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Abstract: Networks having several hundred or more nodes and
significant edge probabilities are extremely difficult to visualize.
They typically appear as dense clumps, with the various
subcomponents completely obscure. We illustrate a method for
decomposing a network into aggregates of subgraphs whose
topologies are represented as colors in RGB space.

    Representing social networks, network scale, visualisation, motifs

  I      INTRODUCTION

Like many other scientific endeavors, a deep understanding
of a phenomena or natural property usually proceeds by a
qualitative description of the object under study, followed
by attempt to determine the basic parts of the object, and
finally the attribution of functions or roles to these parts.
Social networks can be studied in a similar manner.

For some time, general observations about networks have
been made, such as the probability of node connectivity, the
distribution of node degrees, the spectrum, or more
specialized measures such as diameter, characteristic path
lengths, etc. From some of these measures, interesting
properties have been inferred, such as the role of
preferential attachment and its relation to scale-free graphs
[1,2]. More recently, rather than considering the network as
a whole, the microstructure of networks has been explored,
identifying very small subgraphs or “motifs” that are
common for certain types of networks and those that are
rare [8,14,15]. More elusive and difficult has been to
identify the larger structural components of networks (i.e.
even components with only 25 to 100 nodes.) For example,
will such “aggregates” be small networks with their own
special topology, or will the aggregates be a cluster of micro
“motifs”.  Moving toward the “aggregate” scale of networks
is an important step if functional properties of the network
are to be understood.

An analogy may help clarify our approach. In the early
analysis of minerals (e.g.”rocks”), descriptors such as
density, hardness, perhaps shape, etc. were useful. But much
greater insight came when rocks were cut and polished to
reveal substructures such as dark or shiny aggregates, a
variety of crystals, or perhaps threads of veins, etc. With the
introduction of spectral tools, including polarization, many
components, especially at the finest scale, became colored.
The colors were typically robust indicators of the fine
structure of the material.

Fig. 1. Bottom panel: a social network of 300 nodes (C. elegans.) [18]
Top right panel: view of a “rock”. This view is analogous to viewing a highly
connected network, such as the interior of the C.elegans. Middle right: cut and
polished section of “the rock” showing hints of aggregates; Upper left panel:
the rock seen at a fine scale, illuminated by polarized light to reveal the
different crystalline structures.

Our analysis of networks follows a similar path. The intent is
not to draw a picture showing “the shape” of a network (as if it
were a biological form.) Rather, we attempt to construct a
catalog of the ingredients of the network (i.e. rough
topologies) and how these topologies change across scales of
inspection (see Fig. 1.)  Network similarity is thus based on
the characterization of the types of subgraphs, not on a visual
pattern (which becomes a hopeless exercise for almost all
social networks over 500 to 1000 nodes.) Just like spectral
lights are used in the study of minerals, so will we provide an
index into subgraph topology by colors (in an RGB space.)

                    II   THE BASIC PARAMETERIZATION

 Accomplishing our first task – network decomposition —
requires a method for parameterizing the topologies of the
space of possible subgraphs. Earlier, we introduced a set of



three basic, or “atomic” motifs that capture three critical
aspects of a strong social effort:  leadership L, the bonding
of group members B, and diversity D   [13]. Fig. 2 shows
motifs associated with these properties. Leadership L is
captured by the “star” with one dominant vertex of high
degree. The bonding B of group members implies a
subgraph topology with high connectivity, with the
complete graph K2 as the limiting case. Diversity D aims to
include small groups of members that are only weakly
linked [5]. In start-ups these would be the venture capital
members or lawyers, both of whom provide expertise
beyond the talents of the founder and the key members of
the start-up needed to form the core of product
development. Although motivated by concerns for social
group structures, evidence has been accumulating that both
the star and mesh motifs are significant in social networks,
as compared with random graphs [8,14]. Our diversity
measure is new, but as mentioned, is related to
Granovetter’s weak ties, as well as to centrality indicators
[10]. If a node has high centrality (i.e. a node joining two
dense clusters for example), the network about this node
will also have a high diversity. The text box indicates how
all three measures are calculated, normalized to the range 0
– 1.  Certainly other measures may be invented, and indeed
may be found more revealing. However, the L B D
parameterization will illustrate the power and potential of
our approach.

Figure 2. Motifs that capture three key properties of groups, with the
maximal or near-maximal values of their associated L, B, D parameters
given on the right. See text box for how the L, B, D   parameters are
calculated

         III   THE SIMPLEX REPRESENTATION

Rather than display L, B, D values in 3 dimensions, it is
convenient to project them onto their <1,1,1> plane as
follows:

          l = L/(L + B + D)
          b = B/(L + B + D)
         d = D/(L + B + D).

     Figure 3 illustrates this compression. At the top of the
Simplex triangle B=1, (green node) which is the position of a
dense mesh topology corresponding to the complete graph. All
complete graphs, regardless of size will be mapped to this

point. Likewise, with L =1 (B  =0, D=0) , the topology of the
graph will be a “star”, with all star graphs regardless of size

mapped to the red node at lower right. A ring topology is a
simple example of D=1 with B = L = 0. More informative,
trees with nodes having roughly equal degrees will have high
D values, with low L ~ 0 and B = 0.

Figure 3. Illustration of the variability of LBD indices for different
Social networks. For clarity, the raw LBD values have been projected
onto the 111 plane (ie normalized by their sum.)

Similarly, if diversity becomes maximal, the graph will be
located at the lower left.  Also shown on Fig 3 are the location
of several of the networks we have examined. Note they span
most of the Simplex. See Table 1 for parameters of the
networks analyzed in this report.

L: For any graph Gn, let di be the degree of vertex vi.
The leadership index is then:

L = (dmax − dii=1

n∑ ) / ((n − 2)(n −1))
This relation sums the difference in the degree of a
vertex with respect to the maximum degree in Gn, and
normalizes this sum by the maximum possible. [4]

B: The bonding index is the number of triangles about
that vertex, normalized by the maximum achievable by
a graph with the same number of (directed) paths of
length 2:
       B = 6 * (# triangles) / (# paths _ length _ two)
Note that if Gn is the fully connected graph Kn, then
bonding B is maximal with value “1”, whereas for the
“star” graph Sn or for any tree Tn, the bonding will be
zero .

D: The diversity index counts the number of pairs of
disjoint dipoles K2 in Gn with n ≥ 4 .  This count is
divided by the number of induced squares in the
complete bipartite graph KF[n/2],C[n/2] thus normalizing
the measure to [0 – 1]. The square root boosts low
ratios: [13]:

 D = Sqrt[(# disjo int_ dipoles) / (1
2
* n
2
(n
2
−1))2 ]



                   Table 1:   Network Parameters

              IV   TWO EQUIVALENT REPRESENTATIONS

From Fig 3, it is obvious that LBD locations can be encoded
as RGB colors, as well as by position in LBD space, without
loss of information. Color has the important property of being
an intensive variable. In other words, unlike pictures of graphs
that require spatial extent, the color index to a topology
requires only a point (or line.) This property means that spatial
topologies can be indexed very conveniently as a spectrum of
colors. Our mapping is: L ->  Red; B -> Green; D-> Blue.
When LBD values are calculated for the network as a single
entity, the LBD color indicates its global characteristic. For
example, returning to our “rock” analogy, the color green
(B=1) indicates the network as a whole must be dense,
because edge probability (roughly akin to density) is highly
correlated with B. However focusing on B alone would ignore
the crude shape of a network, as indicated in part by the
positions on the L to D axis. Hence the LBD color calculated
for a whole network is still a good first descriptor of its class.

      Fig 4. Relation between the LBD spatial representation and the RGB color
form. Each Simplex shows the LBD fine structure at radius indicated next to

the colored panels. (L -> Red; B -> Green; D -> Blue). The data are Linux-08
open source development network.

                      V  NETWORK DECOMPOSUTION

At the extreme opposite to LBD  value for the entire
network, we can look at the “crystalline” structure of a
network, analogous to the polarized light inspection of the
rock shown in Fig. 1. The trick is to recalculate LBD about
each node, using only its neighbors, plus connections
between these neighbors.  Technically, our subgraphs then
have a radius one (one edge step) from the selected node.
Obviously we can continue to expand the radius of inclusion
of vertices until we reach the diameter of the network. Now
all nodes will have the same LBD value. The lowest color
panel and Simplex in Fig 4 shows the “crystalline” structure
of the Linux08 network; the top row shows the global
characteristics; the other rows are for subgraphs about nodes
constructed with intermediate radii.

Our next task is to find aggregates in the network that
have similar LBD values. One might assume that this can be
done easily from the spectral bands illustrated in Fig. 4.
Specifically, tag each node at some given radius, and find
all neighbors with similar LBD values. If each component
of the aggregate indeed had the same LBD value, this is a
straightforward computation – even if one tolerates some
minor variations. We use a version of this method in the
Appendix to guess an ideal form for a C.elegans aggregate.

Unfortunately, in practice, nodes in aggregates may project
to a variety of different nodes outside the aggregate, thus
creating a variety of LBD values, especially for the larger
radii about nodes. Furthermore, if an aggregate is
heterogeneous, composed of a smaller subgraphs with quite
different characteristics (such as a combination of small
complete graphs and spidery stars), there will be a “texture”
of different colors to be considered – a potentially difficult
obstacle (see Macindoe [7] for progress using the LBD
similarity measure.)  Classical clustering methods have also
attacked this problem, some using K4 or higher subgraphs
to quide the clustering [11]

Although one might have a general notion of what should
constitute an aggregate of a network, formal approaches
need a clear specification. To illustrate, consider the
following:

Definition: an aggregate of a network is a collection of
nodes sharing one or more of the following properties:

    (i)  LBD values identical within an epsilon
    (ii) Clustering based on latent feature analysis across

              all scales (i.e. radii)
       (iii) A convergence of a “sizeable number” of projections
             from  a well-defined group of nodes, such as a small
             Kn group of nodes with degree significantly higher
             than the  degree of nodes in the aggregate.

Name #nodes edgeProb.    L   B   D Ref.

Polbooks 105 0.08 .16,  .35, .19 11
P3-1 tiling 41 0.1 .22, .29, .20 6
C.elegans 297 0.05 .40, .18, .10 18
Linux08 450 .021 .34, .20, .04 7



We illustrate the last definition. The intent is to show a
novel form of representing network structure, and the
advantages of using colors to indicate topology, reserving
the spatial form for the manner in which aggregates and
subcomponents are related. The procedure is useful
especially if the network has a scale-free structure [2].

For scale-free networks, there will be very few nodes of
very high degree. Identify say the top epsilon% of these
nodes. Determine which are connected. One might find, for
example, a complete graph of three such nodes, or perhaps
three nodes of very high degree that are not connected. For
the PolBooks network shown below (left), we find two
unconnected nodes of the highest degree. For C.elegans

Fig 5. Two networks decomposed by stripping away nodes of lesser degree,
using intersections of projections to define aggregate subgraphs. Colors
indicate the topological form of the subgraphs. The top nodes were selected
by their distinctive high degrees (see text.)

(right) there is a single isolated maximal node of highest
degree, plus two other nodes with runner-up degrees,
connected to one another (i.e K2 dipole.)  We now proceed
to examine the projections of these “top” nodes, and then we
will strip these nodes from the network and continue the
process until only “scraps” are left.

For the PolBooks network at the left of Fig. 5, the vertex
degree distribution is ( 25, 25, 23, 23, 21, 21 …..) In practice,
we require a scale-free distribution, with very few nodes of
highest degree, well separated from the rest of the pack.
(C.elegans qualifies, as will be seen.) However, the small
PolBooks network is easily visualized, and illustrates the
general method. The four nodes of highest degree are peeled
off, with three nodes at the top forming a tight clique K3 (at
the left), leaving a single node on the top the right. Consider
first the K3 clique. These three nodes all project to one group
of 21 vertices, as indicated by the orange colored ellipse. The

color of the ellipse indicates the topology of this cluster is a
sparse mesh with a few nodes of relatively high degree. At
the same level, the two-colored 18v ellipse includes the
remaining nodes that are linked to least one but not all of the
top K3 members. This cluster has two independent
subgraphs: one includes some K4 micro-graphs, the other is
sparse with four-cycles.

The top K3 nodes are now stripped away, and the projections
from the orange (21v) and purple-green (18v) clusters are
explored. These projections are indicated by the ellipses at
the next lower tier labeled 29v and 25v. The overlap
indicates some shared vertices, namely 3 nodes.

On the lower left of Fig. 5, we now repeat the same process
for the remaining component of PolBooks. Here there is a
single top node, which is found to project to 23 nodes (green
ellipse.) Again, the top node is stripped away, and the
projections from the 23v cluster are examined. The deep blue
LBD color for the 25v cluster implies a sparse topology.
However, we now see that five nodes in this bottom right 25v
cluster are common to the two clusters on the bottom left.
This is where the two components of the network come
together. The red line in the Polbooks graph shows this cut
point.

At the right of Fig 5, a similar decomposition was applied to
C.elegans. Here the degree distribution satisfies the scale-free
condition: (134, 77, 74, 54, 53….) We peel off the three
distinctive nodes of very high degree, shown in red at the top
of the decomposition (lower right of Fig. 5.) Two of these
nodes are connected, the other (middle) sits alone. As before,
we first find all nodes that receive inputs from all three of the
top three nodes. There are 26 of these, indicated by the small
blue ellipse. The blue color indicates some diversity or
sparseness in the connectivity among these nodes. In fact, if
we analyze the LBD values of these nodes, there are two
main types with LBD values as follows: {0.2, 0.3, 0.33} and
{0.17, 0,  0.5 }. Note that the second type has no triangles
(because B=0) and hence has a “tree” topology, in this case a
“chain” of 6 nodes. whereas the first type is crude
tessellation. This is an example of a cluster with mixed
topologies (and hence technically should appear as a mottled
coloring.)

At the same level of decomposition, we have three other
ellipses, each corresponding to different patterns of
projections from the top three nodes. There are 87 nodes to
which the single top red node projects, indicated by the green
87v ellipse. (These do not include nodes in the blue 26v
cluster.) Similarly, there are 53 nodes to which both of the
two K2 top nodes project, (blue-green ellipse), and the
remaining 47 nodes which receive projections form either
one of the two top K2 red nodes. Again, as before for the
PolBooks network, the top red nodes are stripped away, and
the projections from the three (or four) lower tier clusters are
examined, The smallest of these is a 12v cluster with only



micro-graphs. The more significant aggregates are the green
(30v) and olive ellipses (32v), both of which share an
additional 41 nodes (dark green ellipse.) At this lowest level
of decomposition, the 30v aggregate has many unlinked
micro-graphs, indicated by the small colored ellipses.

Returning now to the 41v aggregate which isolates the
overlap in the bottom two ellipses, this cluster is marked *
because an examination of its topology suggested the
corruption of a regular tessellation. In the original studies of
C.elegans, the authors [16] noted the presence of “many
triangles”. Encouraged, we can use our spectral analysis to
estimate a possible “ideal” form of the actual neural network,
prior to any corruption. This analysis is given in Appendix 1.

Finally, we decompose the Linux08 open source
development network. (See Fig 4 for the fine-structure plots.)
The breakdown is similar to that in C.elegans, but note that

  Fig.6 A decomposition of the Linux08 network.

the coloration, and hence the topologies of the aggregate
subgraphs are quite different. Especially striking is that at the
lowest level, the aggregates are not fully connected, but are
broken up into “crystalline-like” micro graphs. These include
dipoles, micro-meshes, etc. This breakdown is anticipated by
the large number of free ends that appear in the global picture
of the network (left in Fig. 6.) To date, we have yet to
complete our analysis of this network.

                     VI     FUNCTIONALITY
The third, and most important step in network analysis is
assigning function to structure. Not all networks can be
expected to exhibit functional properties.   For example, the
Polbooks network is based on choices of political books by
the same individual. The two main clusters correspond to
taste differences, such as for conservative vs. liberal
viewpoints. With the exception of the “cut point nodes”
which join the two clusters, one does not expect to be able to
ascribe functional properties to the structural decomposition
shown in Fig. 5.

C.elegans, on the other hand, is a creature that is engaged in
information processing, taking in sensory inputs, evaluation
of these inputs, with decisions as to actions to take next. If

there appears evidence for a network tessellation (as in
Appendix 1), then there is the hope of assigning function to
structure. The development of Linux08 is analogous in this
respect [7]. Our decomposition shows clear roles for a small
group of “leaders”, their immediate followers, plus a host of
others who are contributing to aspects of the code
development. Although these functional assignments are
intuitive, there is the strong belief, as in C.elegans, that
different components of the Linux08 network were
performing different functional roles. Of special interest to
network understanding is whether aggregates with similar
topologies in different networks are performing similar
functions. If so, we have the beginnings of a network science.
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              VII APPENDIX: spectral analysis of C.Elegans

 Obviously inferring an ideal topology from any 41 node
network is essentially intractable [3, 12] However, we can
determine by trial an error if a regular tessellation can be
corrupted by random processes to create LBD values at
different scales that resemble those found in the network
under study. One network that is appealing is the P3-1
isohedral polygonal tiling (Grunbaum & Shephard, [6] pg
473.) shown in Fig. 7.

Fig.7  A P3-1 polygonal tiling, slightly modified at boundaries.

This portion of the tiling has 41 nodes with 78 edges. To
mimic the C.elegans aggregate of interest, an additional 8
edges were added, linking random pairs, thus making the
edge probabilities and node counts the same. Next, 8 edges
were chosen at random (uniform distribution over all edges),
and one vertex for each edge was re-wired to another in the
network.

In the Fig. 8, we exhibit the color spectrum at radius 1 and 2
for three versions of the tessellated network.  The middle
two panels show the uncorrupted tessellation. Note the
broad bands of homogeneous color, which is expected for
any very regular graph. The top two panels show the color
spectra of this ideal tessellation, with the addition of the
random edges mentioned above. These changes would
correspond to a 20% corruption for the idea network. The
bottom two panels in Fig. 8 show the C.elegans color
spectra for the aggregate. Considering that random
processes do not give a unique corruption, the similarity
between the top two and bottom two panels is encouraging.
To first order, the C.elegans network might well be a
corruption of the P3-1 tiling.

Fig 8. Middle pair: Colored spectra for the ideal P3-1
polygonal tiling for radii 1 and 2; top pair: 20% rewired
edges using a uniform random selection; bottom pair: the
color spectra at radii 1 and 2 for the C.elegans aggregate
41v*.

            

            

Fig 9. For comparison with the C.elegans aggregate in Fig 8,
color spectra for a regular 63 triangular tiling of 41 nodes.
based on radii 1 and 2. For the maximum radius, the
spectrum is a blue green color.


