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Abstract. A key problem in vision is to normalize one’s
lightness scale so that surface reflectances are always
assigned the same gray value regardless of the illumi-
nation level. The solution requires an assessment of the
relation between the strength of the illuminant and the
strength of the image signal-information that is not
available in the image alone. However, the level of
scattered light in the optical system does provide an
independent measure of the illuminant strength, and
can be used to solve the lightness scale normalization
problem. To do this requires a comparison between
two imaging systems, each of which respond differently
to the internal optical scatter. The rod and cone
systems have properties that are ideally suited for such
a role.

1. Introduction

Some years ago William Rushton (1962) raised the
tantalizing question: “Why rods and cones?”. The
most common answer begins by pointing out that rods
have a lower threshold than cones, and extend our
range of vision into darkness, whereas the evolution of
cones added spectral analysis to our visual repertoire.

These standard answers seem unsatisfactory to me
(and presumably to Rushton also) for the following
reasons:

1) Our total dynamic range of photopic vision is
about ten million to one. Rod vision only adds a factor
of a few hundred to this range, and at wavelengths less
than 520 nm. Above 620 nm, cones are more sensitive
than rods at the lowest light levels (Wald, 1945). Is this
small contribution by rods to night vision thus their
most significant function?

2) Rods can participate in color vision (McCann
and Benton, 1969). In fact, color vision is possible
utilizing rods plus one cone type (Blackwell and
Blackwell, 1961). In some animals (i.e., frog), two rod

types coexist in the same retina and could subserve
color vision. Therefore, although multiple receptor
types are necessary for color vision, these receptors
need not be cones. Thus, why cones?

Yet rods and cones are structurally quite distinct
elements as their names suggest. Perhaps it is these
structural differences that provide the clue to their
significant roles. Because of the tapering of the cone
outer segment, these receptors have a narrow field of
view centered on the pupil of the eye (Laties, 1968;
Enoch and Laties, 1971). Rods, on the other hand, are
not so concerned with the direction of light reaching
them, and will respond well to light scattered about
within the eye itself. Cones are thus sensitive to the
direction of light, whereas rods are not (Stiles and
Crawford, 1933).

A second important difference between the two
receptor types is that cones recover rapidly from
bleaching lights whereas rods do not. Associated with
the more sluggish character of the rod system is a
greater spatial integrating power, but all at the expense
of less sensitivity to light increments (or decrements).
For example, when the rod system is isolated, in-
cremental sensitivity is found to be about 6-15 times
less than that of the long-wave cones (Stiles, 1959;
Aguilar and Stiles, 1954).

Two very distinctive differences between rods and
cones are thus 1) cone responses are quite dependent
upon the direction of light striking the retina, whereas
rods are not, and 2) the sensitivity of the rod system to
small changes in (photopic) illumination is inferior to
that of the cone systems. These two properties can
provide a solution to a key problem of vision: the
normalization of lightness scales.

2. The Problem

As we view the world about us, objects and surfaces
take on various shades of gray from black to white —
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one critical attribute of colors. If the illumination level
is changed as we view a given scene, the grays or
lightness values we associate with a given object or
surface stay almost the same. This is the phenomenon
of brightness constancy. Although the illumination on
the retina can change over a factor of one-thousand,
the lightnesses of a surface will remain the same after a
brief period of adaptation to the new illuminant.
Clearly, as Land has stressed so forcefully (1964, 1971),
it is the reflectances of the surfaces that the grays or
lightness sensations represent to us. For although the
flux entering our eyes may change as the illumination
changes from bright to dim, the ratios of the intensities
associated with each surface will not change, for these
ratios are set by the reflectivities of the objects
themselves.

How then do we know when the flux striking the
retina corresponds to a highly reflecting surface or a
poorly reflecting one? Can we merely look at the
activity of each individual receptor and reach a correct
conclusion? Clearly we cannot, for in dim light a
modest receptor activity may be associated with a
highly reflecting surface which appears “white”, where-
as under sunlight the same receptor activity can signal
darkness. What, then, is the procedure we use to decide
upon the gray value to be assigned to each particular
region of retinal activity?

3. Land’s Solution

Land’s studies (1964, 1971) as well as others before him
(see Graham, 1965) show that a comparison must be
made between receptor activites at different portions of
the retina. Thus, we can deduce that surface A4 is darker
(Iess reflective) than an adjacent surface B because the
receptor activity in region A is less than that of B. But
what gray level value do we assign to B? Land solves
this problem of normalizing the lightness scale by
finding the surface eliciting the greatest receptor ac-
tivity and designating this as “white” with a reflectance
of 1.0. The lightness values of the remaining surfaces
are then computed by comparison with this most
intense region.

But will this “brightest” region always be 100%
reflecting? Why does the rule fail in darkness under
rod vision where surfaces having very high reflectances
may still appear grayish and not white? And what if
the most intense region is not a surface at all, but a
light source?

4. Average Firing Rate

Another possible solution to the lightness normal-
ization problem is that an average receptor activity
level is computed over a local region. This average

receptor activity is often taken as representing a
neutral gray sensation similar to that seen in a
Ganzfeld. When receptor activities change across a
border, the magnitude of this change is compared with
the local average in order to yield a lightness sensation.
Although not explicitly formulated, this proposal is
implicit in many treatments of gray scales (Graham,
1965).

Such a model suffers from several weaknesses.
First, how is the area of averaging to be determined ? If
it is too small, then essentially only the second spatial
derivative of intensities are being processed and all
uniform areas should appear equally gray, regardless
of their reflectances. On the other hand, if a large
integrating area is used to determine a reference gray
level, then even small illumination gradients should
lead to the perception of whiteness in the regions of
high retinal illuminance and darkness in the opposite
regions. This does not happen. Finally, why should
snow scenes or beaches look so bright and white in
sunlight, and yet so gray at night? If we were comput-
ing our lightness scales using an average of receptor
activity for a reference, then these highly reflective
scenes should appear gray under all levels of
illumination.

If one is to counter by arguing that snow scenes
appear white because receptor activity is high, then
what is the internal reference that judges “how high”?
And specifically, how is this internal standard used to
identify a surface that has a known reflectance, in spite
of vast changes in illumination level. This is the essence
of the lightness normalization problem.

5. Computational Analysis
5.1. Optics and Illuminants

In the natural world, the light seen reflected from an
object may vary over a considerable range, depending
upon the reflectance of the object, the positions of the
light source and viewer, and especially the shape of the
object. Horn (1975) and Woodham (1978) have anal-
yzed this problem in considerable detail, and show that
the reflectance of an object can be determined up to a
constant, provided that the surface has uniform re-
flectance. To determine the constant and hence the
true surface reflectance, additional information is
needed, such as the strength of the source relative to
the intensity of a point in the scene, or in the image.
Once this information has been obtained for one point
in an image, then, in principle, the true reflectances at
all points in the image can be determined.

To recover the value of the scalar constant is the
essence of the lightness normalization problems. Is
there any additional information available in the
image that has not previously been used and which will



allow us to compute the true reflectivity value? One
factor present in all images is a certain amount of
scattered light, depending upon the quality of the
optical system. However, because of scatter within the
optical system, no image point can have a zero value.
Instead, the intensities at every point are raised by
a constant increment, assuming uniform scatter
throughout the system. Such increments will not
change the gradients on which the Horn type of anal-
ysis is based, but the increment will affect the intensity
ratios across the boundary between two surfaces of
different reflectance (such as a Land Mondrian).

To see that scattered light under some conditions
permits a solution to the lightness normalization pro-
blem, it is useful to follow an analysis used by Ullman
(1976). Consider a Mondrian constructed from flat
matte rectangles of different sizes and reflectances
(Land, 1971). In the presence of a point light source
there will be a gradient of reflectivity across the
Mondrian, depending upon the relations between the
viewer, the source, and the inclination of the
Mondrian. Let these angular dependencies of reflec-
tivity be a function f(6, ¢, ), which is normalized to 1.

Let i; be the recorded image intensity for surface J
of reflectance ¢;. Assume that the transfer function T'is
known, where T describes the relation between the
recorded image intensity i; and the actual incident
intensity e; Then with no stray light in the optical
system, the resultant measure of image intensities for a
source of strength I would be

i;=T(e))=Tle, 1-/(0: ¢, w)]. o)

However, if stray light of the optical system is
included, then a constant fraction f(x,y) of I must be
added, where x, y refer to the image coordinates in the
neighborhood of the position identified with i, For
simplification, we will assume that the source is visible
in the image with no other light illuminating the
Mondrian, and that f(x, y) is known completely and is
constant, corresponding to scatter in a whole-field
integrating system. Under these very restrictive con-
ditions, the image intensities now become

i,=T(e,)=Tlo; I-/(6.¢.w)+B-11. 2)

Consider next a boundary between two abutting
rectangles of the Mondrian. At a neighboring region
along the boundary we can describe a second set of
image intensity values i; and from its relation to i;
define an image intensity gradient G;:

i,—1,=T(G)=T{,I[f(0, b y)—f(0, &', y)]}. 3)

Note that the scattered light term drops out because it
is constant over the neighborhood and therefore does
not change the gradient measure.
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At the border between two abutting surfaces S;
and S,, each of different reflectances ¢, and ¢,, we now
have the following relations between the two image
intensities and gradients:

T_l(i1) _ €y _ (¢, -f(0, d)’IP)‘*‘ﬁ)

T i, e, (02:f(0,4,w)+B) @
T Y, —#) G, ¢
T i,—1) G, 0

where T~ ! is the inverse of the transfer function of the
recording system.

Thus, if the reflectivity function, f, is known, then
the reflectances ¢, and o, can be determined because f
and T~! are measurable directly, and the values e, /e,
and G,/G, can be derived from the image. But Horn
(1975) has shown that f is recoverable from the image
gradients for surfaces of uniform reflectance, and hence
reflectance can be recovered from the image under
certain very restrictive conditions. For the Mondrian,
the solution is

ik k*j
where S; and S, are abutting surfaces.

Unfortunately, in most real scenes and images, the
light reflected from adjacent objects provides an im-
portant contribution to the illuminance of surfaces,
and Eq. (2) is not valid. Furthermore, all sources may
not be in the image, nor will the scattered light
distribution function f(x, y) necessarily be known. For
many scenes, however, indirect lighting constitutes the
major portion of the illumination of a surface. For this
case, an average scene reflectance, g, must be assumed
(or measured) and Eq. (2) must be modified as follows:

i;= T(e;) = TLo, I-/(0, &, v) +2-B-11. ©)

The reflectance ¢; of a surface §; now cannot be
determined without knowledge of g. Yet the brain
clearly has a scheme for normalizing gray scales. Is it
merely assuming an average reflectance value?

5.2. Two Optical Systems

Consider the case where two different optical systems,
C and R, process the same image. Let the C system (or
image) be essentially free of scatter light, whereas the R
image system is not, with its optical system acting like
a total integrator of the scattered light. For the R
system, therefore, the scattered light will be constant
everywhere (although the recording image may be such
that only a limited portion of the total field of scatter is
sampled). Let ¢; be the direct, scatter-free intensity of
the C system for a point on surface S; and let r; be the
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image intensity for the same point as seen through the
R optical system. Then for the surface reflectivity o ; we
have

i1 7
i (7)

where ¢ is the average reflectivity, ¢; and 1} are
respectively the outputs of the C and R imaging
systems, and T~ ! is the inverse of the image intensity
transfer function. For the moment, assume that the
two transfer functions T, and T, are of the same form
(ie., linear, log, exponential, etc.) but differ only by a
constant factor « such that o7, ' =T "1,

Consider now the following three relations between
the image intensities of adjacent surfaces S;and §,

S 8
r_o;+pe

el TN ©)
e o+ Po

and for any single surface,

C; oo;

= . 10
roooit+ o =

Note that Egs. (8) and (9) are formerly the same as
Eq. (4) but now gradient information need not be used.

We now would like to solve for g, explicitly, yet this
is not possible although surprisingly both o and f can
be determined. For example, f can be deduced for an
image by one of two ways. First, if the image weighting
function for the R system is not known exactly, then
consider a boundary between two large homogeneous
areas (sky and trees, grass and dirt), where each area is
larger than the collecting area of a sensor in the R
image plane. Then at the boundary, 2g=¢, +o0,.
Substitution in (8) and (9) yields

2ric,—1c,)

o 2 11
(rl—rz)(cl-i—cz) (1)

f=

If the weighting function for an R sensor is known,
then a second determination of § can be made from
any region in the image by application of Egs. (8) and
(9) to all surfaces within the range of the weighting
function.

The constant «, relating the two image transfer
functions can also be deduced from Eq. (10), for at any
point in the image:

oi(ar;—c,) _olar,—cy)

pe= = (12)

(& @

1

combining (13) with (8) we find that across any border

_GT¢

(13)

ri—1y

providing a local determination of o. Thus, both « and
B can be determined locally in the image.

It is now possible to solve the lightness scale nor-
malization problem. Although without an explicit
value for g the reflectivity of any surface cannot be
determined, we do have sufficient information to find
a surface whose reflectivity matches g. Once such a
patch has been found, then Eq. (8) can be used to deter-
mine the remaining reflectivities. The gray scale will
thus always be normalized to the average reflectivity .
For such a patch S, 0,=g and from (10)

(& o

i :1+[3’ (14)

where « and f§ are determined from (11) and (13).
Therefore, if a patch yields a C to R ratio of Co/To, then
that patch has an average reflectivity g.

To summarize, lightness or reflectance scales can
be normalized using only image signals provided that

1) There are two imaging systems, one sensitive to
scattered light, the other not.

1)) The form of the transfer function of the two
image sensing systems is known

1ii) These two transfer functions differ by a constant
(which need not be known)

iv) The distribution of scattered light in the optical
system is constant (but it need not be known).

If the transfer function is linear, then the average
reflectance g will be proportional to the average of the
c; signals, and the normalization is trivial. If the
transfer function is nonlinear, however, the compu-
tation becomes elaborate. Some non-linear forms of
the transfer function, however, can yield simple com-
putations. For example, an ideal transfer function
would be one such that c,/r,=1 (ie., ¢o=r,) when a
patch had an average reflectance. By pairing two such
Imaging systems, then the transfer function need not be
known. As will be seen shortly, this solution is ap-
parently used by the brain.

5.3. Scattered Light Model

Within the human eye, the rods and cones constitute
two characteristically different imaging systems.
Because the directionally sensitive cones are oriented
toward the pupil (Laties, 1968; Enoch and Laties,
1971) they must be relatively insensitive to scattered
light. Rods, however, are not directionally sensitive
and will respond to scattered light.



For each individual rod or cone, the signal, V; in
any retinal region can be described by the Naka-

Rushton equation (Naka and Rushton, 1966 ;
Normann and Werblin, 1974):
V*
ve—"2, (15)
e+ao

where e is the image intensity and ¢ and V* are
constants of the system. (V* is the maximum voltage
and ¢ is the intensity that elicits a signal one-half V*).
This relation can be recast to indicate the form of T7':

aV

S A— 16
S (16)
Now replace the signal ¥ by the rod and cone signals
V.=r al_ld V.=c [see Eq. (7)] and let ¢, and o, be the
appropriate constants for each system. Then following
Eq. (10), we find that the relation between the image
intensities ¢; and r; and the signals ¢’ and " available to
the brain will be
¢ o V(VFE=V) 0

ERte o e 17
o V(E V) " o+ e

L

with «=0,/0. An analysis similar to the preceding
section can now be made to solve for § and o in terms
of the available signal values V,=c" and V,=r". Such a
computation to determine a region having an average
reflectance, o, is clearly quite complex and ludicrous.

Instead, consider the much simpler result that
would occur if the brain merely was required to
determine whether the rod and cone signals were

equal. Substituting V, equals V, in Eq. (17) we find that

o VF=V) _ (18)
o, (VE=V) oo+po’

where g, is the patch of “standard” reflectance.

To solve Eq. (18) a decision must be made regard-
ing how the two V-logI curves for the rod and cone
systems will be normalized with respect to each other.
The simplest solution would be to scale the intensity
values according to the equivalent background levels
of each system. Much evidence supports the notion
that each receptor system sets its own equivalent
background level for any steady-state level of illumi-
nation (Barlow and Sparrock, 1964; Graham, 1965;
Crawford, 1947). In effect, the constants ¢, and o, are
describing the equivalent backgrounds of the two

systems in the particular illuminant — be it achromatic

or chromatic. Such a scale change in the effective
intensity units is equivalent to a shift of the V-logl
curves along the horizontal axis in Fig. 1 for each
intensity is merely changed by a factor proportional to
o. Now let the two R and C curves cross the C curve at
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Fig. 1. Hypothetical response curves for rods and cones, adapted
from Normann and Werblin (1974). Increments on equivalent
backgrounds o, and g, lead to signals AC and 4R, assuming that the
response levels for 1/2 6, and 1/2 ¢, are equalized. Gains g and g, are
the slopes of the respective curves at their inflector points (see
Appendix 1)

a point where V, equals 1/4 of its maximum signal V;*.
Then it can be shown that the rod response at this
cross-over point will be

V,=V*[1+a4-1/c]. (19)
Substituting into Eq. (18) we obtain

V,* A [0

VE [l+oA—Djo]  eo+he

=4

(20)

But the normalization of the rod and cone intensity
scales to these respective equivalent backgrounds'
corresponds to setting g, =0, Hence for all A’s we can
obtain the same solution for g, :

pe

Q= V-1 =
Thus, as long as the saturating voltages V*, V;* and the
scatter coefficient f remain constant in the two imag-
ing systems, a natural strategy is to assume o is
generally constant also, at least over a wide enough
field of view. For the normalization of lightness scales,
it is not necessary that a patch of average reflectance
always be determined, but only that the reference is
always a patch of the same reflectance, regardless of
the scene. Thus a surface of reflectivity ¢, has a unique
interpretation, for it can serve as a reflectivity against
which other surface reflectivities can be compared. I
will call a surface reflectance satisfying this condition
as having a unique gray reflectivity.

1 Note that another possibility for normalization of the rod and
cone intensity scales instead of a horizontal shift along logI is to
raise the rod response function by a bias voltage. In this case, a
similar solution can still be obtained




130

To summarize again the conditions for which Eq.
(21) will yield a unique gray reflectivity:

1) The rod and cone transfer functions are approxi-
mated by the Naka-Rushton equation and each have
different saturation constants (V* and V*).

i) Each system independently normalizes its V-logl
curve to its own equivalent background.

iii) The rods are much more sensitive to scattered
light than the cones.

iv) The distribution of scattered light in the optical
system is constant.

v) The reflectance of a scene on the average is
constant.

Note that the first two (design) constraints are
commonly accepted and are very general properties of
visual system, the third is a specific but well document-
ed fact, the fourth is derived from a physical limitation
imposed upon all optical systems, and the final con-
dition is an assumption about the nature of the
external world.

6. Psychophysical Comparisons
6.1. Unique Gray Reflectance

To demonstrate that the human visual system may
indeed use a lightness normalization scheme suggested
by the scattered light model, we must obtain inde-
pendent estimates of V*, V* and f and p. Several
estimates of the first two parameters are available. Of
these perhaps the data of Normann and Werblin
(1974) are the most direct, although they were obtained
from Necturus retina. Appendix 1 shows that V* and
V¥ correspond to the slopes of the receptor response
curve plotted versus logI as shown in Fig. 1. Thus, the
ratio V¥/V* is the same as the ratios of rod-cone
sensitivities when plotted on a LogI scale. For mo-
derate levels of illumination (10 cd/m?) the Normann
and Werblin data suggest a ratio of about 2. Of course,
this value is for isolated receptor potentials in a non-
mammalian species.

In man, there are two methods that can be used to
estimated the gain ratio V*/V*. Although each method
has a different theoretical underpinning, it is of interest
that they both yield ratios similar to that of Normann
and Werblin.

6.1.1. Detective Quantum Efficiency. The detective
quantum efficiency (DQE) of a visual process is a ratio
of the actual detecting ability of the eye to the maxi-
mum conceivable detecting ability. It is equivalent to
the square of the ratio of the signal-to-noise of the
output to the input signal-to-noise ratio. But if the ¥,
and V, values in Eq. (21) are taken as signal-to-noise
ratios of the output signal, and if the output noise (or

background) is shared by both systems, then the ratio
of (DQE) for the rods and cones will equal the ratio of
the sensitivities of the two systems if the operating
characteristic is plotted against logI (see Appendix 4).

Several authors have derived or measured DQE for
a variety of conditions, mostly for rod vision (DeVries,
1943 ; Rose, 1948 ; Jones, 1959 ; Barlow, 1962 ; Hallett,
1969 ; van Meeteren, 1978). Of these, only Jones (1969)
and van Meeteren (1978) provide data that allow DQE
to be estimated for both rods and cones under similar
conditions. Jones’ values range from about 1.2 to 2.0
for peak DQE ratios of cones to rods, yielding an
average value of 1.3 for V*/V* Van Meeteren’s data,
using an entirely different paradigm, yield a V*/V*
value of about 1.5 for retinal illuminances greater than
1 troland.

6.1.2. Brightness Scaling. A second method for estimat-
ing the relative sensitivities of the rod and cone systems
is obtained from data for brightness scaling using
Stevens’ (1966) magnitude estimation technique.
Consider Fig. 1 once more. The sensitivity of the
operating characteristic is such that if I is increased by
a factor k, then the response will increase by a factor k?
from its reference level, where g is the slope as in-
dicated. The exponent in Stevens’ power function is
thus a measure of the gain of the brightness system,
provided that the shared noise (or backgrounds) is held
constant (see Appendix). If the noise increases with
luminance, then the sensitivites will be overestimated,
each by a constant amount. Thus, the ratios of the
lowest exponents should be the most appropriate.
Data of Stevens and Stevens (1963) show two sets
of brightness estimation data obtained under similar
conditions, and one for scotopic and the other for
photopic levels. The exponents are 1/3 and 1/2 re-
spectively, yielding a sensitivity ratio g,/g, of 1.5. Since
gc/g.=V*/V*, this estimate agrees well with that
derived from the DQE. and will be used for VEIV X
The remaining parameters” in Eq. (21) are 8, and .
Values for the scattering coefficient f§ range from a few
percent to over 50 % depending upon the nature of the
source and the angular distance of the retinal region
from the source (Fry and Alpern, 1953; LeGrand,
1969). An average value for extended sources suggest-
ed by Wysecki and Stiles (1970) is 10%. This cor-
responds to the product f,g, with a value of 40% for
maximum scatter computed uniformly over a 10/

2 One neglected parameter has been a constant that corrects for
the fact that the cones doe not sample a single image point, but an
area described by the Stiles-Crawford effect. This constant depends
upon pupil size and has a value of about 0.9 for photopic levels.
Considering the accuracy of the approximations, this factor has been
neglected, but does become important at very low light levels



region and attenuated as 0~ * elsewhere. With fo=0.1
and V*/V*=1.5, the reference gray reflectance, g, is
22%. According to the Munsell gray scale, mid-gray is
a reflectance of 19 %. Direct measurements that I have
made an several observers of this unique gray sen-
sation yield experimental values of 16-20% for central
2 deg fields.

6.2. Effect of Overall Light Level

In sunlight and snow, the rod system is saturated and
its sensitivity goes to zero. Under these conditions, the
fraction V*/V* becomes very large and the value of ¢,
in Eq. (21) goes to zero regardless of the amount of
scatter. Thus, the unique gray reflectance is a surface of
near zero reflectance. Under these conditions, all sur-
faces must appear “whitish” or light gray.

The opposite extreme is at night, when only rod
vision is active. Now the cone sensitivity is lost, and
their saturation voltage, V*, becomes very small, caus-
ing the denominator of Eq. (21) to go to zero. (It can
never be negative.) The unique gray reflectance then
takes on a value of 1.0, regardless of 5. Thus a surface
such as snow that is 100% reflecting must appear
grayish, and all other surfaces will appear darker still’.
This is the realization of the old adage that “At night,
all cats are gray” — even Persion whites!

6.3. Effect of Spot Size

As the area of a light source changes, the sensitivities of
the rod and cone systems will also change. As the spot
size becomes smaller, the larger integrating area of the
rod fields causes the rod sensitivity, g,, to fall faster.
Thus for a point source, g, > g,. This relation causes g,
to go to zero as the spot size goes to zero (especially in
the dark, where 8 also goes to zero). Hence the unique
gray reflectance is near zero, and all point sources
against dark (or dim) backgrounds should appear
“white” or luminous”.

6.4. Abrupt Changes in Illumination Level

If neutral density filters are placed over our eyes, then
the world appears darker. The effect is quite pro-
nounced even if the overall retinal illumination is

3 Luminous objects: Eq. (21) describes how a reference gray level
may be computed by the visual system. The equation places no
constraints upon the relation between this reference reflectance, g,
and the gray sensation. Consider the possibility, suggested by Land
(1965), that an internal gray scale is created by comparing ratios of
intensity sensations across boundaries. The lightness sensation
value, V, then becomes a function of g;/0,:

V=f(ei/20)-

Because the maximum reflectance is 1.0, there is an upper bound,
A=1/g,, which imposes a limit on V,,, for all reflecting surfaces.
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reduced by only a factor of two or three. Have our
receptor activities changed appreciably by this light
reduction? It seems unlikely, considering that a factor
of three is a small fraction of a 107 dynamic range.

However, the rod and cone systems do not have the
same kinetics, with the rods being much more sluggish
(Sakitt, 1976). When the retina is dimmed, therefore,
the restabilization of rod activity will generally take
longer than that of the cones, and hence the rod
activity will be greater than cone. In effect, the value of
p has been raised, not by scattered light, but by a high
“dark light” level for rods. The reflectance seen as
unique gray will thus again approach 1.0, causing all
surfaces to appear “dark”. Following removal of the
filter and subsequent light adaptation, the reverse
occurs until adaptation is complete.

6.5. Increasing Scattered Light

Equation (21) is based upon the assumption that the
light striking a region of the retina comes through the
same aperture of the optical system for both the R and
C images. However, if the side of the eyeball is
illuminated by a penlight, then the internal scattered
light level is raised considerably. The rod (R) signals
will then be greatly elevated as compared with the cone
(C) signals. The model then predicts that the field
should become a darker gray, on the average, for only
very highly reflecting patches will produce strong
enough cone signals to compensate for the increased
rod response. (The situation is similar to the change in
rod-cone balance below photopic levels.) This “gray-
out” of the visual field with scleral illumination is
noted whenever the technique is used to cast shadows
of the vessels onto the retina (Purkinje, 1825).
However, to my knowledge, on one has previously
explained why the visual field should appear so much
darker.

7. Conclusions

Although I have not been able to prove that the
lightness normalization problem is solved by compar-
ing rod and cone activities, Eq. (21) does illustrate how
a solution can be reached by such comparison. Three

(This is the sensation “white™.) If A can be specified independently,
then all values of V greater than ¥, must be luminous surfaces.
Several independent sources of information can aid the observer in
estimating A. First, if the area is a source, then the distribution of
scattered light falls off in a distinctive manner for angles away from
this source, especially if it is a point (LeGrand, 1969). Second,
experience can provide us with reasonable estimates of 1 or V..
Preliminary experiments suggest that the criterion adopted by
observers varies widely, with some choosing a ¥, generally associ-
ated with reflectances of 0.8-0.9. Thus, under some conditions,
reflecting surfaces will appear luminous although they are not
sources. Highlights may be one such example
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physiological constraints were used : 1) cones are direc-
tionally selective, rods are not; 2) the sensitivity of
cone systems is much greater than that of rods; and 3)
the rod and cone systems adjust their operating char-
acteristics to their own equivalent backgrounds. In
addition, two simplifying assumptions were made: 1)
The distribution of scattered light in the optical system
is constant, and 2) the reflectance of a scene on the
average is constant. Finally, a major assumption was
that there is a sensation of “unique gray” that is
accessible to the observer and which corresponds to
the condition of equal rod and cone activity (or
perhaps more properly, equal S/N). With these as-
sumptions and constraints, a patch having a standard
reflectance can be identified, thereby normalizing the
lightness scale*. Parameter estimation suggests such a
reference patch will have a reflectivity of 20%, corre-
sponding to a Munsell 5 value. Although some of the
parameters are difficult to assess for everydays scenes,
estimates obtained for a variety of special conditions
do yield quite reasonable unique gray reflectances.
Furthermore, in a qualitative way, the behavior of the
human visual system is remarkably consistent with a
very simple hypothesis for normalizing lightness scales.
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8. Appendix

8.1. Response of Receptor System: Naka-Rushton
Relation

Naka and Rushton (1966) have suggested the follow-
ing hyperbolic relation between the retinal response V'
and flash intensity [:

VIVE=I/I+0), (1)

where V* is the saturation response and ¢ is a con-
stant. Williams and Gale (1978) have shown that a
considerable range of biophysical and psychophysical
data may be interpreted by this response relation.

On a V-logI plot (Fig. 1), the slope of the response
function will be

av

4 Clearly a similar solution can also be proposed for color
normalization, but it is not necessary for the activities of all cone
types to be compared with rod activity. One comparison suffices
provided that the activities of the remaining types of cone responses
are compared with the rod-normalized cone system (which can be 7)

At the inflection point of the V-logl curve, the
second derivative is zero. Differentiating (2) and setting
the result to zero shows that this inflection occurs
when the response is V*/2=g, with a slope equal to
V*#/4. Thus, at the point of inflection, the ratio of the
maximum sensitivities of the cone and rod systems
g./g, will be proportional to their saturation voltages
vV,

8.2. Response of Receptor Aggregates: Power and
Probability Considerations

The text analysis is confined solely to the situation
where the image responses are from isolated receptors.
Although it should be clear that the equivalent back-
ground (o) normalization scheme can be applied to an
aggregate of receptors of the same type, a more
detailed elaboration of the o-normalization procedure
seems in order.

Let 7 be the summation time over which the active
receptors will contribute to the activity of a neuron.
Within time 7, each receptor can be triggered at most
M times, which is equivalent to the maximum number
of quantal units (EPSP’s) it may contribute to a
neuron. Let n; be the actual number of excitatory units
contributed by the L™ receptor in the interval 7, and let
k be the total number of receptors that feed the neuron.

Principle of Neuronal Equivalence (Assumption):
At any level in a sensory system, within any neigh-
borhood, all neurons of a similar functional class (i.e.,
that have inputs and outputs of a similar functional
nature), will have equal activity on the average.

The purpose of this principle is to prohibit the
condition where some neurons in a network always
have unusually high or low activity. Such a condition
is not only inefficient, but distracting and will lead to a
change in the signal code for an identical stimulus
presented in different regions of the network. The
neural equivalence principle can be effected by adap-
tive mechanisms such as inhibitory feedback, cell size
regulation, synaptic counts and strength, and clearly
represents a memory state®. Prolonged changes in
input (such as by deprivation or sensory adaptation)
must then yield compensatory changes that return the
average firing rate of a neuron to its neighborhood
mean. Returning to the response of an aggregate
receptor system, the total number of active inputs in
time 7 will be

k

2. 9n; 3)

5 A second method of effecting the principle is to build each
neural level so that if the summation area of a second level neuron
increases (thereby increasing its total input), then the number of
second level neurons must increase at the same rate (thereby diluting
the contribution of each input)



where ¢ is the individual receptor sensitivity and n; is a
function of log intensity (see Fig. 1). However, by the
principle of neuronal equivalence, the effectiveness of
each input must be reduced in proportion to k. The
average input to a neuron will then be

1Xn. n
gl QLY 4
L% =% @

Similarly, the average total number of inactive inputs
will be g(M — n)/k.

Now the activity of a neuron reflects the power of
its input. However, the principle of neural equivalence
requires that the average firing rate of every neuron on
the same level be the same. Thus, the signal is carried
by the power fluctuations about the mean activity level
(ie., the mean level is discounted at the next higher
level.) The total signal power of a neuron is thus the
normalized sum of the RMS changes in active and
inactive input:

o i(gn,-/k~ gi/k)*

gn/k
£ [g(m—n)/k—g(m—n)k]*
LTk &
_9g (n,—7)?
- Ezﬁm—ﬁ/M]' (©)

If i < M, then the power is a random variable with a x*
distribution, with a mean value P of

P= M ~gA, (7)

k

where 1 is the mean of the Poisson probability function
characterizing the delivery rate of the receptors’
EPSP’s. (Note that 1 is proportional to log intensity for
any adaptation level.)

The power of a neuron is thus proportional to the
number of its inputs, as well as the sensitivity of the
neuron (receptor) providing these inputs. The relative
power of the rod and cone inputs, therefore, will be
proportional to their relative sensitivities on a V-logl
plot as in Fig. 1. Equation (21) will thus remain valid
regardless of the number of receptors that comprise the
aggregate (or receptive field).

8.3. Weber Fraction

If the activity of a neural system has a x> distribution,
then the mean-to-sigma ratio will remain constant at
[(k—1)/2]*%. In the case where a receptor system must
decide whether the signal level has changed in a region,
its task will be to compare P, with P, with k
remaining constant. Hence detectability will be a func-
tion of A,/4, only. For a given level of detectability,

133

therefore, 4,,/A, will be constant, and hence the Weber
fraction will also remain constant®.

However, if the principle of neural equivalence
holds, then it is not necessary for k to remain constant
also, for Eq. (7) is independent of k, for large k. The
number of receptor inputs may change with retinal
eccentricity, for example, and the Weber fraction will
still remain constant.

8.4. Detective Quantum Efficiency (DQE)

DQE is the ratio of the actual detecting ability of a
system to the detecting ability of an ideal observer that
makes optimum use of all of the signal collected (Jones,
1959). In terms of signal-to-noise ratios, DQE may be
defined as follows:

observed s/n\?
S 7 (®)

D =
QE ( ideal s/n

We must now obtain estimates for the signal and
noise level where detection is optimal. In the experi-
ments of Blackwell (1946) used by Jones (1959) to
estimate DQE, test flashes were superimposed upon a
steady background field. If adaptation were complete,
then the average power in the detecting network must
be near zero, invoking the principle of neuronal
equivalence. Deviations from this value will arise from
two sources: (1) external shot noise of the incoming
photons; or (2) spontaneous internal activity. Because
DQE reaches a maximum well beyond the Poisson-
limited range of luminances with detection optimal
where Weber’s law holds, the major source of noise
must be spontaneous internal activity, rather than
photon noise. Thus the noise level P, will be the same
for both the average rod and cone systems.

Combining Egs. (7) and (8), we obtain at a given
luminance level:

DQE(cone) P (cone)/P, g, V¥

DQE(rod) P, (rod)P, g, ‘ﬁ‘ ©)

r

Unfortunately, the DQE for both systems is not avail-
able at the same luminance level, because the most
sensitive system sets the threshold. However, from
Jones® (1959) calculations, it can be seen that in the
region where either the rod or either the cone system
limits detection, then DQE is roughly constant. Thus
these values were extrapolated to obtain the separate
rod and cone system DQE’s at intermediate photopic
ranges (see Fig. 4 of Jones, 1959).

6 Note that detectability will follow a power-law ROC
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8.5. Power Law Exponent

Let the subjective sensation of brightness, B, be some
function f of the receptor response, R:

B=/(R), (10)

where R=glogI, with g equal to the system sensitivity
and | is the test spot luminance. Now the power-law
result for brightness states that

B=I, (11)

where e is an exponent that is different for rod and
cone systems (approximately 1/3 and 1/2 respectively).
Then

dB e-1_ B

But from (10)

dB ., AR gf'(R)

o =S R = 7 (13)

Combining (12) and (13) we obtain two equations, one
for the cone and the other for the rod system:

9./ (R)=e B,
g.f(R)=e,B, .

To compare the relation between these two brightness
functions, divide one equation by the other to obtain

(14)

e (15)

Thus, the ratio of exponents will equal the ratio of
sensitivities of the two systems, where sensitivity is
defined by Fig. 1. But Appendix 1 shows that g./9,
=V*/V* and hence the ratios of the exponents will
also equal the ratio of the two saturation constants in
text Eq. (21).
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