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Abstract

Understanding the dynamics of network evolution rests in part on the representation chosen

to characterize the evolutionary process. We offer a simple, three-parameter representation

based on subgraphs that capture three important properties of social networks: leadership,

team alignment or bonding among members, and diversity of expertise.  When plotted on

this representation, the evolution of a typical small group such as start-ups or street gangs

has a spiral trajectory, moving toward a tentative fixed point as membership increases to

two dozen or so. We show that a simple probabilistic model for recruitment and bonding can

not explain these observations, and suggest that strategic moves among group members may

come into play.

1.0 Introduction

Small groups are defined here as a collection of less than 100

individuals or agents. They are typically formed by one or two individuals,

who then enlist other colleagues for support and expertise.  Examples are

start-ups, non-profit initiatives, small businesses, street gangs and terrorist

cells. The most obvious goal of the leadership is to foster a shared vision by

expanding the group’s capabilities through recruitment, at the same time

increasing alignments between members to improve group effectiveness. At

some juncture, the capabilities of the group may also be broadened through

diversification (Page, 2007). We propose three parameters that capture these

aspects of group evolution, and provide a useful representation for studying

differences between small groups. Using this representation, the observed

evolution of a typical small group is shown to have a spiral trajectory. This

result is not consistent with recruitment and alignments (bonding) among

members occurring with fixed probabilities. Rather, we suggest that small

group formation likely involves more complex processes, such as members

engaged in strategies to improve their influence in the group.

2.0 The Representation

Let Gn be an unlabeled graph with n vertices. Each vertex vi of Gn

corresponds to a group member (i) and each undirected edge e(i,j) indicates
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a symmetrical relationship between two group members. Each individual

will have at least one relation to another. We assume that Gn will be a

connected graph. This characterization is very simple, and can easily be

augmented using directed edges, for example. If Gn is not stationary, but is

evolving, we so indicate by Gn

+
 .

Unfortunately, even with our simple characterization, the number of

different graphical forms explodes rapidly as the number of vertices

increases. A group of only 8 individuals has over 10,000 different graphs for

reciprocal relationships; for 12 individuals, there are over 100 billion; for 16

members the number explodes to O[1023]. Hence pictorial representations

are implausible and must be replaced by focusing on a few key parameters

that capture regularities underlying classes of graphical forms. Over the past

decade or so, popular characterizations have included degree distributions,

edge probabilities, characteristic path lengths, clique number, diameter,

chromatic numbers, spectral coefficients – there are dozens choices. (Read

& Wilson, 1998; Newman, 2003.)  In the area of social networks, such

choices have led to distinctions such as random graphs (Bollabas,2001),

scale-free or multiscale graphs (Barabasi, 2002; Kasturirangan, 1999),  small

world graphs (Watts & Strogatz, 1998) and peer-to-peer graphs (Bourassa &

Holt, 2003.) Almost all of these parameterizations are applied to characterize

large scale graphs (>>1000 nodes) and are of limited value for small group

studies (< 100 nodes.) One notable exception are motifs that appear as

induced subgraphs in large networks (Milo et al, 2002; Wolfram, 2002) or

the studies of subgraph cascades (Leskovec et al, 2007; Watts, 2002). Our

proposal follows these leads, identifying three types of subgraphs that

capture important characteristics of small group formation and development.

The main proposal is that the evolution of a group Gn

+
 -> G

+
n+1 entails

the interplay of leadership, team building, and heterogeneity in expertise.

For example, the members of a football team include those proficient in

running and catching, others are effective blockers, there is the quarterback,

the kicker, etc. All of these aptitudes must be highly coordinated, with not

many, but only one leader calling the plays. Similarly, a start-up company

needs not only the initial visionary leadership, but usually venture capital

financing, special expertise for product development, etc. Again, the

successful start-up functions smoothly as a highly motivated team. There is

leadership, close alignments among team members, and a range of different

talents. Each of these three factors can be associated with different types of
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subgraphs, which in turn can be used to parameterize the group structure.

Accordingly, we define the following three parameters of a group:

2.1 Leadership L: This parameter is based on vertex degree, di, with the

vertice(s) having the highest degree taken as the leader(s). Consider the

“star” subgraph Sk , with one dominant vertex and k-1 vertices all of degree

one. If Gn = Sk, the leadership index for Sk is defined to be “1”.  Following

Freeman (1977), the leadership index for any graph is then given by:

             L = (d
max

! d
ii=1

n

" ) / ((n ! 2)(n !1)) 1.

where d
i
 is the degree of vertex vi .  This relation sums the difference in the

degree of a vertex with respect to the maximum degree in Gn, and normalizes

this sum by the maximum possible sum, ((n !1
i=1

n

" ) !1) = (n ! 2)(n !1)  which

is derived from the case when Gn = Sn.

Fig 1: Subgraphs that capture the key properties of groups and their evolution. Left: Graphs

with maximal or near-maximal values of the L, B, D parameters. Right: Graphs revised with

an edge addition (green) or deletion (red), with new L, B, D values.

An obvious weakness of the leadership index is that for graphs with

directed edges, such as hierarchical trees Tn, the dominant vertex may not be

the vertex with the maximum degree. Such situations are common in

military or business organizations. In these cases, the leadership measure

should be revised to count the total in-degree for each vertex.
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2.2 Bonding B: As team building increases, group members find similar

interests. These alignments are new bonds, which are represented as new

edges between vertices in Gn

+
. With increasing connectivity, if vertex vk is

joined to both vertices vi and vj, then in social networks the likelihood

increases that vi and vj are also joined. (In other words, if the friend of your

friend is also your friend, then you belong to a tightly bonded clique.) A

popular measure for this clustering of vertices about a vertex is the number

of triangles about that vertex, normalized by the maximum achievable by a

graph with the same number of (directed) paths of length 2:

B = 6 * (# triangles) / (# paths _ length _ two) 2.

with the factor “6” needed to correct for the number of (directed) paths

associated with any triangle (Newman, 2003.) Note that if Gn is the fully

connected graph Kn, then bonding B is maximal with value “1”, whereas for

the “star” graph Sn or for any tree Tn, the bonding will be zero.  Hence when

L is one, B will be zero, and vice versa. This interdependence among these

two parameters, and also the third parameter D described below, suggests

that a useful dimensionality reduction in the representation is possible, as

will be seen shortly.

Other definitions of bonding could be used. For example, the number

of triangles could be calculated (and normalized) locally about each vertex

and summed over all vertices. (This is the clustering coefficient used by

Watts & Strogatz, 1998) A table by Newman (2003) compares the values of

three versions of “clustering coefficients”, showing high correlations over

most of their ranges. For our study, the definition [2] typically used in

describing social networks appears to be the most sensitive to the different

types of observed small group evolution effects.

2.3 Diversity (or heterogeneity) D: The “bow-tie” illustrates our diversity

measure (Fig 1.) The minimum unit is the dipole K2 consisting of two

connected members forming a partnership or “mini-team”.  Diversity

emerges when two such dipoles are separated by a minimum of two edge

steps, which we call independent dipoles. Diversity increases with an

increasing number of such pairs of independent dipoles. Note that we have

excluded counts based on pairs of individual vertices separated by two or

more edge steps, as occurs in the star Sn graph above. These vertices of

degree one will be considered as “new recruits” – a category discussed later.
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To obtain the diversity measure, the number of pairs of independent dipoles

in Gn with n ! 4  are normalized using the count of the number of induced

squares in the complete bipartite graph KF[n/2], C[n/2] as follows:

 D =Sqrt[(# independent _ dipoles) / (
1

2
*
n

2
(
n

2
!1))

2
]               3.

It is clear that each pair of independent dipoles in a graph corresponds

precisely to an induced square (i.e. a closed path of length 4 with no

diagonals) in the complement of the graph. This number is maximized,

overall graphs on n vertices when n is even by the complete bipartite graph

(Schelp & Thomason, 1998). (Note that when n is odd, the Floor(F) and

Ceiling(C) of n/2 apply.) The square root in the definition is used to bring

the measure into a more appropriate range for comparison between graphs

that are of the density we will be considering, but does not change the

maximum possible value of D, namely “1”.  (In the results to follow, we

computed the denominator in expression [3] rounded to the nearest even

integer. This procedure was a convenient approximation for cases when n

was odd.)

Again, like the L and B parameterizations, other measures related to

our diversity measure have been proposed. For example, Caldarelli et al

(2004) also count 4-cycles, but in the graph Gn, not its complement. Like our

diversity measure, the intent is to unveil hidden, higher-order properties of

complex networks. But the motivations underlying the two measures are

quite different.

2.4 The L, B, D  simplex: The interdependence of the L, B, D

parameterizations have already been noted (see also Fig 1.)  Without

excessive loss of information, we can project the L, B, D values onto their

<1,1,1> plane as follows:

l = L/(L + B + D)

b = B/(L + B + D)             4.

d = D/(L + B + D).

Figure 2 illustrates. Here the simplex has been divided into nine parts, with

the interior triangle roughly corresponding to some common types of graphs.

The interior triangles near each vertex correspond to regions of dominance
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of one parameter. For example, if l >> b, d, then the region abuts the l = 1

point and includes variations on star-like subgraphs Sn. Similarly, near b = 1,

we find the complete graphs Kn, and near d = 1 are rings Rn (i.e. graph

cycles) or “umbels” Un. The latter are extreme cases of sparse graphs where

clusters of small complete graphs are linked through one central vertex.

Fig 2: Regions of some familiar graphs are indicated on the projection of L, B, D onto the

1, 1, 1 plane. The blue circle indicates the terminal equilibrium location of evolving small

groups.

Also shown on the plot by a blue circle is the approximate equilibrium location

for small groups. Note that this location is on the leadership side of the d, l

bisector through b = 1, roughly on the partition l > b,d. and well to the right of

the region of small Erdös-Rényi random graphs. (The random graph area

illustrated is for 20 vertex graphs of varying probabilities; as n increases, the

region moves toward l = 0.)

3.0 Probabilistic Evolution

An obvious question is whether the evolution of small groups can be

modeled probabilistically. The l, b, d simplex provides a convenient

representation for testing this possibility. We consider one very simple

probabilistic model defined as follows:

Let the connected graph G
+

n with n vertices represent the group

structure, with vertex v1 of maximal degree taken as the leader.  Also let pR
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be a fixed probability for recruitment and pB > 0 the fixed probability for

choosing new edges in G
+

n. For each iteration in the evolutionary growth

add only one new vertex vn+1, with vn+1 linked to only one old vertex, chosen

uniformly with probability pR from the n nodes. (Note that for small pR

values and small n, several iterations may be required to add a node.)

During this same iteration, also sample the available free edges in G
+

n+1 and

with probability 0 < pB < 1 add new edges to G
+

n+1.  Finally, if any vertex vk

has a degree larger than that of v1, then add a new edge {v1, vj} where vj is

the newest vertex of minimal degree (typically the vertex vn+1.)

Although other models for group evolution might be proposed, our

choice above is meant to be a fair representation of actual practice. With the

exception of member drop-outs (see discussion  to follow), variations were

found to make little difference in the general form of the evolutionary

trajectories.

Fig. 3: Three evolutionary trajectories (blue) show different probabilities of bonding

(30% largest circles; 10% middle circles; 3% smallest circles) and constant member

recruitment of 30%.   The green locus shows the l, b, d values for 20 vertex Erdös-Rényi

random graphs, with edge probabilities as indicated.

3.1 Simple Example

Fig. 3 illustrates the behavior. For each iteration G
+

n -> G
+

n+1 let pB =

10% probability of two unlinked members (vertices) bonding, and pR = 30%

be the probability of adding one new member (vertex) for each iteration. The

seed for our example is the star graph S3  with v1 having degree 2 – the most
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common seed observed for group formation.  A sequence of iterations sampled

for n= 4, 5, 6, 8,10, 20, 40,100 is shown by the middle blue curve. Note that

this middle curve, as well as the other two curves, one for pB=0.03, the other

for pB=0.3, all eventually head to b = 1. Other simulations (such as seeds along

the b = 0 border) show that for fixed probabilities pR and pB > 0, all

evolutionary trajectories eventually will move toward b = 1. We formalize this

intuition below.

3.2 Asymptotic Behavior

To support the inference that the probabilistic trajectories illustrated in

Fig. 3 will move toward b = 1, we prove that for bonding probability pB > 0,

and recruitment probability pR > 0, the fraction of free edges in the evolving

graph Gn
+
 will tend to zero for sufficiently large n. This implies that the

location of Gn
+
 can be approximated by b = 1 (i.e. a complete graph Kn ) for

very large n.  To see why this implication holds, assume the number of free

edges (i.e. the number of edges in the complement of Gn
+
) is at most !n2 .

There are at most n
2
 squares in the complement of Gn

+
 containing any given

edge (n choices for each of the two other vertices in the square), so the number

of squares in the complement of Gn
+
  is at most !n4 . Hence D, which has a

normalizing factor of order n
4
, must be a small multiple of ! . Similarly, the

numerator in the definition of L is bounded as follows

   (d
max

! d
i

i=1

n

" ) # (n !1! d
i

i=1

n

" )

which is the sum of its vertex degrees in the complement of Gn
+
, i.e. twice its

number of edges, which is at most 2!n2 . Thus L is also bounded above by a

small constant times ! . Thus, as ! " 0 , D and L tend to 0.

Theorem 1: Let the connected graph Gn
+
 grow iteratively, adding with

probability pR = 1 a new vertex vn+1  to  one of the vertices already in

Gn
+
 , choosing that vertex from a uniform distribution. In the same iteration

also add with probability pB > 0 new edges between unlinked vertices in

Gn+1
+
. Then as n increases, the fraction of free edges in Gn+1

+
 is likely to

approach  0 as n -> inf.

Proof: Begin with a S3 seed with vertex vo joined to v1, v2 , and a recruitment

probability pR =1. Consider then any edge that can possibly be added to a
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vertex vi  in  Gn
+
 that is not added by recruitment. After i iterations, there

will be i –2 such edges to lower numbered vertices. For each such edge, the

probability in each successive iteration that an edge is not added is (1 – pB).

Hence the probability that edge is not present after the nth iteration is (1-

pB)
(n-i) 

. By linearity of expectation, the expected number of these edges

absent after iteration n is thus (i-2) (1-pB)
(n-i)

. Summing over all iterations

from i = 3 to n gives the number !
n
of non-recruited edges absent after

iteration n. Using the well-known inequality (1! p) < e! p , the sum !
n
is

bounded as follows:

Est(!
n
) = (i " 2) * (1" pB)

n" i

i=3

n

# < (i " 2) *
i=3

n

# e
pB(n" i )

< n *
i=3

n

# e
" pB(n" i )

< n
j=0

n"3

# e
" pB* j

where j = n –i.          (1)

Note that the sum of the exponential in the last term is some constant, c.

Recall that excluding the n edges recruited, there will be n(n-3)/2  possible

edges that could be absent. Hence the fraction of absent edges will be at

most c*n/O[n
2
], which tends to 0 as n goes to infinity.                      !

Remark:  For any fixed pair {pB > 0 and pR > 0}, the trajectory of small

graph evolution can be closely approximated by the following mapping to a

new pair {pB’ > 0  and pR’ = 1}:

           pB ' = 1! (1! pB)pR / (1! (1! pR)(1! pB))                                (2)

For this more general case, we need to revise the (1 - pB)
n- i

 probability used

in the first sum of equation (1) to include  pR < 1. Consider the pair of

vertices in G{ vi, vj }. The continued absence of edge Eij between two

recruitments requires that no bonding occurred over the sequence of

iterations between those two recruitments.  Equation (3) gives the geometric

series, which is simplified to (4). This expresses the probability p(Eij
/ v

i
)  of

not adding Eij between two consecutive recruitments, expressed as the sum

of the probabilities of increasing numbers of iterations passing between

recruitments with no bonding occurring between vi and vj.

 
p(E

ij
/ v

i
) = (1! pB)ipR + (1! pB)

2
(1! pR)pR + (1! pB)

3
(1! pR)

2
pR + ... (3)
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                  ! (1" pB)pR / (1" (1" pR)(1" pB)) .                                      (4)

Hence just before the (n – i )
th

 vertex is added, the probability no edge

having been formed between vi and vj is given by

      p(En
) ! (pR(1" pB) / (1" (1" pR)(1" pB)))n"i  = (1! pB ')n!i              (5)

Solving for B’ gives the desired approximation  (2). Note that if this

mapping is applied, then for any pR > 0 and 0 < pB , the asymptote in the

simplex for Gn
+
  will approximate b = 1 in the l b d simplex.

With respect to the above theorem and remarks, the addition of a vertex that

created a new dipole with probability pD will not change the asymptotic result.

For example, the new vertex could be joined to Gn
+ 

with two added edges that

created an induced hexagon C6. In the limit, two such edge additions will have no

effect on the evolving trajectory, because as n increases, bonding will eventually

link dipole members to other vertices, reducing the diversity count, and moving

the trajectory on l,b,d toward one determined by an {pB, pR = 1} pair for some

pB.

3.3 Edge Deletions

 If edges in Gn
+
 can be deleted, Theorem 1 and the remarks do not apply.

Such deletions could arise by imposing conditions on edge densities or vertex

degrees (Watts, 2002.) An extreme case would be to include a fixed probability pQ

for removing edges, but again keeping Gn
+
 connected. The two examples in Fig.

4.0 were both created in this manner using fixed probabilities for pR, pB, pD , pQ

of {0.30, 0.30, 0, 0.30} and {0.60, 0.30, 0, 0.40} respectively.

Note reversals in direction are now common, leading to chaotic-like

behaviors. This haphazard behavior can continue for several hundred iterations for

appropriate choices of parameters. Further studies are needed to establish fixed

points and the chaotic-like regime. However, for some parameters there is a trend

toward a stable edge probability whenever the size of Gn
+
 begins to increase

monotonically. In this case, the trajectory moves toward a fixed point in the l,b,d
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simplex, as suggested especially by the left panel in Fig. 4. The behavior of

Fig 4: Loci of evolution from S3 for two simulations, with values for pR, pB,  pQ of 0.30,

0.30, 0.30 for the left panel, and 0.60, 0.30, 0.40 for the right panel.  The behavior is very

haphazard.

the trajectories in Fig. 4 suggests that a feedback condition could be imposed

to control the evolution of a group toward any desired l,b,d fixed point. Such a

global constraint on group evolution may be worth exploring.

4.0 Start-up Group Evolution

Figure 5 presents averaged data of the evolution of six small groups

(e.g. start-ups). The left panel shows the L, B , D values for several stages of

the group development; the trajectory on the l, b, d simplex is the red spiral

on the right. Note the general trend is quite different from the probabilistic

evolution given earlier in section 3. For these start-ups, bonding dominates

in the early stages, causing a counter-clockwise movement in the trajectory;

for the simple probabilistic evolution in Fig 3, however, all the curves move

clockwise. The key point is that this trajectory is neither haphazard, nor does

it follow any of the probabilistic curves in Figure 3.

Although simple in form, the dynamics of the start-up evolution depicted in

Fig 5 is complex when analyzed in terms of the actual graph structures. To
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give a modicum of insight, we divide the evolution into seven stages (top of

left panel.) The group begins with a leader and two recruits. The next step is

Fig 5. An example of how L, B, D  and l, b, d vary in the evolution of a small group. In

the left panel the size of the group is shown on the bottom line.  The red spiral on the

right panel shows typical small group evolution, averaged over six small groups. The

green curve shows the positions of 20 vertex random graphs with edge probabilities as

indicated.

to build a team by bonding and recruitment. This reduces leadership

dominance, as shown by the decline in L in the left panel. As bonding

increases, leadership is threatened by a competing maximal node. This

requires additional recruitment by the leader, or manipulation of bonds

through minor reorganizations.  By stage four, additional recruitment of one

or more small K3 cliques has diversified the group. Further alignments

(bonding) of these new members then ensues. In the final stages, a crude

balance between leadership dominance, bonding and diversity is achieved.

   At the right, the simplex shows the same trends, with a move

upward along the d = 0 locus as bonding increases, followed by a leftward

turn toward d = 1 as diversity emerges. This is the beginning of a

counterclockwise motion toward a potential equilibrium point where a

balance among leadership dominance, bonding and diversity emerges. Note

that this evolutionary process does not enter the random graph region.
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5.0 Discussion

The l,b,d simplex provides a simple, but revealing representation for

small  group evolution. Trajectories show whether trends are toward a

dominant leadership (dictator), or to cohesion among members (with equal

leadership), or to diversity (such as seen in many grass roots organizations.)

Strategic moves among members are typically reflected by a change in the

trajectory toward one of the vertices. In contrast, if group evolution is a

(fixed) probabilistic process (for recruitment, bonding or diversity), all

trajectories will move toward the random graph region in the simplex, and

eventually toward b = 1 if edges and vertices can only be added. With

probabilistic edge deletions, haphazard trajectories result (Fig. 4.)

The relation between small group evolution (n < 100) and that for very

large networks (n > 1000) has only begun to be explored. Some proposals

for the structure of large networks use global constraints (i.e. probabilities

linked to the degree distribution, preferential attachments, etc.), whereas

others might use constraints that are more local such as degree conditions or

edge probabilities  (Newman, 2003, Barabasi & Albert 1999.) These latter

influences are generally limited no more than two or three edge steps.

Hence, for large networks, the simplex might be more properly applied to

their subgraphs, with the subgraphs in turn being treated as independent sets

of agents in a network with hierarchical structure. This raises the problem of

defining more formally a “small group” and its threshold for the leap into

one of the larger networks that others have characterized (Palmer, 1985;

Newman, 2003; Dorogovtsev & Mendes, 2003; Pella et al, 2005). Relevant

work are studies of changes in network structure initiated by a cascade of

influence triggered by a particular small group structure (Watts, 2002;

Lescovec et al, 2006).

Cascades are an iterative example of a local dynamics that propagates

thru the network. One might envision an analogy in a small group where the

connectivity (alignments) of one member enhances that member’ status, or

favors some particular goal. A simpler form of such dynamics would be for

members to ponder possible alignments and recruitments, taking into

account the goals of other members. Although the payoffs are unclear

(financial, social status, vision for group, etc.), this scenario is one form of a

game. The l,b,d simplex offers a potential tool for studying group evolution

as a game, because the consequences of new alignments or manipulations

can be calculated for any potential group structure. In principal, optimal



14

trajectories can be discovered, thwarting others along the way. Obviously,

however, given the explosion of possible undirected graph types as n

increases (e.g. for n = 8, we already have 10K forms), even a two-step look-

ahead game is very complex. Nevertheless, given the objectives of each

group member (and the recruits), in principal one could calculate whether

there is an equilibrium structure.
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