialization in Heterogeneous Systems 41:3

• We quantitatively show that adding the new specializations on top of Spandex is 2× less
complex than adding them to a more conventional MESI-based protocol.
• To efficiently leverage our fine-grained coherence specializations, we describe a heuristic

algorithm for offline request type selection that aims to maximize cache reuse in common
heterogeneous applications.
• We evaluate fine-grain specialized coherence on a range of heterogeneous workloads with

diverse access patterns and show that it can reduce execution time by up to 61% and network
traffic by up to 99%, while also motivating programming patterns for heterogeneous systems
that would otherwise be inefficient.

With fine-grain coherence specialization, we show that it is possible to significantly increase
cache reuse, reduce data movement, and improve performance in heterogeneous applications,
while keeping design complexity under control.

2 RELATED WORK

There are multiple active efforts to design coherence for heterogeneous systems [2, 12, 22, 63,
67, 84]. Many of these offer a high degree of flexibility, enabling “non-snoopable” regions and
request types (similar to self-invalidated loads and write-through stores). Some interfaces also
offer mechanisms for pushing writes directly to a designated node (e.g., cache stashing in ARM
CHI), similar to write-through forwarding optimizations described in Section 4. However, in many
cases these properties are fixed for a given address region, they incur added complexity in the form
of transient states, they require indirection through the LLC, and they are generally not focused
on request type optimization at the level of individual accesses, so they are more complex and less
flexible than the coherence specialization described here.

Past work has studied the benefits of adaptive cache policies [49, 50, 66] and of flexible cache
state or coherence granularities [20, 26, 30, 47, 74, 86, 87, 95]. Protocol extensions have also been
proposed to detect and predict specific sharing patterns, optimizing requests to reduce wasteful
traffic and latency for those patterns [3, 11, 19, 25, 29, 38, 40, 41, 46, 48, 58, 59, 62, 70, 72, 73, 79, 82].
All of the above innovations help to motivate and demonstrate the benefits of dynamic adaptability,
and the methods they propose for detecting and predicting sharing patterns will be increasingly
relevant to specialized memory systems. In fact, the two optimizations described in Section 4.2
(update forwarding and owner prediction) are very similar to prior optimizations [5]. However,
all of these past protocol innovations focus on optimizing communication patterns in the context
of multicore CPU workloads rather than heterogeneous workloads, and the benefits they provide
often come at the cost of additional overhead and complexity on top of an already complex MESI-
based protocol.

A wide range of past work explores allowing software to more explicitly control data move-
ment and data locality ([16, 33, 34, 37, 39, 53, 93]). These data movement optimizations tend to
involve simple hardware changes which minimally affect the coherence protocol, but they do not
provide the dynamic flexibility enabled by coherence specialization at the granularity of individual
accesses.

Many studies also have proposed ways to improve memory access efficiency through adaptive
cache management (e.g., replacement, prefetching, and bypassing) in both CPUs and GPUs based
on hints from the software, compiler, or runtime profilers [13, 17, 24, 45, 54, 68, 76, 85, 90, 91].
These techniques allow caches to adapt to different access patterns and improve cache efficiency,
and many of the insights regarding cache policy prediction can be leveraged to help select request
types in a system with fine-grain coherence specialization. However, their flexibility is constrained
to cache management policies rather than coherence protocol flexibility.
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Recent work proposes communicating high level properties of a program’s memory access pat-
tern to the underlying hardware to guide architectural optimizations such as cache policy special-
ization, intelligent data mapping in DRAM and intelligent GPU work distribution [88, 89]. These
techniques are compatible with a Spandex system, and could take advantage of fine-grain coher-
ence specialization by guiding request type selection.

Recent work has improved utilization, load balance, and data reuse by optimizing the scheduling
and mapping computation tasks to compute devices in dataflow workloads. These efforts show
significant gains for a range of CPU [94] and GPU/accelerator [8, 55, 81, 96] applications. These
software frameworks rely on an awareness of reuse potential, parallelism, data dependencies, and
producer-consumer relationships to enable more data-efficient compute. This awareness makes
them well suited to exploit fine-grain coherence flexibility to further improve reuse or reduce
wasteful communication overheads in emerging workloads.

Some recent work identifies the optimal cache coherence policy for different combinations of
composable accelerators, easing the process of heterogeneous system design [18, 57]. However,
flexibility is limited to a single coherence decision for each kernel, limiting the types of possible
optimizations.

Overall, the adaptivity innovations of past work complement the insights of this work, and can
be used to guide request type decisions and coherence extensions for future heterogeneous systems
and workloads.

3 BACKGROUND: HETEROGENEOUS COHERENCE

Designing coherence protocols for heterogeneous systems is complicated by the diverse memory
demands of different devices. Any coherence strategy involves tradeoffs in how it invalidates stale
data, propagates updates, and manages state in order to exploit different types of cache locality
while enforcing coherence. We next describe these tradeoffs in more detail for three coherence
strategies, and we discuss how the Spandex protocol can be used to interface devices that use each
request type. Although the following discussion considers a system with a shared last level cache

(LLC), the same tradeoffs apply to a stateless LLC.

3.1 MESI-based Coherence

MESI-based protocols are great at exploiting cache reuse, but they require coherence overheads
which can limit performance for workloads with low locality. Because of this they are a good fit for
CPUs, which tend to exhibit high sensitivity to memory latency but have low memory throughput
demands. For simplicity, we refer to MESI-based protocols as “MESI” going forward, but the below
tradeoffs apply to MOESI, MESIF, and most other common MESI variants.

Stale data invalidation: MESI uses writer invalidation, which means that reads obtain sharer
permissions and writes must revoke these permissions from any sharer caches. Writer-invalidation
allow readers to cache data until it is known to be stale. However, it also requires storage and
network overheads related to tracking and invalidating sharer state.

Update propagation: MESI caches obtain exclusive ownership (i.e., writer permission) for
writes and atomic RMW operations. This enables the writer cache to exploit locality in written
data and avoid transfer of dirty data until absolutely necessary (the data is evicted, or it is read
by another device). However, it also adds indirection latency for subsequent requests from remote
devices because the ID of the owning device must be queried at the LLC and the request must then
be forwarded to the owner.

Request granularity: MESI tracks state and transfers data at line granularity in order to exploit
spatial locality and reduce the overheads involved with tracking sharer and writer permissions.
The disadvantages of this policy include increased false sharing (accesses to different addresses in
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the same line may cause unnecessary state/data transfer) and a read-for-ownership requirement
(writes that only update part of a cache line must also read the unmodified data before the line can
be considered valid).

3.2 GPU Coherence

Relative to latency-sensitive CPUs, GPU workloads are generally more sensitive to memory
throughput. To avoid the overheads of MESI, GPUs tend to use a simpler, more scalable coher-
ence protocol, which we refer to as GPU coherence [77]. GPU coherence is not as good as MESI
at exploiting cache reuse, but it can allow for much better performance when available locality is
low and throughput demand is high.

Stale data invalidation: GPU coherence uses self-invalidation to prevent software from read-
ing stale data. Often this is implemented via bulk cache invalidates that are triggered at synchro-
nization points (e.g., a kernel boundary, or an operation with acquire semantics). Since in a DRF
system conflicting accesses from different devices must be separated by synchronization, this is
sufficient to avoid stale reads, and it avoids the overheads of sharer tracking, sharer invalidation,
and false sharing. However, such a conservative strategy can also invalidate data that is not stale,
leading to poor performance if synchronization is frequent.

Update propagation: To ensure updated data is visible to other devices, GPU coherence uses
write-through caches for writes and atomics. This means, rather than requesting write permission,
dirty data is written back to the LLC (or performed at the LLC in the case of atomics) before it
is accessed by a remote device. Similar to bulk invalidates, non-synchronizing writes are often
written to the LLC lazily via a bulk flush of dirty cached data, and in a DRF system this only needs
to happen at synchronization points (kernel boundaries or operations with release semantics).
This strategy avoids the overheads of obtaining and tracking exclusive owner permissions, but it
also can lead to excessive data movement and reduced reuse in written data if dirty flushes are
frequent.

Request granularity: GPU coherence uses line granularity for reads and word (or byte) granu-
larity for writes and atomics. This allows it to exploit spatial locality for reads, avoid false sharing,
and avoid read-for-ownership overhead for writes. It also requires a bitmask in store requests to
indicate which words are being written, as well as in cache state (for write-combining caches) to
indicate which words are dirty (state overhead is minimal for most cache sizes).

3.3 DeNovo Coherence

The DeNovo coherence protocol combines elements of both MESI and GPU protocols to offer an
efficient hybrid protocol appropriate for CPUs [26] and GPUs [77].

Stale data invalidation: Like GPU coherence, DeNovo uses self-invalidation to prevent soft-
ware from reading stale data. This allows it to avoid false sharing, as well as sharer tracking and
invalidation overheads.

Update propagation: Like MESI, DeNovo obtains ownership for writes and atomics. Although
this incurs some storage and indirection overheads, it allows caches to exploit locality in written
data.

Request granularity: DeNovo uses word granularity for all request types, requiring bitmasks
in requests and caches. However, a load response will supply all data in the target cache line that
is owned by the satisfying device/cache level, which allows DeNovo to take advantage of spatial
locality in reads when it is convenient. Ownership is tracked at word granularity, and the ID of
the owning cache for each word is stored in the data line at the LLC. Word granularity ownership
avoids the transient states required by MESI because ownership requests do not need up-to-date
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Table 1. Coherence Request Type Classification and What They are Used for in

a Static DeNovo, GPU Coherence (GPUc), or MESI Protocol

Coherence

Dimension
Options

Request

Type
Used For

Stale Data

Invalidation

Self-inval.
ReqV

DeNovo (LD)

GPUc (LD)

ReqVo FCS(LD)

Writer-inval. ReqS MESI (LD)

Update

Propagation

Ownership
ReqO DeNovo (ST)

ReqO+data

MESI (ST,RMW)

DeNovo (RMW)

FCS(LD)

Write-

through

ReqWT[fwd]
GPUc (ST)

FCS(ST)

ReqWTo FCS(ST)

ReqWT[fwd]+data
GPUc (RMW)

FCS(RMW)

ReqWTo+data FCS (RMW)

Request

Granularity

Word all
DeNovo (all)

GPUc (ST,RMW)

Line all
MESI (all)

GPUc (LD)

Bolded text represents coherence flexibility added by fine-grain coherence specialization

(FCS).

data, but it also requires additional cache controller logic for handling per-word state transitions.
However, these vectorized operations incur relatively less complexity and performance overhead
than the transient states it avoids.

3.4 The Spandex Interface

Spandex was proposed as a way to flexibly interface devices with disparate coherence protocols
(such as those described above) by providing request type flexibility in stale data invalidation, up-
date propagation, and request granularity [9]. It allows for each device to use writer invalidation
or self invalidation, ownership for writes or write-through caches, and word or line granularity re-
quests based on the properties of the device, and it handles the data movement and state transitions
necessary when communicating with devices that prefer different coherence strategies.

4 FINE-GRAIN COHERENCE SPECIALIZATION

4.1 Mixing and Matching Coherence Request Types

While Spandex is an efficient interface for enabling coherence specialization at device granular-
ity, in order to further optimize data movement in emerging systems we propose specializing
coherence at the granularity of an individual request. Table 1 associates the coherence dimensions
discussed in Section 3 with the corresponding Spandex request types and highlights which re-
quests are used by MESI, GPU coherence, and DeNovo devices. As described in Section 3, DeNovo
and GPU coherence use self invalidation for reads (ReqV), MESI uses writer invalidation for reads
(ReqS), DeNovo and MESI obtain ownership for writes and atomics (ReqO[+data]), and GPU coher-
ence uses write-through for writes and atomics (ReqWT[+data]). The “+data” notation associated
with ReqO and ReqWT operations indicates that up-to-date data is needed as well (e.g., for read-
for-ownership or atomics that operate on the prior value). Table 1 also includes new request types
that are motivated by fine-grain coherence specialization, highlighted in bold. Section 4.2 describes
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these new request types. Section 4.3 demonstrates how these optimizations can be implemented
with minimal complexity overhead as long as a simple protocol baseline (e.g., Spandex) is selected.
Section 4.4 presents a method for selecting request types at the granularity of a single static in-
struction for individual requests in a parallel heterogeneous workload. Sections 6–7 demonstrate
how these optimizations can improve performance for a range of workloads and access patterns.

4.2 New Coherence Request Types

Two coherence optimizations that become feasible with FCS are forwarded update propagation
and destination owner prediction. We apply these optimizations on top of the baseline Spandex
protocol (new request types shown in bold in Table 1). In designing these coherence optimizations,
we require that new request types do not affect the consistency model (we assume DRF) because
using a different type of request type should only impact performance, never functionality.

4.2.1 Forwarded Update Propagation (ReqWTfwd[+data]). The first coherence optimization
adds a new type of update propagation method: forwarded write-through stores and RMWs
(ReqWTfwd, ReqWTfwd+data). When such a request arrives at the LLC for data that is owned
by a different core, it will be forwarded to the current owner and its update operation will be
performed without affecting coherence state at the LLC or the current owner. If the target data is
not remotely owned, this request is treated the same as a normal ReqWT/ReqWT+data request.

Write-through forwarding is useful when the consumer of a data update is expected to currently
own it and the writer is not expected to exhibit more reuse than the consumer. This optimization
motivates a new fine-grain specialized access pattern. By using ReqO+data for the consumer ac-
cess (load or RMW) in a producer-consumer pair and ReqWTfwd[+data] for the producer access
(store or RMW), the producer update will be forwarded to the owner and enable the performance-
critical consumer access to exploit reuse that was previously infeasible. Similarly, if the consumer
and producer are atomic operations (e.g., an acquire and a release), they can use ReqO+data and
ReqWTfwd+data, respectively. This is an insight that has been exploited in the past, often in the
context of update-based coherence. However, this optimization avoids the complex write atomicity
challenges that plague the design of such protocols [80]. This is because write-through forward-
ing only sends an update to a single exclusive owner core rather than all sharer cores, ensuring a
single point of modification which serializes subsequent requests.

4.2.2 Destination Owner Prediction (ReqVo, ReqWTo). The second optimization extends the
interface for self-invalidated reads (ReqV) and forwarded write-through and RMW requests
(ReqWTfwd[+data]) to allow a device to predict the current owner of target data and send a re-
quest directly to that core. This effectively adds three new request types to the coherence interface:
ReqVo, ReqWTo, and ReqWTo+data. Once issued, these requests are handled the same as their root
request types, except that they are sent directly to the expected owner core rather than the LLC
(determined by an implementation-specific prediction mechanism).1 This is a simple extension in
Spandex because, unlike read and write requests in most protocols, self-invalidated reads and for-
warded write-through requests do not affect the LLC’s coherence state. Further, in the same way
that a forwarded ReqV or ReqWTfwd request may fail and trigger a retry in Spandex, an incorrect
owner prediction will simply trigger a retry with a non-forwarded (ReqWT or ReqO+data) request
to the LLC. Therefore, mispredicting an owner may hurt performance, but it does not affect proto-
col correctness.

1A similar ownership prediction mechanism was considered as an extension to the DeNovo protocol [43], although the

details were not discussed and the mechanism was not evaluated.
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If the underlying hardware supports owner prediction and the current owner can be accurately
predicted, then using the owner prediction request types to directly forward read or write requests
avoids the latency, traffic, and energy overheads of looking up the owner at the LLC. Unlike write-
through forwarding, this optimization requires an effective prediction mechanism to be worth-
while. In this work we find that a simple hardware prediction mechanism is sufficient to improve
performance for some common workloads. Our evaluation assumes a small prediction table is
stored at each core which tracks the core ID of the most recent responder, indexed by target ad-
dress and request type. This table is queried for every ReqVo and ReqWTo request and updated
for every ReqVo and ReqWTo response. As programming languages become more expressive and
hardware-software co-design becomes more prevalent, software-provided ownership hints and
finely-tuned hardware prediction techniques may be used to improve upon this strategy.

4.2.3 Correctness Considerations. Although the described optimizations affect both the cache
coherence protocol and the memory request interface, the memory consistency model is un-
changed. In particular, previous work [9] has described how Spandex is directly compatible with
the data-race-free (DRF) class of models which give sequential consistency (SC) to DRF pro-
grams [6]. DRF is the foundation of most programming languages models (e.g., C, C++, and Java)
and hardware models (e.g., CPU models such as from Arm and RISC V and GPU models such as
from AMD and NVIDIA). For a Spandex ReqV request, the core issuing it must take responsibility
to invalidate any loaded data in its private cache hierarchy before the data becomes stale (due to
a remote write) and is accessed again – with the DRF class of models, this is typically achieved
by invalidating the cache at an acquire operation. Analogously, for a Spandex ReqWT request, the
new data must be written through to the next shared cache level before it is accessed by a remote
core that shares that cache – with the DRF class of models, this is typically achieved by a dirty flush
triggered on a release operation. If the above invalidation and flush operations are not supported
by a private cache, then that core cannot use ReqV or ReqWT access types. These requirements are
similar to modern GPU actions on acquires and releases. Our optimizations of adding forwarding
and destination prediction do not fundamentally change these requirements.

4.3 Complexity Analysis

Coherence extensions (e.g., Section 4) are uncommon in practice primarily because they are diffi-
cult to design and validate when added to conventional protocols like MESI. This is largely due to
the rapidly growing state space that occurs when adding new transitions and request types to an
already complex protocol [44].

By building upon the simple and flexible DeNovo protocol, Spandex is easier to extend and
optimize. DeNovo relies on word granularity state and a DRF memory model to avoid transient
blocking states [44]. Murϕ is a model checking tool that takes a coherence protocol description
and a set of system constraints and enumerates all reachable state vectors [31]. The state vector
includes the coherence state at a single controller, the state of data in each cache, and any pending
or in-flight coherence requests. Although the number of reachable state vectors in Murϕ is not a
perfect measure of protocol complexity, we use it because it captures the state space increase of
handling transient states in a multi-cache environment. The state space size reflects the number
of corner cases that must be tested when validating a coherence protocol change.

We explore the Spandex protocols state space in Murϕ and compare it against a MESI proto-
col [60] extended to implement a simplified version of the non-snoopable request types similar to
those of the ARM CHI [12] interface (discussed more in Section 2). We use a flat cache organi-
zation instead of a hierarchical one [15] because exhaustively exploring interactions between all
devices in a multi-level protocol requires a prohibitively large state space. Additionally, although
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Fig. 1. Comparing Spandex and ARM CHI’s state spaces as optimizations are added.

Spandex supports variable request granularity, we do not explicitly model this in Murϕ and instead
assume a fixed word granularity. Spandex is expected to handle each word in a multi-word request
individually based on its state. Therefore, we contend that adding support for coarse-grained or
multi-word request types does not add any fundamental complexity to the protocol and would
unfairly increase the state space in a Murϕ model. Each of these protocols is then further extended
with the write-through forwarding (ReqWTfwd) and owner prediction (ReqVo, ReqWTo) optimiza-
tions discussed in Section 4.2.

Figure 1 plots the number of states explored by Murϕ for each protocol. Interestingly, the
baseline Spandex protocol has slightly more states than the ARM CHI model because Spandex
offers more flexibility. Where CHI has two types of load and store requests (snoopable and
non-snoopable), Spandex allows the programmer to specify whether or not a store requires
up-to-date data as well, and thus requires considering two more L1-initiated request types that
may be pending at the L1 or LLC at any time. This added flexibility allows a device to avoid false
sharing and transient states that are difficult to avoid in fixed granularity protocols.

However, as optimizations are added, the complexity of the MESI-based CHI coherence in-
creases. Compared with Spandex, which applies optimizations to non-blocking request types
(ReqV, ReqWT), a MESI-based protocol must consider many corner case transient states for racy
accesses. Thus, Murϕ explores 1.1×more states in ARM CHI with write-through forwarding added
to both protocols, and 2.1× more states with owner prediction added. This additional complexity
stems from CHI being based on a line-granularity read-for-ownership protocol, and this prioriti-
zation is reflected in the state transitions. Every cache miss causes a transition to a transient state
that blocks subsequent requests to the same cache block until some satisfying set of messages is
received to transition back to a stable state. In contrast, Spandex builds upon DeNovo (which has
no transient states) and avoids blocking states as much as possible. Thus, Spandex avoids much
of the state space explosion that occurs when adding optimizations to a protocol with excessive
transient states.

4.4 Request Type Selection: Overview

In a system with fine-grain specialization, request type selection could be implemented in hard-
ware (typically at the granularity of a dynamic instruction), software (typically at the granularity
of a static instruction), or a combination of both. In this work we assume software determines
(and encodes) a request type for each static instruction at compile time. This requires an exten-
sion to the ISA. For example, if RISC-V is assumed as a baseline, each of the base load/store/RMW
instructions can be mapped to a default request type, and a custom opcode may be allocated for
each alternate type that may be used. Additional optimizations (forwarding, prediction) could be
specified via bits in the added instructions, and masked RISC-V vector instructions could be used
for word-granularity requests.2

2Other work has in fact implemented these request types in RISC-V (https://github.com/zzhu35/spandex-caches).
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We use (offline) analysis on an execution trace to develop (and implement) a heuristic algorithm
for determining appropriate request types for each static memory instruction.3 We focus on offline
trace-based request selection in this work because it gives us global visibility of cache locality and
reuse potential. This works well for regular workloads with static dataflow. For irregular work-
loads, it may be preferable to dynamically choose request types at runtime based on software
and/or hardware hints. We leave such methods for future work.

We start by generating a memory trace of a sequentially consistent (SC) dynamic execution
of the program.4 We apply Algorithms 1–3 to each individual word-granularity memory access
in the trace.5 For instructions that access multiple words, request selection treats each word as
a separate access, and these word accesses vote on a request type for the full dynamic access.
Similarly, dynamic accesses vote on the request type to use for their associated static memory
instruction.

Algorithm 1 chooses between using a ReqV, ReqS, or ReqO+data for load accesses based on
whether obtaining ownership is expected to improve global cache reuse, obtaining shared state
will improve global cache reuse, or neither will improve reuse (motivating valid state). Algorithm 2
chooses between using a ReqO or ReqWTfwd for store accesses based on whether obtaining owner-
ship is expected to increase global cache reuse. Algorithm 3 chooses ReqO+data or ReqWTfwd+data
for an atomic RMW access based on whether obtaining ownership is expected to increase global
cache reuse.

Although the selection process is designed to be as hardware-agnostic as possible, we assume
the following information is available to the selection mechanism:

• Cache capacity (for determining long-term reuse potential) and cache block size (for spatial
reuse potential).
• Whether or not the hardware supports the optimizations described in Section 4.2.
• Whether each device6 is more likely to be sensitive to memory latency or bandwidth (i.e.,

whether it is a CPU or GPU).

If the above information is not available at selection time, multiple versions may be generated and
a runtime can dynamically select from them when the information becomes available.

ALGORITHM 1: Load request type selection (uses

Algorithms 5–7)

1: if OwnershipBeneficial(X ) then

2: type = ReqO+data
3: else if SharedStateBeneficial(X ) then

4: type = ReqS
5: else if OwnerPredBeneficial(X ) then

6: type = ReqVo
7: else

8: type = ReqV

ALGORITHM 2: Store request type selection (uses

Algorithms 5 and 7)

1: if OwnershipBeneficial(X ) then

2: type = ReqO
3: else if OwnerPredBeneficial(X ) then

4: type = ReqWTo
5: else

6: type = ReqWTfwd

3This trace generation and analysis can be integrated into a compiler or profiler-guided optimization flow, but we leave

this for future work.
4This SC trace generation is exclusively used for request type selection; as mentioned in Section 4.2.3 the underlying

hardware is still free to use (and we evaluate) a relaxed memory model.
5This methodology can also use byte-level access granularity, but this was not necessary for the workloads studied.
6“Device” is used to refer to any computing element which has a single local private cache, including individual CPU and

GPU cores.
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ALGORITHM 3: RMW request type selection (uses

Algorithms 5 and 7)

if OwnershipBeneficial(X ) then

type = ReqO+data
else if OwnerPredBeneficial(X ) then

type = ReqWTo+data
else

type = ReqWTfwd+data

ALGORITHM 4: Request granularity selection for

access X of type type (uses function definitions in

Section 4.5)

if type == ReqV then

mask = IntraSynchLoadReuse(X )

else if type == ReqS then

mask = FullBlockMask(X )

else if type == ReqWT OR type == ReqWT+data
then

mask = RequestedWordsOnly(X )

else if type == ReqO OR type == ReqO+data then

mask = InterSynchStoreReuse(X )

if mask != RequestedWordsOnly(X ) then

type = ReqO+data

ALGORITHM 5: OwnershipBeneficial(X ) (uses function definitions in Section 4.5)

Phase = 5, X scor e = 0, Y = X , Y pr ev = X , pr evList = [X ]

while Y = NextConflict(Y ) do

if diffCores(Y pr ev , Y ) or SyncSep(Y pr ev , Y ) then

Phase = Phase − 1

if Phase < 0 or (sameCore(X , Y ) and not reusePossible(X , Y )) then break

if sameCore(Y , prevList) then Yval = 2 ∗ Criticality(Y )
else Yval = 0.5∗ Criticality(Y )

if sameCore(X , Y ) then X scor e = X scor e + Yval

else X scor e = X scor e − Yval ; pr evList .push (Y )
Y pr ev = Y

if X scor e > 0 then return true else return f alse

ALGORITHM 6: SharedStateBeneficial(X ) (uses

function definitions in Section 4.5)

if fromGPU(X ) then

return false

Y = X , Y pr ev = X

while Y = NextBlockConflict(Y ) do

if diffCores(Y , Y pr ev ) or syncSep(Y , Y pr ev )

then

if isLoad(Y ) and sameCore(X , Y ) then

return true

if isStore(Y ) and diffCores(X , Y ) then

return f alse

Y pr ev = Y

return f alse

ALGORITHM 7: OwnerPredBeneficial(X ) (uses

function definitions in Section 4.5)

X scor e = 0

Phase = 4, X pr ev = PrevConf(X )

Y = X

while Y = PrevAcc(Y ) do

Y pr ev = PrevConf(Y )

if sameCore(X , Y ) and sameType(X , Y ) then

Phase = Phase − 1

if Phase < 0 then

break

if sameCore(Y pr ev , X pr ev ) then

X scor e = X scor e + 1

else

X scor e = X scor e − 1

if X scor e > 0 then

return true

else

return f alse

4.5 Basic Request Selection Functions

Some function definitions are straightforward. isLoad(X ), isStore(X ), fromCPU(X ), and
fromGPU(X ) return true if X is a load, X is a store, X is issued from a CPU, or X is issued from
a GPU, respectively. sameCore(X , Y ) and diffCores(X , Y ) return true if X and Y are issued from
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the same core or different cores, respectively. sameInst(X , Y ) returns true if X and Y are dynamic
instances of the same static instruction.

ReusePossible(X , Y ) approximates whether the data accessed by X will still be in the cache
when accessY is executed, and it returns true only if the reuse distance (defined here as the number
of unique bytes accessed between X and Y from the issuing core in the dynamic trace) is less than
N , where N is set to be 75% of the cache capacity.

NextConflict(X ) returns the next access to the same address as X following X in the dynamic
trace. It is used to determine whether subsequent accesses to a given variable will be issued from
the same core (potentially enabling cache reuse) or from a different core (potentially interfering
with reuse). NextBlockConflict(X ) returns the next access to any address in the cache block
accessed by X following X in the trace.

PrevAcc(X ) returns the most recent access preceding X in the dynamic trace. PrevConf(X )
returns the most recent access to the same address as X preceding X in the trace.

SyncSep(X ,Y ) is true ifX andY are issued from the same core and there exists a synchronization
operation S between X and Y in program order such that either 1) X or Y is an atomic access, 2) X
is a load and S is an acquire operation (e.g., the start of a new kernel), or 3) X is a store and S is a
release operation (e.g., the completion of a kernel). Since synchronization accesses can invalidate
and flush the cache of Valid data and atomic accesses can only hit on owned state, this helps
determine whether obtaining Owned or Shared permission is required to exploit available reuse.

Criticality(X ) returns a value that represents the estimated performance criticality of X . We
use a very simple heuristic for our evaluation of CPU-GPU workloads. Loads and atomic RMW
accesses without release semantics7 tend to be more performance critical than stores and release
atomics, and CPU accesses tend to be more sensitive to access latency than GPU loads. Therefore,
we assign CPU loads and non-release atomic RMW accesses a criticality weight of 6 and GPU
loads and non-release atomic RMW accesses a criticality weight of 2. All other access types have
a criticality weight of 1.

IntraSynchLoadReuse(X ) returns a word mask based on whether requesting valid state for
additional words in a cache block is expected to improve reuse. For each word in the cache block
accessed by X , this function sets the corresponding mask bit if there is a subsequent load Y
to that word address which will not be invalidated before it is accessed (i.e., is not separated
by a synchronization action). Specifically, this requires that Y satisfies the following properties:
(1) sameCore(X , Y ), (2) reusePossible(X , Y ), and (3) !syncSep(X , Y ).

InterSynchStoreReuse(X ) returns a word mask based on whether requesting ownership for
additional words in a cache block is expected to improve reuse. For each word in the cache block
accessed by X , this function sets the corresponding mask bit if there is a subsequent store Y to
that word address which cannot be coalesced in a write combining buffer (i.e., is separated by a
synchronization action). Specifically, this requires that Y satisfies the properties: (1) sameCore(X ,
Y ), (2) reusePossible(X , Y ), and (3) syncSep(X , Y ).

4.6 Heuristic Request Selection Algorithms

OwnershipBeneficial(X ) is a heuristic that returns true if ownership for X is likely to improve
overall performance and is defined in Algorithm 5. At a high level, ownership is beneficial for an
access if the issuing core is the most common or most critical requestor in subsequent accesses
to the same variable. To approximate whether this is the case, each access Y following X and
to the same address as X in the SC execution is assigned a value based on whether X obtaining
ownership will help or hurt performance for Y , and improved performance is expected if the sum

7Synchronization accesses with release semeantics generally don’t use the return value and are therefore less critical.
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of these is greater than zero. An access Y is ignored if the previously considered access in the SC
memory trace was to the same core and the two are not sync-separated (this is because the lack of
intervening synchronization means that reuse is possible for this access regardless of ownership
state). Otherwise, Y is assigned a value based on whether the issuing core has accessed the data
recently (indicating reuse potential for Y ) and the criticality of Y (it is more important to exploit
reuse for reads and CPU accesses). If Y is issued from the same core as X , then ownership would
help and its value is added to the running sum; if Y is issued from a different core, then ownership
forX would hurt performance forY and its value is subtracted from the running sum. This process
ends once a fixed number of subsequent Y accesses are evaluated (5 in our algorithm).

SharedStateBeneficial(X ) is a heuristic that returns true if obtaining shared state for X would
improve performance based on expected reuse effects, and is defined in Algorithm 6. We assume
that obtaining shared state is beneficial if the issuing core is a CPU (it is more sensitive to cache
miss overheads than sharer tracking overheads) and it can lead to at least one future cache hit. This
is true if there is at least one load to the same cache block from the same core, it is sync-separated
with X (otherwise reuse is possible with or without shared state), and there is no intervening
remote store to that cache block (this would invalidate the shared state).

OwnerPredBeneficial(X ) is a heuristic that returns true if using owner prediction is likely to
be successful for the given prediction mechanism based on execution history, and is defined in
Algorithm 7. In the evaluated system, each device uses a simple prediction mechanism which will
succeed if accesses of the same type to the same address obtain data from the same location. To
approximate this, we work backwards from X , considering previous accesses to the same address,
from the same core, and of the same type (load, store, or RMW) as X . Similar to the ownership
benefit heuristic, a score is calculated to determine potential benefit. If the immediate predecessor
of an access Y in the SC execution is issued by a remote core and that core is the same core that
issues the immediate predecessor to X , then accurate prediction is more likely and that access’s
value is added to the score. If not, then the value is subtracted from the score. Again, magnitude
depends on proximity to X (more recent accesses affect the predictor more), and evaluation stops
after a fixed number of prior accesses (five in our algorithm) have been considered.

4.7 Incomplete Request Type Support

Some systems may not support all of the optimized request types described in the above algo-
rithms. If owner prediction is not supported, then OwnerPredBeneficial always returns false. If
write-through forwarding is not supported by a core, then producer-consumer forwarding is no
longer possible. Thus, Criticality(X ) should return the same value for loads and stores (consumers
should not be preferred for ownership), and selection should then proceed as described above.
After selection has completed, forwarded requests must be converted to supported request types.
Stores assigned ReqWTfwd should use ReqWT instead. Atomic RMW operations assigned ReqWT-
fwd+data should use ReqO+data if both the prior and subsequent accesses in the dynamic trace
use ownership, and ReqWT+data otherwise.8 If word granularity state is not supported by a core
(state is stored at cache line granularity), then that core can use full block mask for each request,
and any ReqO requests must be converted to ReqO+data requests.

5 TARGET WORKLOADS

Since current heterogeneous systems are not designed for fine-grain coherence specialization,
there are no standard benchmarks. Instead, we identify two sets of workloads which exhibit more

8Stores and RMWs differ because, unlike a ReqWT, a ReqWT+data can cause an ownership revoke and excessive data

transfer, so obtaining ownership may be preferred even if no reuse is possible.
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Fig. 2. Access patterns and coherence request types used by fine-grain coherence specialization for mi-

crobenchmarks. All accesses except those marked with * are to the same partition in each subsequent it-

eration of the algorithm.

request diversity than is common in conventional heterogeneous applications, which we refer to
as microbenchmarks and applications. We use the request selection algorithms from Section 4.4
for all benchmarks.

5.1 Microbenchmarks

We use four microbenchmarks to isolate the benefits of fine-grain coherence specialization. Each
microbenchmark has one or more phases in which CPU and/or GPU cores concurrently access
shared data, with cores synchronizing between each execution phase. These phases are repeatedly
executed.

5.1.1 FlexV/S. This microbenchmark illustrates the benefits of choosing between self-
invalidated reads (ReqV) and writer-invalidated reads (ReqS) at a per-access granularity. As shown
in Figure 2(a), CPU cores densely read array A in phase 1, and these accesses exhibit both sharing
(multiple CPUs read the same data) and sync-separated reuse (each core accesses the same parti-
tion in successive CPU phases). CPU cores also densely read array B in phase 1 with no sharing
and no reuse (each core accesses different partitions in successive CPU phases). In phase 2, GPU
cores sparsely write array A with no reuse, and densely read and write array B with high reuse.
This workload is representative of any workload which must read from two data structures: one
which exhibits inter-phase reuse and sharing and one which exhibits no reuse. For example, a
weight matrix in a DNN layer will exhibit reuse and sharing because the same weight values will
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be accessed by all cores processing the layer in every iteration, while the feature inputs will read
different data in each iteration (e.g., if a queue or double-buffering is used for inputs).

CPU reads to array A exhibit reuse across phases and are unlikely to be separated by a remote
write, but multiple CPUs access the same data concurrently. Thus, shared state is beneficial and
ownership is not beneficial, resulting in the use of ReqS. CPU reads to array B exhibit no reuse, but
the remote core is likely to be predicted based on the last responder (the partition of B accessed by
a CPU core in a given phase will have been produced by the same GPU core). Therefore, ReqVo is
used for these accesses. GPU stores to A exhibit low inter-phase reuse, so ReqWTfwd is used. GPU
stores to B exhibit high inter-phase reuse and are not accessed more frequently by any remote core,
so ownership is beneficial and ReqO+data is used for these accesses.

5.1.2 FlexO/WT. This microbenchmark illustrates the benefits of choosing between ownership-
based data stores (ReqO) and write-through data stores (ReqWT) at a per-access granularity. As
illustrated in Figure 2(b), CPU cores densely read and write the same partition of array A and
sparsely write array B in phase 1. Then, GPU cores densely read and write array B and sparsely
write array A in phase 2. The dense CPU and GPU accesses are to the same partition in successive
iterations, while the sparse CPU and GPU accesses are to different partitions in successive itera-
tions. This represents workloads which update different data structures with different reuse levels
in a non-racy manner (e.g., machine learning models with both sparse and dense layers like the
Deep Learning Recommendation Model [65]).

The dense CPU and GPU accesses exhibit sync-separated reuse, and ownership is beneficial
because each element is unlikely to be accessed by a remote core between the reuse accesses.
Therefore, these accesses request ownership (ReqO+data for reads, ReqO for writes). The sparse
CPU and GPU writes exhibit low reuse potential, and owner prediction is feasible because the
same remote core will be the most recent owner of all data accessed by a core in a given phase.
Therefore, ReqWTo is used for these accesses.

5.1.3 FlexOa/WTa. This microbenchmark illustrates the benefits of choosing between
ownership-based atomic accesses (ReqO+data) and write-through atomic accesses (ReqWT+data)
at a per-access granularity. As illustrated in Figure 2(c), a single phase and single core type is suf-
ficient for this purpose since atomics enable racy accesses and communication.9 In each iteration,
each core densely reads and writes its local partition and sparsely reads and writes a remote par-
tition. This is representative of any workload which distributes a data structure across multiple
cores and allows each core to sparsely access remote partitions concurrently with remote cores
(e.g., racy updates to a hybrid dense+sparse machine learning model, or push-based graph work-
loads with densely connected components).

CPU accesses to A’s local partition exhibit high sync-separated reuse and intervening remote
accesses are rare, so ownership is beneficial and these RMWs use ReqO+data requests. Sparse
accesses to remote partitions exhibit low sync-separated reuse, and the remote owner can be pre-
dicted within a phase. Therefore, these accesses use ReqWTo+data.

5.1.4 Prod-Cons. This microbenchmark illustrates the benefits of write-through forwarding
and owner prediction. In each iteration, CPUs read a partition of array A and write a partition
of array B in phase 1. GPUs then read a partition of array B and write a partition of array A in
phase 2. This is representative of streaming workloads, data transform kernels, or applications
that transfer input and output data to and from a specialized accelerator (e.g., the EP algorithm
discussed in Section 5.2.4).

9GPU-only is studied, but a CPU-only version would exhibit the same request types and tradeoffs.
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Fig. 3. Comparison of compute to device mappings for data parallel FCNN (a) and pipelined FCNN (b), LeNet

(c), and LSTM (d) neural networks.

Each core reads the same partition and writes the same partition in each iteration, so there is
sync-separated reuse for all accesses. When write-through forwarding is supported, the criticality
and reuse of consumer reads will outweigh the locality benefits for producer writes such that
ReqO+data will be used for reads, and ReqWTo will be used for writes (owner prediction is feasible
due to the regular access pattern). If write-through forwarding is not supported, then reads are not
rated more highly in the evaluation of ownership benefit, so ReqVo is used for reads and ReqO is
used for writes.

5.2 Applications

In addition to the above microbenchmarks, we evaluate four full applications which can benefit
from fine-grain coherence specialization: a fully connected neural network (FCNN), a convo-
lutional neural network (LeNet), a recurrent neural network (LSTM), and an evolutionary pro-

gramming algorithm (EP). FCNN, LeNet, and LSTM are GPU-only neural network workloads,
all of which assume a batch size of 1.10 EP is a CPU+GPU application which demonstrates how
fine-grain coherence specialization can benefit applications that offload only some tasks to a spe-
cialized accelerator (the GPU).

5.2.1 Fully Connected Neural Network (FCNN). Fully connected networks have proven useful
for processing inputs that are spatially and temporally unrelated such as medical [75], real es-
tate [27], and recommendations [28].

We compare data parallel and pipelined implementations of a neural network consisting of five
uniform, fully connected layers. Figures 3(a) and 3(b) illustrate how each type of parallelism maps
layers to devices. In a data parallel implementation, each device independently processes all layers
for a distinct subset of the input features, avoiding the need for inter-device communication but pre-
venting reuse for weight data. In a pipelined implementation, each device executes a single stage of
the computation for every input. Although a pipelined implementation requires inter-device com-
munication along producer-consumer edges, it is able to exploit reuse in weight accesses because
each device only needs to load a single weight matrix for all inputs.

Both versions use five GPU CUs to process 60 independent input features. In each iteration,
each layer multiplies an input vector with a weight matrix and performs a ReLU operation.
In the pipelined implementation, inputs and outputs are double-buffered to enable concurrent
pipelined execution, and atomics are used to synchronize between adjacent layers. Specialized
coherence is enabled only for the pipelined implementation (since data parallel does not benefit

10Larger batch sizes can improve cache reuse, but this comes at the cost of end-to-end latency, which is often unacceptable

for latency sensitive inference workloads running on resource-constrained systems [32, 61].
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from specialization). Ownership is beneficial for the weight matrix and input buffer loads (which
use ReqO+data), while output buffers stores use write-through forwarding and owner prediction
(ReqWTo). Atomic release accesses use write-through forwarding (ReqWTo+data), while acquire
accesses use owned atomics (ReqO+data). This constitutes producer-consumer forwarding for the
synchronizing atomics.

5.2.2 Convolutional Neural Network (LeNet). To classify spatially related data such as images,
some of the most common neural networks in deep learning are primarily composed of convolu-
tional layers with a few fully connected layers at the end. One such example is LeNet, which has
been used to determine the numerical values of handwritten digits [52].

LeNet consists of two convolutional layers, two maxpool layers, and two fully connected lay-
ers [51]. Again, we evaluate both a data parallel version and a pipelined parallel version. Both
pipelined and data parallel versions use 12 GPU CUs to process 80 independent input features.
In the data parallel implementation, each CU independently processes all of LeNet’s layers for
a unique subset of the inputs, similar to data parallel FCNN. In the pipelined version, each CU
processes a subset of the network for all inputs in a pipelined manner. Figure 3(c) illustrates the
mapping of computation to devices for the pipelined implementation. However, the variable work
required at each layer in LeNet complicates the pipelined implementation; load imbalance between
nodes in the pipeline can lead to performance bottlenecks, since inputs can only be processed as
fast as the slowest layer. To improve load balance, long-running layers have been split among
multiple cores where possible. Like FCNN, loads to the weight matrices benefit from ownership
and use ReqO+data when fine-grain coherence specialization is enabled, and atomic accesses use
producer-consumer forwarding. However, feature data reads do not benefit from ownership, since
the feature data produced at each layer is concurrently read by multiple consumers. Therefore,
producer-consumer forwarding is not possible for LeNet features.

5.2.3 Recurrent Neural Network (LSTM). Recurrent neural networks can be used to classify se-
quentially associated data series such as audio [10], video [92], DNA [69], ECG data [23], and
aircraft sensor data [64]. We evaluate a long short-term memory (LSTM) RNN model proposed
for network anomaly detection [71]. The model uses two stacked LSTM layers, a single dense layer
activation, and a single fully connected softmax output layer, with a ten-token input sequence to
predict the subsequent (eleventh) token. This dataflow is illustrated in Figure 3(d).

Since the inputs have serial dependencies, the only way to parallelize a single input sequence
is with pipelined parallelism. Each LSTM layer is composed of 50 hidden cells, 50 memory cells,
a 50-entry input vector, a 50-entry output vector, and four 50 × 100 entry weight matrices. The
layers are distributed among CUs; each LSTM layer is assigned to a CU, while the dense layer
and softmax layer are fused and assigned to one CU. As with pipelined FCNN and LeNet, double-
buffering and atomic accesses are used to synchronize between adjacent layers. With fine-grain
coherence specialization, loads to the weight matrices and input buffers use ReqO+data, stores to
output buffers use ReqWTo. Synchronizing atomic accesses use producer-consumer forwarding.

5.2.4 Evolutionary Programming (EP). Evolutionary Programming mimics the natural selection
process in a simulated population to minimize a cost function. It consists of repeated execution of
five consecutive stages: reproduction, evaluation, selection, crossover, and mutation [83]. We use
parameters used by Capraro et al. for radar waveform selection [21] where population is 330 and
mutation and crossover rates are set to 0.5. For the mutation stage, we perform a centre inverse

mutation (CIM) where each chromosome is divided into two sections and all genes in each section
are copied and then inversely placed in the same section of a child [4]. For task-partitioning, we use
HeteroMark’s implementation which offloads the evaluation and mutation stages to the GPU, and
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Table 2. Simulated Heterogeneous System Parameters

CPU/GPU Parameters

Frequency 2 GHz/700 MHz

Cores 16/16

Memory Hierarchy Parameters

L1 Size (32-way assoc.) 128 KB

L2 Size (16 banks, 32-way assoc.) 8MB

L1 MSHRs, Write Buffer, and Store Buffer Sizes 128 entries each

L1 hit latency in cycles 1

Remote L1 hit latency in cycles 135−183

L2 hit latency in cycles 129−161

Memory latency in cycles 297−361

executes the remaining stages on the CPU [83]. With fine-grain coherence specialization, we find
that much of the data transferred between CPU and GPU experiences high reuse on both devices.
Since CPU reuse is weighted higher than GPU reuse in the selection algorithms (Section 4.4), our
specialized coherence implementation obtains ownership for CPU reads (ReqO+data) and forwards
GPU writes to the CPU to improve CPU reuse (ReqWTo), at the cost of GPU reuse.

6 METHODOLOGY

6.1 Coherence Configurations

We compare seven different configurations of device cache architectures. The first four configura-
tions use a static request type selection at each device cache corresponding to the MESI, DeNovo,
or GPU coherence protocols. All L1 caches interface directly with the Spandex LLC.

SMG: Static - MESI CPU caches, GPU coh. GPU caches
SMD: Static - MESI CPU caches, DeNovo GPU caches
SDG: Static - DeNovo CPU caches, GPU coh. GPU caches
SDD: Static - DeNovo CPU caches, DeNovo GPU caches

The static protocol configurations are chosen based on the suitability of each protocol for CPU
and GPU memory demands. The final three configurations use fine-grain coherence specialization
with neither write-through forwarding and owner prediction (FCS), with only write forwarding
(FCS+fwd), and both (FCS+pred). We choose the memory request type according to Section 4.4,
and owner prediction is based on a per-core prediction table which stores the last responder’s ID
for each Spandex request type.

6.2 Simulation Environment and Parameters

We execute the above workloads and configurations using an integrated CPU-GPU architecture
simulator. GPGPU-Sim [14] models the GPU CUs (we use an architecture similar to NVIDIA
GTX480). Simics [56] models the CPU cores, Wisconsin GEMS [60] models the memory tim-
ing, and Garnet [7] models the network. There are 16 CPU cores and 16 GPU CUs, connected
through a 4x4 mesh (a CPU core and GPU CU at each node). Each CPU core and GPU CU has its
own L1 cache, and these caches interface directly with a Spandex LLC with a latency consistent
with GPU L2s [1, 42]. The modeled system is relatively small compared to the state of the art, but
it is the latest GPGPU-Sim model we are aware of that has been validated. It can be considered
representative of smaller embedded or edge GPU devices, and we believe it is sufficient for demon-
strating the potential of FCS. With larger high performance GPUs, the benefits can be expected to
improve further, since larger GPUs will be even more limited by memory efficiency. Table 2 lists
the detailed simulation parameters.
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Fig. 4. Microbenchmark’s execution time and network traffic.

7 EVALUATION

7.1 Microbenchmark Results

Figure 4 shows the execution time and network traffic for the microbenchmarks. Sbest represents
the best performing (lowest execution time) static coherence configurations for each microbench-
mark averaged over all microbenchmarks.

FlexV/S: Obtaining Shared state for the read accesses to array A improves CPU cache hit rates,
reducing latency and traffic for these CPU read accesses. Obtaining Shared state for the CPU read
accesses to array B with no inter-kernel reuse is wasteful and can require revoking ownership
from a remote GPU core, preventing reuse there.

FCS exploits inter-phase CPU reuse for array A while also avoiding wasteful Sharer overheads
(e.g., revoking ownership from the GPU) for array B. This improved reuse reduces network traffic
by 60% relative to the fastest static configuration (SMG), although execution time is only reduced
by 5% due to the GPU’s ability to tolerate memory latency. FlexV/S does not benefit from write-
through forwarding because written data is never remotely owned, but owner prediction is helpful
for CPU reads to A, reducing execution time by a further 8%.

FlexO/WT: FCS reduces execution time and network traffic by 7% each relative to the best
static configuration (SDD) by using ReqWT for sparse writes. This revokes ownership from dense
owners, but subsequent dense accesses incur only 2-hop misses (versus 3-hops if the sparse access
obtained ownership). With FCS+fwd, execution time and network traffic are reduced a further 13%
and 38%, respectively, because sparse writes do not revoke ownership from dense owners. Own-
ership prediction avoids LLC lookups for forwarded stores (ReqWTo), reducing network traffic a
further 19%.

FlexOa/WTa: As with FlexO/WT, FCS reduces execution time by 14% and network traffic by
3% relative to the fastest static configuration (SDD) because the write-through sparse accesses
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Fig. 5. Execution time and network traffic for applications.

reduce indirection for future dense accesses. When write-through forwarding is enabled, sparse
atomics are forwarded to the core that owns the target partition, improving cache hit rates for
dense accesses and reducing execution time and network traffic by a further 18% and 72%, respec-
tively. Owner prediction further reduces indirection for sparse accesses, reducing execution time
and network traffic by a further 22% and 50%, respectively.

Prod-Cons: FCS is unable to improve performance beyond SDG for Prod-Cons, but with for-
warding enabled (FCS+fwd) it can avoid revoking ownership from latency-sensitive consumers.
By forwarding writes to the consumer, FCS+fwd moves the overhead of data movement from the
reader to the writer and reduces execution time by 58% relative to the fastest static configura-
tion (SDG). However, since forwarded write-through data must travel two hops rather than one,
FCS+fwd increases network traffic by 35% relative to SDD. This overhead can be avoided by owner
prediction, and FCS+pred reduces network traffic by 19% relative to SDD.

7.2 Application Results

Figure 5 compares the execution time and network traffic for FCNN, LeNet, LSTM, and EP. FCNN,
LeNet, and LSTM are executed on the GPU, and the choice of CPU coherence strategy has no
impact on results. We therefore consider only the SDG and SDD static coherence configurations.
For FCNN and LeNet, we compare data-parallel and pipeline-parallel implementations (FCS is only
evaluated with the pipelined versions because data parallel implementations don’t benefit from
fine-grain coherence specialization). EP runs on both CPU and GPU cores, so all static coherence
configurations are compared (similar to the microbenchmarks).

7.2.1 FCNN. The data parallel configurations exploit reuse in feature vectors and require no
synchronization, but they are unable to exploit reuse in weight data since this will be evicted
before it is reused. Static coherence configurations that use pipelining increase execution time by
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12% relative to the data parallel implementations because they are unable to exploit reuse in feature
values or weight values.

When fine-grain coherence specialization is enabled (FCS, FCS+fwd, FCS+pred), pipelined
FCNN obtains ownership for reads to layer-specific weight values and is able to exploit cache
reuse in this data, reducing execution time by 54% and network traffic by 96% relative to data par-
allel SDG. Write-through Forwarding (FCS+fwd) additionally reduces execution time by 7% and
network traffic by 14% relative to FCS by enabling producers of feature data and synchronization
variables to forward them to the consumer. Owner Prediction (FCS+pred) further reduces network
traffic by 53% relative to FCS+fwd by avoiding LLC lookups for the minimal remaining inter-device
communication required in FCS+fwd (as with FlexO/WT and Prod-Cons, execution time is mini-
mally affected because GPU stores can tolerate latency).

7.2.2 LeNet. As with FCNN, the weight data for the convolutional and fully connected lay-
ers will be evicted before they can be reused in a data parallel LeNet implementation. LeNet’s
pipelined implementation faces one significant challenge that did not exist for FCNN: pipeline
imbalance. This combined with an inability to reuse weight data across synchronization causes
pipelined SDG and SDD to increase execution time by over 3x relative to data parallel SDG. By
exploiting reuse for weight matrix reads, FCS eliminates much of the execution time overhead of
the static pipelined implementations and reduces network traffic by 82% relative to data parallel.
Relative to the fastest data parallel implementation, however, pipelined FCS+pred increases execu-
tion time by 46% due to pipeline imbalance, which FCS is unable to address. Even so, a pipelined
FCS implementation reduces the end-to-end latency of a single iteration by 41% relative data par-
allel (which uses only a single device to execute each input), which may be important for latency-
sensitive workloads.

7.2.3 LSTM. Compared to FCNN, weight matrices make up an even larger proportion of total
data accesses in an LSTM layer. By obtaining ownership for this data, FCS almost entirely elimi-
nates cache misses for LSTM, reducing network traffic by 99% and execution time by 36% relative
to SDD. Write-through forwarding (FCS+fwd) additionally reduces the network traffic by 13% rel-
ative to FCS, and owner prediction (FCS+pred) further reduces the network traffic by 30% relative
to FCS+fwd by avoiding LLC lookups for the minimal remaining inter-device communication re-
quired in FCS+fwd.

7.2.4 EP. In EP, during GPU phases, static coherence configurations which use DeNovo for
GPU (SMD, SDD) exploit inter-kernel reuse of written data and exhibit lower GPU execution time
than GPU coherence for GPU (SMG, SDG). However, this also results in reduced CPU performance
for SMD and SDD, as the latency sensitive CPU must either read data or revoke ownership from
a remote L1. With FCS, the CPU gains ownership of the heavily accessed data, prioritizing la-
tency sensitive CPU accesses, while the GPU uses write-through stores. Without forwarding, FCS
sees no benefit or improved reuse, since GPU writes must revoke the CPU’s ownership. However,
FCS+fwd forwards GPU writes to the CPU owner and reuse increases for latency-sensitive CPU
accesses, resulting in 17% lower execution time versus the fastest static configuration, albeit at
the cost of a 207% increase in network traffic due to the additional GPU misses and the indirec-
tion incurred by write-through forwarding. Using ownership prediction reduces this overhead,
enabling a 20% reduction in execution time with a 130% increase in traffic relative to the fastest
static configuration.

8 CONCLUSION

As hardware adapts to address the growing memory bottleneck, efficient coherent data move-
ment is increasingly important. Existing heterogeneous hardware and software miss out on many
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opportunities for communication optimization because they are designed assuming static coher-
ence protocols which are often complex and difficult to extend.

Fine-grain coherence specialization enables more flexible and efficient hardware-software co-
design, allowing future heterogeneous software to leverage data movement optimizations in hard-
ware. We present a methodology that empowers heterogeneous devices to mix and match special-
ized coherence request types based on individual access properties, including two new coherence
specializations for data forwarding. We show that the new specializations can be implemented
without adding significant complexity to the underlying protocol as long as a simple and flexible
protocol like Spandex is chosen as a baseline. We then demonstrate the performance gains these
optimizations can deliver for a set of microbenchmarks and applications. By giving software more
control over data movement, we greatly improve cache efficiency, reducing execution time by up
to 61% and network traffic by up to 99%. Looking forward, this focus on flexible coherent data
movement can improve cache efficiency, motivate new cross-stack coherence optimizations, and
enable more efficient programming patterns for emerging heterogeneous workloads.
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