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Abstract—We introduce a novel technique for comparing
graphs using the structure of their subgraphs, which we call a
graph’s fine structure. Our technique compares graphs using the
earth mover’s distance between the distributions of summarizing
features of their constituent subgraphs. We demonstrate the use
of this technique as an abstraction of graph edit-distance and
show its use in hierarchical clustering on several graphs derived
from a variety of sources including social interaction data.

I. INTRODUCTION

Relevant to understanding a social network is whether its
graphical form is similar to that of another network. For
example, will a graph describing scientific collaborations be
similar to the graph of an email network engaged in the
development of Linux? Alternatively, we may have a theory
of the graphical form of optimal organizational structure, and
want to know how much an actual example deviates from
this ideal. In both cases, we need to be able to judge graph
similarity.

Consider two graphs A and B that are identical, except for a
single edge absent in B. A natural way to think about judging
their similarity would be to count the number of changes
that would have to be made to transform one graph into
the other. This count is called the edit-distance and allows
us to judge that a third graph C, missing two edges relative
to A, is less similar to A than B is to A. Unfortunately the
problems with edit-distance are twofold. First there are many
possible kinds of edit operations, including edge rotation, edge
addition and subtraction, and vertex addition and subtraction,
and it’s not clear how to weight these changes against one
another. Additionally, to judge that an operation has in fact
transformed one graph into the other involves solving the
graph isomorphism problem, which has no known polynomial
time solution. It is clear that we will have to accept some
level of approximation in any similarity measure for the sake
of tractability.

We first briefly review previous attempts to overcome these
problems and then present our own solution. We introduce a
novel representation for graphs, which makes use of the dis-
tribution of structural features of their constituent subgraphs,
which we call a graph’s fine structure. Using this represen-
tation we define graph similarity to be the earth mover’s
distance between these feature distributions and demonstrate
that this abstraction yields sensible results under random graph
permutation. We then go on to use this similarity measure

to perform hierarchical clustering on a selection of graphs,
including social, neural, and semantic networks. Finally we
discuss the influence of a graph’s generative process on graph
similarity and discuss uses of our measure in investigating
these processes.

II. PREVIOUS WORK

Some researchers have approached graph similarity using
spectral analysis, where edit-distance is approximated by the
difference in the spectrum of eigenvalues between the lapla-
cians of graph adjacency matrices [1], [2]. This was demon-
strated in [1] by cloning graphs, randomly permuting their
copies, and showing that their spectral distance increases as a
function of the amount of permutation. This technique has two
weaknesses however, the first being the existence of isospectral
graphs, which share eigenvalues despite having quite different
topological structure and therefore can erroneously be judged
similar. The second is the difficulty of interpreting graph
spectra as an abstraction of social phenomena. Ideally for the
social network domain we would like to design a similarity
measure that judges graph similarity based on some set of
features we suspect to be socially relevant.

Other related research includes p* models, graph kernels,
and motif analysis. p* approaches to social network analysis
typically attempt to fit the parameters of a class of exponential
density functions, describing the probabilities of structures oc-
curring within a graph, to empirically observed social graphs.
These parameters can then be compared across graphs to
judge their structural similarity [3]. Graph kernels are a broad
class of functions that map graph features to points in high
dimensional inner product spaces, making them amenable to
classification techniques such as SVMs [4], [5].

Motif analysis [6] computes the frequency of the occurrence
of small subgraphs, called motifs, and uses this analysis
to judge the significance of the appearance of these motifs
by comparison with their frequency in Erdős-Rényi random
graphs. This work implicitly defines a similarity measure based
on a comparison of motif frequencies. A key question for this
approach is what is the right choice of motifs? If motifs are too
large and the graph isomorphism problem arises again. If they
are too small and numerous then the graph’s representation as
motif frequency counts becomes unwieldily high dimensional.
What justifies a particular choice? Additionally, could some
motifs be collapsed together into a single class of graphs, such



as complete graphs or other special forms for the purposes
of judging similarity? These considerations are part of the
motivation for the LBD graph representation that we present
in the next section.

III. THE LBD REPRESENTATION

There are many possible choices for features that can
abstractly represent the structure of a graph [6]–[8]. For this
work we have chosen a triple of features that has some
social relevance, first introduced in [9]. These features are
characterized as leadership (L), bonding (B), and diversity
(D). We will use LBD triples to represent undirected graphs as
points in LBD space. In this section we review these features
and present examples of L, B, and D values computed for
various graphs.

Leadership

Leadership, introduced in [10], is a measure of the extent
to which the edge connectivity of a graph is dominated by a
single vertex. It is given by equation (1), in which n is number
of graph vertices and di is the degree of vertex i. It is the mean
difference between the degree of the highest degree vertex and
each other vertex in the graph. Leadership is maximal (i.e 1) in
a star graph (one vertex of degree n−1 with all other vertices
of degree 1) and zero for regular graphs with all vertices
having the same degree (e.g. a complete graph or a ring). In a
social network a high leadership indicates that a small number
of people are connected to a much larger proportion of others
than the average group member, whereas a low leadership
indicates that most people are equally connected.

L =
∑n

i=1(dmax − di)
(n− 2)(n− 1)

(1)

Bonding

Bonding, given by equation (2), measures triadic closure
in a graph. It is the ratio of length three paths in a graph
to length two paths and is one of several measures called
clustering coefficient in the literature [11]. The motivation
behind bonding is that this ratio measures the proportion of
triadic closures that actually exist in a graph relative to the
number that could exist, but are missing an edge. Bonding is
maximal (i.e. 1) for a complete graph, but zero for any graph
with no triangle subgraphs (e.g trees or bipartite graphs). In a
social network a high bonding means that if two people are
linked to a third person, then it is likely that they are also
linked to one another. Where edges represent friendship for
example, a high bonding means that if two people are mutually
friends with a third person, then they are likely to be friends
with one another.

B =
6× (# triangles)

# length two paths
(2)

Diversity

Diversity, given by equation (3), is a measure based on the
number of edges that share no common end points, and hence
are disjoint. A normalization is imposed by the maximal count,
which occurs for the complete bipartite graph. The square root
of the ratio scales the measure into a range similar to L and B
(see [9] for details.) D = 0 for n < 4 and possible values lie
in the range [0, 1]. Diversity is high in graphs which are not
densely connected, such as bipartite graphs, but also in graphs
where separate graph regions are joined by a relatively small
number of bridging edges. In a social network a high diversity
indicates that separate communities exist, where people from
one community have no direct ties with people in another,
whereas a low diversity indicates that people are generally all
connected to one another.

D =

√
# disjoint dipoles

(n
4 (n

2 − 1))2
(3)

Taken together, L, B, and D summarize a graph along three
socially relevant dimensions. Plotting graphs in this space is
a first step in determining which graphs are similar to one
another. Figure 1 shows the position of the graphs analyzed in
this paper, as well as some graphs with well known structures,
using a transformation of the 3D LBD space into the 2D
(1,1,1) plane. This is done by normalizing the L, B, and D
scores for a graph by the sum of these scores, yielding the
normalized scores l, b, and d (in lower case to distinguish
them from the unnormalized scores), which are then plotted in
the simplex, showing the relative magnitudes of these features.
Throughout this paper we make use of simplex visualizations
like this to present LBD data for ease of exposition and will
often supplement these with plots of the distributions of values
to help disambiguate cases where information is lost due to
the transformation and to give a better sense of the density
of points. Additionally, points in the simplex will be colored
according to their position in lbd space, with the red, green,
and blue color components corresponding to L, B, and D
respectively.

IV. LBD DISTRIBUTIONS

The LBD representation of a graph gives a concise summary
of properties of the graph as a whole. But consider the case of a
graph with multiple topologically distinct regions, an extreme
example of which might be a series of cliques joined together
in a chain by bridging edges. This kind of local structure
we call the fine structure of a graph. We would ideally like
our representation to be fine grained enough to distinguish
between this kind of graph and another graph without this fine
structure that happens to map to the same LBD value. More
generally, we would like a representation that reveals features
of the fine structure of a graph and can answer such questions
as whether the local subgraphs centered on any given vertex
in the graph are homogenous or heterogenous across the full
graph. The graph described above is an example of a graph
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Fig. 1. Graphs of different networks are scattered throughout the LBD space.
Here, to clarify, their positions are projected onto the (1,1,1) plane (i.e. the
lbd simplex.)

with heterogenous fine structure, whereas a ring is an example
of a homogenous graph.

Similar to work on degree distributions and motif analysis
which measure the local connectivity and the presence of local
subgraph structure across a graph respectively, we represent
the fine structure of a graph as a distribution of LBD values.
A graphs’ LBD distribution is a normalized histogram of the
LBD scores of all the induced subgraphs centered on each of
its vertices. The distribution has a scale parameter, namely the
radius of the subgraphs, which controls the coarseness of the
analysis. For example, to compute the radius 1 LBD distri-
bution for a graph, we iterate over every vertex in the graph,
computing an LBD score for the induced subgraph formed by
the vertex, its neighbors, and all the edges connecting them.
Normalizing the histogram counts by the size of the graph then
yields a distribution over LBD scores. Note that as the radius
of the LBD distribution approaches the diameter of the graph,
the histogram will converge to a spike on the LBD score of
the full graph, since each induced subgraph will contain the
majority of the graph’s vertices and edges.

The LBD distribution can be thought of as an abstraction
of the distribution of motifs produced by motif analysis. Any
given motif has an associated LBD value, but some motifs may
map to the same value; for instance all star graphs, regardless
of size, map to L=1, B=0, D=0. The LBD distribution then is
akin to a motif distribution which generalizes across classes
of motif based on their LBD score.

Figures 2 and 3 show and the radius 2 LBD distributions
for two email exchange networks. The first is extracted from
the Enron email dataset collected a part of the CALO project
[12]. Each vertex is an email address in the data set and an
edge links two vertices if the email addresses both sent at least
one email to each other. Email addresses that only sent and
never received or vice-versa were not included. The second
comes from an analysis of Linux kernel mailing list traffic
in January of 2008 compiled by Gnawali [13]. Here each
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(d) LBD Simplex

Fig. 2. LBD distributions and simplex for the Linux-2008 graph at radius 2.
The asterisk indicates the lbd location for the full graph (i.e.radius is now the
diameter of the graph. The histograms show the frequencies of the parameters
given on the abscissa.)

vertex is again an email address, with some email aliases being
collapsed into a single vertex. An edge again represents that
at least one email was exchanged each way between the two
addresses. From the distributions in the two figures we can
see that the subgraphs comprising the Linux graph tend to
have higher leadership scores, but lower bonding scores than
those in the Enron graph. For Linux this suggests that locally,
people tend to communicate with highly connected individuals
rather than with directly with others in their neighborhood.
For Enron the marginally higher bonding suggests more direct
communication between people in local neighborhoods and
the lower leadership indicates there are fewer people people
who are involved in a disproportionately large number of
different email conversations than is the case with Linux. The
higher diversity score in the Enron graph suggest a somewhat
more fractured local graph structure, which together with the
higher bonding is indicative of more groups of people who
largely don’t correspond with each other being joined by a
small number of common members. This makes sense for
an organization such as Enron where team members might
email one another and managers or team leaders serve as
communication bridges between teams. It is interesting to note
that the full graph LBD score for the Linux graph is close to
it’s radius 2 cloud of points in the simplex, whereas this is
not the case for Enron. This demonstrates how in some cases
the fine structure of a graph can be quite different from the
structural features of the graph considered as a whole.

LBD distributions can look dramatically different across
different radii. Figure 4a shows a highly structured graph of
football matches between division IA colleges in Fall of 2000
compiled by Girvan and Newman [14], in which each vertex
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(b) Bonding
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(c) Diversity
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(d) LBD Simplex

Fig. 3. LBD distributions and simplex for the Enron graph at radius 2.
The asterisk indicates the lbd location for the full graph (i.e.radius is now the
diameter of the graph. The histograms show the frequencies of the parameters
given on the abscissa.)

is a team and each edge is a match. The general structure
is that local teams play one another, forming small bonded
subgraphs, and then their winners play one another, linking
the subgraphs. Figures 4b and c show the distribution of LBD
values at radius 1 and radius 2. At radius 1 we can see the
a large proportion of the graph is composed of subgraphs
with one or two vertices whose degree is higher than the rest
of the vertices in the subgraph. These vertices are division
winners and their influence can seen in the mid to high range
leadership values in the simplex. As is typical of radius 1
subgraphs, diversity scores tend to be low. This tells us that
when we look at just the subgraph of a team and the teams
that they have played against, there are one or two teams that
have played more games and that most teams have played
games against opponents within their own local competition.
At radius 2 there is a dramatic shift. Since the graph has a low
diameter, radius 2 neighborhoods include most of the graph,
leading to a convergence in LBD scores. Leadership scores
become much lower, because now most subgraphs include
most division winners which compete with one another in
degree. Diversity also rises as different divisions are linked by
the winners of those divisions playing one another. At higher
radii the point cloud converges towards the asterisk, which
shows the full graph LBD score.

V. COMPARING GRAPH FINE STRUCTURE

Since the LBD distribution of a graph summarizes its fine
structure we can compare the LBD distributions of two graphs
to judge their similarity. In performing this comparison there
are some choices and tradeoffs to be made. The first is
what radius to consider for the distributions. For much social
network analysis, researchers are interested in ego-centric
subgraphs within a social network, which corresponds to a

(a) The Football network [14]. Note the clustering of
teams into local competitions.
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(c) Radius 2

Fig. 4. Visualization and lbd simplexes for the Football graph at radii 1 and
2.

radius 1 analysis, or perhaps radius 2 if they are interested in
an analysis of the structure of the subgraphs including friends
of friends. From our experiments the most interesting results
come from analysis at these two radii, particularly radius 2,
at which subgraphs become large enough for diversity to be a
significant factor.

An issue which was not mentioned in section IV is whether
or not to make the LBD space discrete when computing
distributions. LBD distributions were derived from counts of
the occurrences of real valued LBD scores for subgraphs.
However, for the purposes of ease of comparison we may wish
to bin LBD values within discretized regions. The choice of the
granularity of this discretization will impact any comparison,
since coarser discretizations may place distinct points in
the same bin. We chose a compromise between abstraction
and fidelity by discretizing LBD space into 0.2 unit length
cubes with the result that some graphs may be judged more
similar than in the non-discretized case. Our results suggest
however that the discretization process does not introduce an
unreasonable amount of noise.

Another concern relates to the question of what kind of
comparison of fine structure we want to make. Our construc-
tion of LBD distributions weights each LBD bin’s contribution
in the representation by the proportion of subgraphs in the full
graph that fall into that bin. An alternative construction would
be simply a vector of LBD values occurring in the graph. The
distinction here is that in the former representation proportion
is important, whereas in the latter mere presence is important.



Consider for instance the case where two graphs were being
compared and our criterion for similarity were whether one
is a subgraph of the other, larger graph. In this case perhaps
the presence-based representation may be more appropriate
for comparison than our proportional representation. This
consideration makes clear that in comparing LBD distributions
we are comparing the relative proportions of the features of
the graphs’ fine structure. An upshot of this approach is that
because we normalize the distribution, a comparison between
two graphs of different sizes is possible, whereas in a presence-
based representation this would add complications.

We begin our fine structure comparison by choosing a
subgraph radius, r, and computing histograms, with bin sizes
of 0.2, of the LBD scores of the radius r induced subgraphs
in each graph. We then normalize the counts of the histogram
bins by dividing by the number of vertices in each graph,
yielding two LBD distributions. We compute the earth mover’s
distance [15]–[17] between these two distributions using Eu-
clidean distance as the ground distance. Finally we normalize
by the maximum distance in the distcretized space and subtract
the result from 1 to yield a similarity measure in the range
[0, 1].

To demonstrate that this similarity measure produces intu-
itively plausible results, we followed the example of Peabody
[1] and computed the similarity of a variety of graphs to
permutations of themselves. We used this technique on a set
of graphs from a number of sources and modeling a wide
variety of phenomena, from social networks and email traffic
to football match-ups and neural networks. Table I gives an
overview of the graphs included in the analysis, showing the
number of vertices, edges, edge probability, and full graph
LBD scores. Where graphs originally contained directed or
weighted edges, these were converted to unweighted and
undirected edges, and this loss of structure must be kept
in mind when interpreting the results of our analysis. To
produce the permutations we chose a percentage of noise and
randomly permuted that proportion of edges in the original
graph. The similarity as a function of permutation averaged
over ten trials for a variety of graphs can be seen in figure
5, which demonstrates, as hoped, that our similarity measure
judges graphs to be less similar to their permutations as the
degree of permutation increases. As a twist on this result we
performed the same process on an Erdős-Rényi random graph
with 115 vertices and edge probability 0.09. This is the top line
in the plot, almost coincident with the top of the figure. The
consistent high similarity score shows that permuting a random
graph does not necessarily make it dissimilar to itself. This is
because the construction of Erdős-Rényi random graphs with
such an edge probability leads them to have characteristic fine
structure properties, namely low leadership, low bonding, and
high diversity. Note also that there is a lower bound for each
graph on self-dissimilarity caused by permutation, which is
related to how close the original graph’s LBD distribution is
to the region typical of Erdős-Rényi random graphs. We will
discuss this result further in section VII.
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Fig. 5. Radius 2 self-similarity under random edge permutation.

VI. CLUSTERING GRAPHS

Armed with a method for judging graph similarity by fine
structure features, we use it to find classes of graph that have
these features in common. Using a hierarchical clustering ap-
proach we can take a set of graphs and find clusters of graphs
that are similar to one another but dissimilar to graphs outside
their cluster. There are many choices of clustering algorithm
available, so we opted for the generality and simplicity using
average-link hierarchical clustering following the method in
[27]. In this agglomerative approach to clustering we compute
the pairwise similarities of all the graphs in the set to be
clustered. Initially each graph is in its own cluster. At each step
we then merge the two clusters for whom the mean similarity
is highest, resulting in a hierarchy of graph clusters. Since
there is no gold standard of graph groupings against which to
judge the outcome of the clustering, this should be viewed as
an exploratory analysis.

We performed our clustering analysis on the same set of
graphs listed in table I. Figure 6a shows the pairwise similarity
between each graph in the set computed with a radius of
2. By contrast, 6b shows the similarity between the graphs
judged by the inverse of distance between their full-graph LBD
scores. Contrasting these results it is clear there is a qualitative
difference between similarity judged at the full graph level and
similarity judged at the fine structure level. This is particularly
visible in the distinctive dissimilarity of the football graph
from other graphs in the set, judged by the fine structure
analysis which has discovered the structural regularities in the
graph that result from the generative process of match-making
that forms it and gives it the locally homogenous structure
that we saw in section IV. The general conclusion we can
draw from this is that two graphs can have a similar global
structure, judged by their full graph LBD score, and yet have
quite dissimilar fine structures.

Figures 7a and b show dendrograms for the results of
the clustering using the radius 2 and full-graph similarity
respectively. Horizontal lines represents clusters, with lines
joining at a given similarity, indicated on the horizontal axis,
indicating that two clusters were chosen to be merged at
that similarity threshold. The names of graphs derived from



TABLE I
VERTICES, EDGES, EDGE DENSITY, AND LBD SCORES FOR THE ANALYZED GRAPHS.

Graph |V | |E| P (E) L B D Type Source
LosAlamos 30 78 0.1793 0.6946 0.3683 0.2923 Coauthorship [18]

Karate 34 78 0.1390 0.3996 0.2557 0.2402 Social [19]
Dolphins 62 159 0.0841 0.1164 0.3088 0.1959 Social [20]

Enron 143 623 0.0614 0.2377 0.3591 0.1455 Email [12]
Santa Fe 116 174 0.0261 0.1681 0.2200 0.0683 Coauthorship [14]

JJATT 263 998 0.0290 0.1362 0.4905 0.0744 Social [21]
Linux 2001 302 749 0.0165 0.2510 0.1534 0.0333 Email [13]
Linux 2008 450 2122 0.0210 0.3413 0.1929 0.0388 Email [13]

Bright 54 175 0.1223 2.5947 0.3770 0.2634 Semantic [18]
Lesmis 77 254 0.0868 0.3972 0.4989 0.1755 Literature [22]

PolBooks 105 441 0.0808 0.1627 0.3484 0.1877 Economic [23]
AdjNoun 112 425 0.0684 0.3799 0.1569 0.1320 Semantic [24]
Football 115 613 0.0935 0.0120 0.4072 0.2355 Sports [14]

C-Elegans 297 2148 0.0489 0.4066 0.1807 0.1106 Neural [25]
PolBlogs 1490 16750 0.0151 0.2210 0.2260 0.0327 Citation [26]

social data, such as email correspondence or co-authorship
are shown in red. Again, a key point is that the results are
different, indicating that similarity in fine structure and full-
graph structure are not equivalent.

Looking at the clusters formed by the fine structure analysis
it is interesting to note that they often contain a mix of different
kinds of graphs, for instance Bright, a semantic network,
and PolBooks, a graph of book co-purchases, have the most
similar fine structures. Other clusters are more homogenous,
for instance the two Linux graphs are placed in the same
initial cluster, which suggests that there is consistency in the
way that email correspondence on the Linux mailing list is
structured over time. The Linux graphs in turn form part of a
larger cluster that contains the majority of the social graphs,
yet interestingly does not contain Enron, the other email
correspondence graph in the data set. AdjNoun, a semantic
network, and C-Elegans, a neural network, are the only two
graphs that are judged as being more similar to each other than
to any other graphs in the data set in both the full graph and
fine structure analyses. This fine structure similarity judgement
stems from the fact that in both cases the LBD distributions of
the radius 2 subgraphs of both these graphs balance bonding
and diversity against one another whilst having a high-skewing
spread of leadership scores.

The dissimilarity of the Football graph from all other graphs,
judged by its fine structure, is again due to a combination of
its small radius, which leads to its radius 2 subgraphs being
relatively homogenous, and the fact that there is low variation
in the degree of its vertices, which leads to low leadership
scores that are uncommon in other graphs such as social
networks, which tend to contain more variation in connectivity.
These considerations lead it to be placed in a cluster by itself
in the fine structure analysis, whereas the full graph clustering
does not respond to its unusually homogenous fine structure.

Interestingly, neither measure judges the collaboration net-
works Santa Fe and Los Alamos to be particularly similar.
In the case of fine structure, this is most likely because the
small number of vertices in the Los Alamos graph makes its
distribution much more sparse along the leadership axis than

the Santa Fe graph, even though the bonding and diversity
scores fall in a similar range. At the full graph level, the
differences are even more pronounced, with the Los Alamos
graph having a much higher leadership and bonding than Santa
Fe. Together these suggest that the idiosyncratic characteristics
of a particular group of collaborators are more crucial to the
formation of a graph’s structure at both a macro level and in
its fine structure than the mere fact that the graph represents
people collaborating on papers as opposed so some other
activity such as corresponding via email.

It is also interesting to note that both analyses make very
similar judgements about the higher level clustering of the
graphs. Both methods judge that there is one hierarchical
cluster containing JJATT, Dolphins, Enron, PolBooks, Bright,
and Lesmis and another containing AdjNoun, C-Elegans,
PolBlogs, Karate, Santa Fe, and the two Linux graphs, with
some disagreement about the placement of Football and Los
Alamos, which are in a sense exceptional due to either their
homogenous structure or small size. At the fine structure level
these cluster distinctions seem to be related to the tightness
of the spread along the leadership dimension, but at level of
similarity at which these two clusters are finally merged the
intra-cluster similarities are themselves quite low, making a
general characterization of the distinct clusters hard.

Finally, note that in the fine structure clustering the majority
of the graphs drawn from social data are placed together in one
homogenous cluster. The excluded graphs are JJATT, which
exhibits unusually high B scores in its subgraphs, Dolphins,
which is from non-human social data, and the Enron email
graph. By contrast the clustering based on full graph LBD
scores produces clusters that are very mixed with respect to
the source of their graph data.

VII. DISCUSSION

In the previous section we identified clusters of graphs with
similar features in their fine structure. The natural question
then is how does this common structure arise? In the case
of the Linux email graphs it is reasonable to suggest that
their similarity is due to a common generative process that
produced them. Further suggestive evidence for fine structure
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Fig. 6. Radius 2 and full graph similarities.

similarity being tied to a graph’s generative process comes
from the result obtained for Erdős-Rényi random graphs,
where our random edge permutation transformations did not
significantly impact the similarity of the original graph to its
transformation. Note that what is actually being done when
we permute edges in this way is transforming one Erdős-Rényi
random graph into another instance of an Erdős-Rényi random
graph. We have observed from simulation that full graph LBD
scores for Erdős-Rényi random graphs tend to lie in a similar
region in LBD space and now we have evidence that their
LBD distributions likewise tend to be similar. This empirical
observation suggests that it is a property of the process that
generates Erdős-Rényi random graphs that causes their fine
structure to tend to be similar, but more analytic work needs
to be done to prove this.

Our fine structure analysis gave us evidence that the gen-
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Fig. 7. Hierarchical clustering dendrograms based on radius 2 and full graph
similarity. Graphs with red names are derived from social data.

erative process that produces graphs representing the same
phenomena, for instance email correspondence graphs, can
be quite idiosyncratic. One might expect that if the Enron
and Linux correspondence graphs were generated by a sim-
ilar process, then their fine structure should be similar too,
but in fact neither their fine structure nor their full graph
structure is similar, which suggests that dissimilarities in
the organizational structures of Enron and the Linux kernel
developers are more crucial factors in the formation of the
graphs than the mere fact that the graphs represent email
correspondence. As mentioned in the previous section we can
draw similar conclusions for collaboration graphs. On the other
hand, the fine structure similarity between the two Linux email
graphs gives evidence that a generative process that is more
organic than that which produced the Football or Erdős-Rényi
graphs can indeed give rise to graphs which have similar fine
structures and as such should be amenable to empirical study.

Our conclusion is that the specific conditions under which
the phenomena that a graph models takes place can be more
crucial for its fine structure characteristics than the general
class of phenomena that the graph represents. A key challenge
for further research then is to characterize these conditions
and the generative processes to which they give rise. Our fine
structure analysis technique is a key a tool for judging the
plausibility of a proposed generative model by providing a



method for judging the similarity between the fine structure
of an empirically observed graph and graphs produced by a
proposed model.

VIII. CONCLUSION

The key contribution of this paper is the introduction of a
method for comparing the fine structure of graphs based on
socially relevant features. The method generalizes the idea of
computing a distribution of motif subgraphs within a graph by
abstracting the structure of subgraphs to leadership, bonding,
and diversity scores. These features summarize structural fea-
tures that are particularly relevant for social networks, yet are
general enough to be relevant for large classes of graphs. We
demonstrated that the choice of granularity, controlled by the
radius of the subgraphs for which the LBD distribution is com-
puted, can have a strong effect on the shapes of distributions
and by extension the similarity measures computed from them.
We demonstrated that our method produces intuitive results
when comparing graphs against permutations of themselves
and then used the measure to cluster a diverse set of graphs.
We contrasted our clustering with that produced by a method
that judged similarity based simply off the LBD score for a
full graph and showed that the fine structure based clustering
gave a better agreement in some cases with our intuitions, for
instance judging two graphs of email correspondence from
the Linux kernel mailing list to be similar in contrast with the
full graph LBD clustering. We noted for the set of graphs we
were analyzing that their fine structural similarity did not seem
to be dependent upon the phenomena that the graphs were
modeling. This led us to conclude that idiosyncratic features
of organizations were likely to have more influence on a
graph’s fine structure than broad commonalities between peo-
ple’s email correspondence or collaborative research behavior.
Furthermore our analysis showed that graphs can be judged
similar by their full graph structure and yet dissimilar by their
fine graph structure, emphasizing the importance of choosing
the granularity of analysis at which a similarity judgement is
to be made. The results of our analysis on the Linux graphs
suggest that common generative processes lead to similar fine
structure. This is also borne out by our analysis of the self-
similarity of Erdős-Rényi random graphs under permutation.
Our technique is a useful tool both for comparing empirical
graphs and for comparing the fine structure of graphs produced
by a proposed generative model to the empirically observed
graphs that they are seeking to explain.
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