
Confidential Draft – Do Not Distribute!!

empty

FTL Considered Harmful for Flash Storage

Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim∗, and Arvind

Massachusetts Institute of Technology
∗Seoul National University

(Submitted to SOSP ’15)

Abstract

Existing flash-based SSDs employ a flash translation layer

(FTL) to provide the abstraction of a generic block device.

This high interoperabilitywith HDDs, however, comes at the

price of substantial inefficiency, in terms of extra I/O op-

erations that degrade I/O performance and storage lifetime.

FTL implementations also require considerable resources –

multiple CPUs and a large amount of DRAM. In this paper,

we propose a new Reduced I/O System Architecture (RISA)

that refactors two main components of the I/O stack, namely

the storage device and the file system. Unlike the FTL-based

storage that runs complex management functions in the stor-

age device, a RISA storage device is simplified to contain

only low-level management functions which are required to

provide reliable storage access. A RISA file system works

in cooperation with the simplified RISA storage device and

directly manages NAND flash in a more efficient manner by

using rich system-level information. We have implemented

RISA, including a RISA file system and the RISA storage

device on a custom flash card, and evaluated its effective-

ness using real-world applications. Our experiments show

that RISA reduces the DRAM requirement by 128X, and

improves performance and lifetime by up to 1.8X and 18%

over the FTL-based storage solutions, respectively.

1. Introduction

NAND flash-based storage devices are replacing hard disk

drives (HDDs) in many consumer devices. They are also

finding increasing use in servers to speed up many appli-

cations of interest. Thanks to Moore’s law and the intro-

duction of advanced manufacturing technologies like 3D

NAND [21], the prevalence of flash-based devices will con-

tinue to increase over the next decade.

In order to hide the physical properties of NAND flash

and to provide interoperability with existing block I/O sub-

systems, NAND flash-based devices employ an intermedi-

ate software layer, called a flash translation layer (FTL) [1,

8]. Using the FTL is considered to be essential in high-

performance flash storage. However, its usefulness must be

reconsidered because of the following drawbacks.

First, FTL-based storage requires significant hardware re-

sources due to the maintenance of a huge mapping table and

the execution of complex firmware algorithms. Recent flash-

based SSDs require multiple processors and large amount of

DRAM (e.g., 3-4 ARM cores running at 300-600 MHz for

consumer SSDs [40, 42], a quad-core CPU running at 1 GHz

for enterprise SSDs [15], and 1 GB DRAM [40, 42]). Sec-

ond, even with generous amount of resources, performance

can be suboptimal. The FTL makes important decisions af-

fecting storage performance and reliability, but these deci-

sions are not always the best because they are made based on

very limited information available at the level of the storage

device. Third, the FTL-based storage works like a black-box

– its inner-workings are completely hidden from the host file

system, which can make the behaviors of flash storage un-

predictable [39]. This is a serious problem for applications

requiring balanced I/O fairness and low I/O latency.

Many researchers and SSD vendors have attempted to ad-

dress these problems by adding more features to the stor-

age side – (1) by running advanced FTL algorithms [10,

22, 26, 30, 35], (2) by adding custom interfaces to deliver

system-level information to the FTL for better optimiza-

tion [7, 11, 13, 23], and/or (3) by offloading host functions

(e.g., the file system) to the storage device [24, 31, 44].

While these approaches alleviate some of the drawbacks

with the FTL-based design, they do not solve the underly-

ing issues with using the FTL and they come with increased

design complexity and cost.

In this paper, we propose aReduced I/O SystemArchitec-

ture (RISA) to overcome the problems of the FTL-based de-

sign. As the name implies, the design philosophy of RISA

is fundamentally different from the FTL-based storage de-

sign. By refactoring two main components of the I/O stack,

namely the file system and the storage device, RISA elim-

inates the necessity for almost all the functionalities of the

FTL, reducing the design complexity of the storage device.

A well-optimized file system directly manages NAND flash

with minimum (but essential) supports from the storage side.

The existing FTL-based design style, which is opposite to

RISA, is called Complex I/O System Architecture (CISA)

because of its complex design approach.



A RISA file system (RFS) is based on a log-structured

file system (LFS) [41] that appends new data in a log and

reclaims free space using garbage collection. RFS leverages

these inherent design features of LFS which are well-suited

to the physical natures of NAND flash. Because of its inter-

nal design, a conventional LFS still needs the FTL to hide

the out-place update restriction of NAND flash. Unlike LFS,

RFS sees underlying storage as an append-only device that is

divided into physical chunks (segments). RFS then directly

manages NAND flash using built-in LFS modules, such as

a segment allocator and a segment cleaner. This eliminates

the need for logical-to-physical mapping (to handle in-place

updates) and garbage collection on the storage side, thus

greatly reducing the resources required. This direct manage-

ment of NAND flash at the host side also enables RFS to

exploit rich system-level information, which improves both

I/O performance and storage lifetime by reducing extra I/Os

for storage management.

On the other hand, a RISA storage device (RSD) is free

from almost all storage management tasks and is designed

for reliable storage access and high I/O throughput. RSD

contains bad-block management, wear-leveling and ECC,

which are minimally required to offer error-free NAND ac-

cess. For this purpose, RSD only maintains a tiny table. This

is a reasonable design choice because an unreliable NAND

substrate is more effectively handled by the storage con-

troller. RSD also performs I/O queuing to maximally exploit

I/O parallelism of multiple channels/ways. Finally, RSD ex-

ports standard block I/O interfaces, exposing a linear logical

address space and three primitive operations (READ, WRITE

and TRIM). These are sufficient for RFS to manage RSD.

We implement a proof-of-concept prototype of RISA,

which includes a file system, flash firmware and a flash

controller, on our custom flash platform. Our experiments,

using micro benchmarks and real-world benchmarks, show

that RISA improves I/O performance and storage lifetime

by up to 1.8X and 18% over CISA with a conventional file

system and a page-level FTL, respectively, while requiring a

fraction (i.e., 1

128
) of DRAM.

This paper is organized as follows: Section 2 reviews ex-

isting I/O system architectures for flash storage. Section 3

describes RISA in detail. Section 4 evaluates the effective-

ness of RISA over CISA. Finally, Section 5 concludes with

summary and future directions.

2. Existing I/O System Architectures

NAND flash has very different characteristics compared to

hard disks, including limited program/erase cycles, erase-

before-write requirement and page/block organization [1, 8].

To hide these characteristics and to ease NAND flash access

by a variety of applications and systems, several architec-

tures have been proposed.

Flash File System:Aflash file system, such as JFFS2 [17,

43] and YAFFS [32], is one of the well-known approaches

to use NAND flash. A flash file system is designed with full

knowledge of the physical properties and organization of

NAND device. It handles physical NAND device packages

by directly controlling I/O pin signals and I/O buses through

low-level NAND-specific interfaces like ONFI [18]. Since

an extra translation layer (e.g., FTL) is not necessary, a flash

file system works very efficiently with NAND flash.

Despite these advantages, a flash file system has criti-

cal limitations for use in recent flash devices like SSDs and

eMMCs. The internal flash storage organization (e.g., chan-

nel/way/plane organizations) and NAND chip properties are

both complex to manage and specific for each storage ven-

dor and process technology [1]. For example, YAFFS had to

undergo a major version update from 1.0 to 2.0 when MLC

NAND flash was introduced to the market which had differ-

ent properties from SLC NAND. Storage vendors are also

reluctant to divulge the internal architecture of their devices.

For this reason, designing/optimizing a flash file system for

various vendor-specific architectures is in fact difficult. The

continuing decrease in reliability of NAND flash is another

problem because this unreliable device can be more effec-

tively managed inside the storage device where device-level

information is available (e.g., effective wearing [9] and bit-

error rates [38]). As a result, a flash file system is rarely used

nowadays except in small embedded systems.

RISA offers the same advantages provided by a flash file

system. However, unlike a flash file system, RISA hides

internal storage architectures behind block I/O interfaces,

which simplifies the development of file systems without

knowledge of the underlying storage architecture and phys-

ical NAND properties. It is the role of RSD to directly con-

trol unreliable NAND devices and to provide the block I/O

interface based on device-level information.

FTL-based Storage: The FTL-based storage is a promis-

ing alternative that addresses the problems of flash file sys-

tems [6, 8, 25]. The FTL running inside the storage de-

vice hides all of the physical details and performs storage

management tasks, only exposing block I/O interfaces to the

host system. Thus, file systems or applications designed for

HDDs are able to run on top of the FTL-based storage. Be-

cause of this interoperability, it has become a de-facto stan-

dard in designing flash storage.

However, the FTL-based design has several drawbacks as

well. To avoid in-place updates, the FTL has to maintain a

mapping table that maps a logical address from the file sys-

tem to a physical address of NAND flash. The mapping ta-

ble requires a large amount of DRAM, and its size increases

proportionallywith SSD capacity. For example, if page-level

mapping is used, a 1 TB SSD would require 1 GB of DRAM

just for logical-to-physical mapping. The mapping table size

can be reduced by employing a demand-based FTL [10] or

a hybrid FTL [22, 26, 30]. However, these solutions come

at the expense of extra overheads such as additional in-flash

table management, read performance penalties and random

write performance degradations. The FTL also has to make

important decisions on flash management, such as how to do

2 2015/5/3



address mapping and when to perform garbage collection.

These algorithms require intensive computations and often

incur many extra I/Os to move around the data.

Host-based FTL solutions like Fusion IO’s DFS [3, 19,

20, 37] move key functions of the FTL to the host system

(e.g., a device driver) where more powerful CPUs and larger

DRAM are available. Supporting FTL functions in the host,

however, cannot eliminate the root cause of employing an

extra translation layer since it simply changes the software

layer where the FTL runs. The host-based FTL still wastes

considerable host resources and incurs many extra I/Os [19].

Moreover, since the details of underlying storage architec-

tures and NAND technologies must be exposed to the host

system, it has the same limitations as a flash file system.

RISA uses a fundamentally different approach from the

FTL-based storage. RISA eliminates the need for employing

a complex intermediate software layer in both the host de-

vice driver and the storage device. The RISA file system di-

rectly manages NAND flash using its built-in modules (that

already exist in the conventional LFS), which makes it un-

necessary to maintain a huge mapping table as well as to run

address translation and garbage collection at the FTL level.

Optimizing FTL with Custom Interface: Delivering

system-level information to the FTL has received a lot of

attention from academia and industry because of its advan-

tage in storage-level optimization [7, 11, 13, 23]. For ex-

ample, file access patterns of applications are useful in de-

tecting and separating hot-cold data, helping the FTL reduce

garbage collection costs. Detailed timing behaviors of appli-

cations can be used to hint when to trigger garbage collec-

tion. To share such high-level information, non-standard and

vendor-specific interfaces must be added to both the storage

device and the host. Modifications to the OS kernel and the

FTL must be made as well. Due to difficulty in standardiza-

tion, this approach is only useful in specialized applications

that require high performance under certain circumstances.

RISA runs high-level storage management algorithms

that would have a large impact on performance in the host

system. This allows RISA to easily exploit system-level in-

formation without adding custom interfaces and modifying

the storage firmware.

Offloading Host Functions into FTL: Some techniques

go one step further by offloading functions of the file system

(e.g., file allocation) onto the storage device [24, 31, 44].

The FTL can fully exploit rich file-system information (e.g.,

inodes, dentries and data) and/or effectively combine its in-

ternal operations with the file system for better flash man-

agement. However, running part or all of file-system func-

tions requires more hardware resources and greater storage

design complexity. Additionally, the range of optimization is

still limited to the file-system level because the application

is separate from the storage device.

In summary, the existing I/O system architectures have

evolved by adding more features to the I/O stack (e.g.,

advanced firmware algorithms, custom interfaces and host

functions). Even if these approaches may have their own

benefits, they fail to eliminate the fundamental inefficiency

of employing an extra management layer. A common prob-

lem of these approaches is that they increase the design com-

plexity and cost of the I/O system stack. This is why we call

them complex I/O system architectures (CISA).

There were prior studies like NoFTL [14] and REDO [29]

that attempted to eliminate the FTL from the device and

the host. NoFTL has the same limitations as the host-based

FTL because it just moves the FTL onto the database engine.

REDO is similar to our study. However, since it targets low-

end flash storage with two channels, it does not take into

account technical issues that arise with larger channels/ways.

It also does not consider a metadata management issue that

affects performance and data integrity. Finally (but not least

importantly), both of those works are based on simulation

studies. Thus, it is difficult to understand their feasibility as

well as the impact on performance in real systems.

3. RISA: Reduced I/O System Architecture

In this section, we describe the RISA file system and the

RISA storage device in order.

3.1 RISA File System (RFS)

The detailed implementation of LFS is very different from

one another [27, 28, 34], but their fundamental design con-

cept is the same as Sprite LFS [41]. Therefore, we explain

the high-level design of RFS by focusing on architectural

differences between RFS and the conventional LFS, exclud-

ing implementation details commonly found in other LFS.

3.1.1 Layout and Operations

Figure 1 shows the logical layout of RFS, along with the

corresponding physical layout in RSD. RFS sees a storage

space as one huge log divided into segments, which we call

logical segments. An individual segment is a unit of free-

space allocation and garbage collection. All user files, direc-

tories and inodes, including any modifications/updates, are

appended to free space in logical segments, called data seg-

ment. RFS maintains an inode map to keep track of inodes

scattered across the storage space. The inodemap is stored in

reserved logical segments, called inode-map segments. RFS

also maintains a check-point that points to the inode map

and keeps the consistent state of the file system. A check-

point is written periodically or when an explicit flush com-

mand (e.g., fsync) is issued. Logical segments reserved for

check-points are called check-point segments.

RFS operates differently from the conventional LFS in

following two ways. First, in-place updates are never al-

lowed. Many believe that LFS does not overwrite anything,

but this is not true. For fast recovery and easy inode man-

agement, LFS writes the check-point and the inode-map in

an in-place-update manner 1. The FTL should map update

1This is somewhat different depending on the design of LFS. Sprite LFS

overwrites data in a check-point region only [41], while NILFS writes seg-

3 2015/5/3



Figure 2: An example of RFS with RSD: (a) four new files E, F, G and H are written to the data segment 1. The files E and F are new

versions. After writing them, RFS appends IM#1 to the inode-map segment because it points to the locations of the files E, F, G and H. A

new check-point CP(v2) is appended as well. (b) Free space in RFS is nearly exhausted, so RFS triggers garbage collection. RFS copies the

files A and C to the data segment 2. Since the data segment 0 has only invalid data, RFS sends TRIM commands to RSD, making it free.

Finally, RSD erases the physical segment 2.

Figure 3: An example of LFS with FTL: The FTL sequentially writes all the file-system blocks to NAND flash using a mapping table

according to their arrival times. (a) The files E, F, G and H are appended to free pages. LFS sends TRIM commands to the FTL because the

old files E and F are obsolete. IM#1 and CP are overwritten in the same file-system locations. The FTL maps them to free pages using the

mapping table, invaliding old versions. (b) The FTL decides to perform garbage collection. It copies flash pages for A, C, IM#0 and E to free

pages and gets four free blocks (Blocks 0, 1, 2, 3). (c) LFS is unaware of the FTL, so it also triggers garbage collection to create free space

in the file system. It moves the files A and C to free space and sends TRIM commands. The files A and C are moved twice uselessly.

data to free space using a mapping table. To reclaim free

space occupied by obsolete data, the FTL should perform

garbage collection. By performing out-place updates even

for the check-point and the inode-map, RFS eliminates the

necessity of employing such functionalities in RSD.

Second, a logical segment in RFS directly corresponds

to a physical segment in RSD. As depicted in Figure 1,

a physical segment is the group of flash blocks organized

to fully exploit I/O parallelism for sequential writes. For

example, if RSD has two channels and one way, then a

physical segment would be composed of two blocks, one on

each channel. This way, the data layout of a logical segment

perfectly aligns with its physical segment, allowing RFS to

manage NAND flash directly in the unit of a logical segment

without knowledge of the underlying storage organizations.

RFS also uses a logical segment as the unit of TRIM to

inform RSD that which segments contain invalid data.

Figures 2 and 3 compare the behavior of RFS and con-

ventional LFS for the same set of file operations. For the

sake of simplicity, we assume that RFS and LFS have the

same file-system layout. The sizes of a file system block and

a flash page are the same. On the storage device side, LFS

runs the page-level FTL that maps logical file-system blocks

to any physical pages in NAND flash. In RSD, a physical

ment summary blocks in an out-place-update fashion [27]. F2FS overwrites

both a check-point and an inode map [28].

segment is composed of two flash blocks. RSD just erases

flash blocks containing only obsolete pages.

Figure 2 demonstrates how RFS manages NAND flash

without any help from the FTL. In particular, RFS incurs

fewer number of reads and writes for garbage collection than

LFS. In the conventional LFS, two different layers, the file

system and the FTL, doubly manage the same NAND flash

using different storage management and garbage collection

policies. Because of this duplicated management, unneces-

sary page copies often occur in LFS. Since RFS directly

manages NAND flash, this problem does not occur.

It must be noted that, even though LFS seems to work

poorly with the FTL, it often shows better performance than

journaling file systems like EXT4 [28, 34]. This is because

LFS incurs smaller in-place updates to NAND flash, thereby

reducing live page copies in FTL garbage collection. How-

ever, when the storage space is highly fragmented with valid

and obsolete data and many live data copies are involved

both in LFS and the FTL, the performance of LFS is sig-

nificantly degraded due to duplicate garbage collection. We

show this problem in detail in experimental sections.

Operationally, RFS has a few key issues that must be

addressed for it to function correctly and efficiently. The

conventional LFS keeps check-points in a fixed location.

By reading the latest check-point from that location, LFS

quickly returns to the consistent state when it is mounted or

4 2015/5/3



Figure 1: The upper figure illustrates the logical layout of RFS.

Four files are appended to data segments along with their inodes

in the following order: A, E, C and F. Then, two pieces of the

inode map, IM#0 and IM#1, are written. While IM#0 points to

the locations of inodes for files A and C, IM#1 indicates those for

files E and F. Finally, the check-point CP(v1) is written to check-

point segments. The bottom figure shows the organization of a

physical segment corresponding to the logical segment. Individual

file-system blocks (denoted by numbers inside circles) are statically

mapped to flash pages to maximize I/O parallelism.

after power failure. LFS also often keeps the inode map in

the fixed locations, which is sorted by ascending inode num-

bers. This allows LFS to easily find the location of inodes by

using an inode number as index for the inode map. Updating

the inode map in place is useful to remedy the wondering

tree problem [28, 41]. Unlike LFS, RFS always appends all

the changes to check-point and inode-map segments, so their

locations are not fixed. This makes it difficult to find the lat-

est check-point and the locations of inodes.

In the next sections, we explain howRFS manages check-

point segments for quick mount and recovery, and show how

it handles inode-map segments for fast searches of inodes.

3.1.2 Check-Point Segment

The management of check-point segments is very straight-

forward. RFS reserves two logical segments, logical seg-

ments #1 and #2, for check-point segments. (Note: logical

segment #0 is reserved for a superblock). RFS appends new

check-points with different version numbers using the avail-

able free space. If free space in both segments is exhausted,

the segment containing only old check-point versions is se-

lected as a victim for erasure. The latest check-point is still

kept in the other segment. RFS sends TRIM commands to

invalidate and free the victim, which can then be reused to

write new check-points. Note that even though RFS repeat-

edly uses the same logical segments, it will not unevenly

wear out NAND flash because RSD performs wear-leveling.

This will be discussed in Section 3.2.

Data structure Unit size Unit count Storage

Inode-map block 4 KB 524,288 Flash (inode-map segments)
TIMB 2 MB 1 DRAM

TIMB block 4 KB 512 Flash (inode-map segments)

TIMB-blocks list 2 KB 1 Flash (a check-point)

Table 1: An example of data structures sizes and locations with

a 1 TB SSD. Their actual sizes could vary depending on RFS

implementation (e.g., an inode-map size) and storage capacity.

When RFS is remounted, it reads all the check-point seg-

ments from RSD. It finds the latest check-point by compar-

ing version numbers of all of the candidates. This brute-force

search is efficient because RFS maintains only two segments

for check-pointing, regardless of storage capacity.Moreover,

since segments are organized to maximize I/O throughput,

this search utilizes full bandwidth and mount time is short.

3.1.3 Inode-Map Segment

The management of inode-map segments is much more

complicated than check-point segments. The inode map size

is decided by the maximum number of inodes (i.e., files) and

is proportional to storage capacity. If the storage capacity is

1 TB and the minimum file size is 4 KB, 228 files can be

created. Suppose each entry of the inode map is 8 B (4 B

for an inode number and 4 B for its location in a data seg-

ment), then the inode map size is 2 GB. Because of its large

size, LFS divides the inode map into 4 KB blocks, called

inode-map blocks. There are 524,288 inode-map blocks for

the inode map of 2 GB (see Table 1). For example, IM#0

and IM#1 in Figures 1 and 2 are inode-map blocks. Each

inode-map block contains the mapping of 512 inodes.

RFS always appends inode-map blocks to free space, so

the latest inode-map blocks are scattered across segments.

For this reason, we need another management scheme to

quickly identify the latest valid inode-map blocks.

Inode-Map Block Management: To quickly find the

locations of inodes, RFS maintains a table for inode-map

blocks (TIMB) in the main memory. TIMB consists of 4-

byte entries that point to inode-map blocks in inode-map

segments. Given an inode number, RFS finds its inode-map

block by looking up TIMB. It then obtains the location of the

inode from that inode-map block. The TIMB size is 2 MB

for 524,288 inode-map blocks, so it is small enough to be

kept in the host DRAM. In-memory TIMB should be per-

sistently stored in the storage device; otherwise, RFS has

to scan all inode-map segments to construct TIMB during

mount. RFS divides TIMB into 4 KB blocks (TIMB blocks)

and keeps track of dirty TIMB blocks that hold newly up-

dated entries. RFS appends dirty TIMB blocks to free space

in inode-map segments just before a check-point is written.

TIMB blocks themselves are also stored in non-fixed lo-

cations. To easily build in-memory TIMB and to safely keep

it against power failures, a list of all the physical locations

of TIMB blocks (TIMB-blocks list) is written to check-point

segments together with the latest check-point. The number

of TIMB blocks for 1 GB of inode-map blocks is 512, so the

5 2015/5/3



Figure 4: Individual 4 KB TIMB blocks indicate 1,024 inode-

map blocks in inode-map segments. For example, TIMB#0 points

to IM#0∼IM#1023 in flash, and each IM indicates 512 inodes. Up-

to-date TIMB blocks are written to inode-map segments before a

check-point is written. The newly written check-point indicates all

of the physical locations of TIMB blocks in flash. If RFS searches

for the location of an inode whose number is 1023, it looks up

TIMB#0 in the in-memory TIMB and finds the location of IM#1

that points to 512∼1023 inodes in data segments.

size of a TIMB-blocks list is 2 KB. The actual size of check-

point data is several hundred bytes (e.g., 193 bytes in F2FS),

thus a check-point with a TIMB-block list can be written to-

gether to one 4 KB file-system block without incurring addi-

tional writes. Figure 4 illustrates how RFS manages inode-

map blocks and TIMB blocks.

Remount Process: In-memory TIMB should be reloaded

properly whenever RFS is mounted again. This remount

process is simple. RFS first reads the latest check-point as

we described in the previous subsection. Using a TIMB-

blocks list in the check-point, RFS reads all of the TIMB

blocks from inode-map segments and builds TIMB in the

host DRAM. The time taken to build TIMB is negligible

because of its small size (e.g., 2 MB for 1 TB storage).

A new check-point is materialized to NAND flash after

up-to-date TIMB blocks and inode-map blocks are written

to inode-map segments. By reading the latest check-point

successfully written to check-point segments, RFS returns

to the consistent state after sudden power failures. All the

TIMB blocks and inode-map blocks belonging to an incom-

plete check-point are regarded as obsolete data. Note that the

recovery process of RFS is the same as the remount process

because RFS is based on LFS [41].

Garbage Collection:When free space in inode-map seg-

ments is almost used up, RFS should perform garbage col-

lection. In the current implementation, the least-recently-

written inode-map segment is selected as victim. All valid

inode-map blocks in the victim are copied to a free inode-

map segment that has already been reserved for garbage

collection. Since some of inode-map blocks are moved to

the new segment, in-memory TIMB should also be updated

to point to their new locations accordingly. Newly updated

TIMB blocks are appended to the new segment, and the

check-point indicating TIMB blocks is written to the check-

point segment. Finally, the victim segment is invalidated by

a TRIM command and becomes a free inode-map segment.

To reduce live data copies, RFS increases the number of

inode-map segments such that their total size is larger than

the actual inode-map size. This wastes file-system space but

greatly improves garbage collection efficiency. Since inode-

map blocks have higher temporal/spatial localities than user

data, many blocks are invalid before garbage collection is

triggered, which means there is generally less data to copy.

In addition, by separating inode-map blocks (i.e., hot data)

in inode-map segments from data segments (i.e., cold data),

RFS further improves garbage collection efficiency. Cur-

rently, RFS allocates inode-maps segments four times larger

than its original size (e.g., if the inode map size is 2 GB,

8 GB is assigned to inode-map segments). The space wasted

by these extra segments is small (e.g., 0.68% = 7 GB / 1 TB).

All of the I/O operations required to manage inode-map

blocks are extra overheads that are not present in the conven-

tional LFS. In our observation, those extra I/Os account for

a small proportion, which is less than 0.2% of the total I/Os.

3.1.4 Data Segment

RFS manages data segments in a similar manner as the con-

ventional LFS. RFS buffers file data, directories and inodes

in DRAM and writes them to the storage device all at once

when their total size reaches a data segment size. This buffer-

ing is particularly advantageous for RFS – it can make use of

the full bandwidth of RSD because a segment is organized

to maximize device I/O throughput. RFS performs segment

cleaning when free data segments are nearly exhausted. As

shown in Figure 2, RFS selects a victim segment and copies

valid data to a free segment. RFS sends TRIM commands to

inform RSD that all flash blocks belonging to the victim is

obsolete. Finally, the victim segment is freed.

In order to reduce cleaning costs, RFS borrows well-

known optimization techniques from the existing LFS im-

plementation (e.g., hot-cold separation, victim selection and

segment cleaning). Many flash devices adopt similar tech-

niques in the FTL, but running such techniques at the file

system level is more efficient because system-level informa-

tion can be easily exploited, in addition to high-performance

CPUs and fast/large DRAM available at the host.

3.1.5 Segment Size

A logical segment size is an important parameter in both

RFS and LFS. Choosing a large segment size is generally

beneficial for utilizing the full bandwidth of the storage

device. However, a segment size that is too large can incur

more live data copies during segment cleaning [33]. For this

reason, in the conventional LFS, a segment size is limited to

several MB (e.g., 2 MB) [28, 33]. In RFS, a logical segment

must be the same as a physical one which is decided by the

number of channels and ways in RSD. Modern flash devices

tend to have a larger number of channels and ways for better

performance. Thus, the segment size of RFS could be much

larger than the conventional LFS, which potentially results

in the significant increase of segment cleaning costs.

6 2015/5/3



Figure 5: An example of how RSD handles writes using a

segment-map table. There are four channels and one way in RSD,

and each block is composed of two pages. A physical segment has

8 pages. When a write request comes, RSD gets a logical segment

number (i.e., 100 = 801 / 8) using the logical file-system block num-

ber. It then looks up the segment-map table to find a flash block

mapped to the logical segment. In this example, the logical block

‘801’ is mapped to ‘Block 0’ in ‘Channel #1’. Finally, RSD writes

the data to a corresponding page offset in the mapped block.

According to our experiments, RFS shows better perfor-

mance than the conventional LFS as well as EXT4 even with

a large number of channels/ways (e.g., 8 channels/8 ways

with a 32 MB segment). This is because the increase in

live data copies is fewer than extra I/Os incurred by FTL

garbage collection. However, when a segment size becomes

very huge (e.g., 128 MB), increased segment cleaning costs

outweigh its benefits. We analyze it in detail in Section 4.5

and discuss our direction to solve such a potential problem.

3.2 RISA Storage Device (RSD)

Since RFS handles most of the complex storage manage-

ment tasks, RSD can be significantly simpler. The architec-

ture of RSD is similar to a simplified version of existing flash

storage with the block-level FTL [2]. However, unlike the

block-level FTL, RSD does not need to remap logical file-

system blocks to physical locations in NAND flash to avoid

in-place updates as well as not to perform block merges for

garbage collection. In this subsection, we describe the mini-

mum requirements for RSD implementation needed to offer

error-free NAND access and high I/O throughput.

3.2.1 Wear-Leveling and Bad-Block Management

As discussed in Section 3.1.1, file-system blocks in a log-

ical segment are statically mapped to physical flash pages

in a physical one. For wear-leveling and bad-block manage-

ment purposes, RSD only needs a small segment-map table

that maps a logical segment to a physical one. Each table

entry contains the physical locations of flash blocks that are

mapped to a logical segment along with a segment status flag

(STAT). Each table entry belonging to the same logical seg-

ment points to flash blocks in spread among multiple chan-

nels and ways. STAT indicates Free, Used or Invalid.

Figure 5 shows how RSD handles write requests. If any

physical blocks are not mapped yet (i.e., STAT is Free or In-

valid), RSD builds the physical segment by allocating new

Figure 6: An example of how RSD handles write requests when

RFS appends data to two segments A and B simultaneously. Num-

bers inside rectangles indicate a file-system logical block address.

RFS sequentially writes data to individual segments A and B, but

write requests arrive at RSD in a random order (i.e., 0, 8, 1, ...).

They are sorted in multiple I/O queues according to their destined

channels and are written to physical segments in a way of fully

utilizing four channels. If a single queue with FIFO scheduling is

used, the file-system block ‘1’ is delayed until ‘0’ and ‘8’ are sent

to flash blocks ‘0’ and ‘4’ through the channel 0.

flash blocks. A bad block is not selected. RSD picks up

the least worn-out free blocks in the corresponding chan-

nel/way. To preserve flash lifetime and reliability, RSD can

perform static wear-leveling that exchanges the most worn-

out segments with the least worn-out ones in background [4].

If there are previously allocated flash blocks (i.e., STAT is

Invalid), they are erased. If a logical segment is already

mapped (i.e., STAT is Used), RSD writes the data to the

fixed location in the physical segment. RFS informs RSD

via TRIM commands the physical segments have only obso-

lete data. Then, RSD can figure out which blocks are out-of-

date. Upon receiving the TRIM command, RSD invalidates

that segment by changing its STAT to Invalid. Invalid seg-

ments are erased in on-demand or background later.

3.2.2 I/O Queueing

To maximally exploit the I/O parallelism, RSD employs

per-channel/way I/O queues combined with a simple FIFO-

based I/O scheduler. This multiple I/O queueing is effective

in handling random writes. RFS allocates multiple segments

and writes data to different segments at the same. For exam-

ple, a check-point is often written to check-point segments

while user files are being written to data segments. For this

reason, write requests arriving at RSD could be random even

if RFS sends write requests to individual segments sequen-

tially. This degrades I/O parallelism. Figure 6 shows how

RSD handles random writes using multiple queues.

In RSD, write skews do not occur for any channel or way.

This is because RFS allocates and writes data in the unit of

a segment, distributing all the write requests to channels and

7 2015/5/3



ways uniformly. Moreover, since FTL garbage collection is

never invoked in RSD, I/O scheduling between normal I/Os

and GC I/Os is not required. Consequently, simple multiple

I/O queueing is efficient enough to offer good performance,

and complex firmware algorithms like load-balancing [5]

and out-of-ordering [12, 36] are not required in RSD.

4. Experimental Results

4.1 Evaluation Setup

We implemented RFS in the Linux kernel 3.13. Instead of

developing from scratch, we modified the F2FS file system

– a recently released LFS [28]. Besides check-points and an

inode-map, F2FS overwrites some file-system metadata, in-

cluding a segment information table (SIT) and a segment

summary area (SSA). To avoid these in-place updates, we

modified F2FS so that it appended SIT and SSA to inode-

map segments. F2FS also employed many useful features

for NAND flash, such as hot-cold separation, victim selec-

tion and advanced segment cleaning. RFS borrowed all of

these features from F2FS – RFS reused the exactly same file

management and garbage collection modules used by F2FS.

Our modifications to transform F2FS into RFS added ap-

proximately 1,200 lines of code, which was relatively mi-

nor. This shows that RFS can be easily ported to other LFS.

RSDwas implemented in our in-house FPGA-based PCIe

SSD prototype. Our SSD prototype had 8 channels and 4

ways with 512 GB of NAND flash, achieving 240K IOPS

and 67K IOPS for reads and writes, respectively. The flash

page size was 4 KB and the number of pages per block was

128. We synthesized on the FPGA an ECC engine for bit

error correction and a custom flash controller to commu-

nicate with raw NAND chips. We implemented bad-block

management, wear-leveling and I/O queuing modules in the

block device driver because our SSD prototype did not have

a dedicated embedded processor. All those software mod-

ules, however, can be implemented at the level of a storage

device if an embedded processor is available.

We compared RISA against two different CISA con-

figurations: CISAEXT4 and CISAF2FS. CISAEXT4 used the

EXT4 file system on top of a page-level FTL. CISAF2FS was

a combination of the original (unmodified) F2FS file system

and the page-level FTL. The page-level FTL was based on

pure page-level mapping with greedy garbage collection. An

over-provisioning area was set to 5% of the storage capac-

ity. To exploit multiple channels/ways, it also employed I/O

interleaving and multiple I/O queueing policies. The FTL

garbage collection was triggered when the remaining free

space was less than 1%. To offer the best I/O parallelism

when writing incoming user data later, the FTL reclaimed

free space in all the channels and ways. Creating free space

for all the channels/ways at the same time was also benefi-

cial to achieve good garbage collection throughput. Our SSD

prototype had 8 channels with 4 ways, so the FTL reclaimed

32 blocks when garbage collection was invoked.

Capacity Block-level FTL Hybrid FTL Page-level FTL RSD

2 GB 16 KB 121 KB 2 MB 16 KB
512 GB 4 MB 32 MB 512 MB 4 MB

1 TB 8 MB 62 MB 1 GB 8 MB

Table 2: FTL mapping table sizes

For EXT4, a default journaling mode was used and a

discard option was enabled to use TRIM commands. For

F2FS, a segment size was always set to 2 MB. In the case

of RFS, a segment size was set to 16 MB which was equal to

a physical segment size. RFS allocated inode-map segments

which were four times larger than its original size. For both

F2FS and RFS, 5% of file-system space was used as an over-

provisioning area for file-system garbage collection.

4.2 Memory requirements

We compare the mapping table sizes of RSD with three FTL

schemes, block-level, hybrid and page-level FTLs.While the

block-level FTL uses a flash block (512 KB) as the unit of

mapping, a page (4 KB) is used for address mapping in the

page-level FTL. The hybrid FTL is a combination of block-

level and page-level FTLs – while the block-level mapping

is used to manage the storage space offered to end-users, the

page-level mapping is used for an over-provisioning area.

For the hybrid FTL, 5% of the total capacity is used as the

over-provisioning area, which is equal to that in the page-

level FTL. RSDmaintains the segment-map table pointing to

flash blocks for wear-leveling and bad-block management.

Table 2 lists the mapping table sizes for storage capacities

of 2 GB, 512 GB and 1 TB. In particular for a 2 GB SSD,

the mapping table sizes are 16 KB, 121 KB, 2 MB and 16

KB for block-level, hybrid, page-level FTLs and RSD, re-

spectively. The mapping table sizes increase in proportional

to the storage capacity – when the capacity is 1 TB, block-

level, hybrid, page-level FTLs and RSD require 8 MB, 62

MB, 1 GB and 8 MB memory, respectively.

The mapping table size of the page-level FTL is very

large, but in our experiments, we assume that there is suffi-

cient DRAM memory for the entire mapping table. In prac-

tice, all of the mapping table entries are often too large to be

kept in DRAM, and the FTL should store them all in NAND

flash, only caching popular mapping entries in DRAM. The

management of in-flash mapping entries incurs many extra

I/Os (e.g., extra reads/writes and additional garbage collec-

tion for mapping entries kept in NAND flash) [10]. In our ex-

periments, we disregard these extra I/Os thus giving a base-

line advantage to our competing setups of CISAEXT4 and

CISAF2FS that uses the page-level FTL.

RSD maintains a much smaller mapping table than the

page-level FTL, enabling us to keep all mapping entries

in DRAM. In the following subsection, we demonstrate

that RISA shows better performance than CISAEXT4 and

CISAF2FS in addition to using less memory.

8 2015/5/3



Category Workload Description

File System

FIO A synthetic I/O workload generator
Tiobench A multi-threaded workload generator

Iozone
A file-system benchmark tool generating

various sizes of I/O requests

Database

Non-Trans A non-transactional DB workload

OLTP An OLTP workload
TPC-C A TPC-C workload

Hadoop
DFSIO A HDFS I/O throughput test application

TeraSort A data sorting application

WordCount A word count application

Table 3: A summary of benchmarks

4.3 Performance Analysis

We evaluated RISA using 9 different workloads, spanning

3 categories: file-system, DBMS and Hadoop applications

(see Table 3). To understand the behaviors of RISA under

various file-system operations, we conducted a series of ex-

periments using three well-known file system benchmarks,

FIO, Tiobench and Iozone. We also evaluated RISA using

response-time-sensitive database workloads: Non-Trans,

OLTP and TPC-C. Finally, we assessed the performance

of RISA with Hadoop applications from HiBench [16],

HFSIO, TeraSort and WordCount, which required high I/O

throughput for batch processing. We explain detailed bench-

mark settings and show our experimental results below.

For performance measurements, we focused on analyz-

ing the effect of garbage collection on write performance.

CISAEXT4, CISAF2FS and RISA all perform very differently

from the perspective garbage collection. For CISAEXT4,

since EXT4 is a journaling file system, only the FTL in the

storage device performs garbage collection. In CISAF2FS,

both F2FS and the FTL do garbage collection. In RISA, only

RFS performs garbage collection.

For fast experiments, we set the storage capacity to 2 GB,

with the exception of Hadoop benchmarks where we used

8 GB to accommodate the entire data set. The benchmarks

were configured to issue a large number of I/Os such that

sufficient I/O traffic for garbage collection would be gener-

ated. The host DRAM size was set to 512 MB (i.e. smaller

than the storage capacity) to ensure that requests were not

entirely served from the page cache.

4.3.1 File System Benchmarks

FIO: We evaluate sequential and random read/write perfor-

mance using the FIO benchmark. FIO creates a single file

(1.4 GB) and performs sequential reads (SR), random reads

(RR), sequential writes (SW) and random writes (RW) on

 0

 0.5

 1

 1.5

 2

RR SR SW

T
h
ro

u
g
h
p
u
t 
(G

B
/s

)

CISAEXT4
CISAF2FS

RISA

 0

 5

 10

 15

 20

 25

 30

 35

RW

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Figure 7: Experimental results with FIO

CISAEXT4 CISAF2FS RISA

FTL GC FS GC FTL GC FS GC

FIO (SW) 1.00 1.01 1.00 1.01

FIO (RW) 1.24 1.43 2.80 1.38

Tiobench (w/ 1 thread) 1.04 1.03 1.02 1.02

Tiobench (w/ 48 threads) 1.15 1.04 1.02 1.02
Iozone 1.14 1.05 1.09 1.09

Non-Trans 1.97 1.58 2.90 1.59

OLTP 1.45 1.23 1.78 1.24

TPC-C 2.33 1.81 2.80 1.87

DFSIO 1.0 1.0 1.0 1.0

TeraSort 1.0 1.0 1.0 1.0

WordCount 1.0 1.0 1.0 1.0

Table 4: Write amplification factors (WAF). For CISAF2FS, we

display WAF values for both the file system (FS) and the FTL. In

FIO, the WAF values for the read-only workloads FIO (RR) and

FIO (SR) are not included. For Tiobench, the WAF values with 1

and 48 threads are shown.

it separately. We empty the page cache prior to running

the benchmark. Figure 7 shows our experimental results.

CISAEXT4, CISAF2FS and RISA all show excellent perfor-

mance for SR and RR, reaching the maximum read through-

put of our SSD prototype. The throughput of SW is higher

than that of SR due to write buffering by the page cache.

These high performance numbers can be realized with very

little garbage collection in the file system and the FTL.

For RW that tends to incur many extra copies for garbage

collection, RISA outperformsboth CISAEXT4 and CISAF2FS.

RISA achieves 1.07X higher bandwidth than CISAEXT4. In

general, RISA has smaller write amplification factors (WAF)

than CISAEXT4 (see Table 4) because it performs garbage

collection more intelligently with information from the file

system. However, for FIO with RW, we observe that the

WAF of RISA is greater than CISAEXT4. This is because

FIO creates only a single file and writes 4 KB data pages ran-

domly, so it is difficult to leverage file-system information

(e.g., metadata) as well as data locality for better garbage

collection. Furthermore, while RISA selects a logical seg-

ment (i.e., 16 MB) with the fewest valid data for garbage

collection, CISAEXT4 can select smaller flash blocks (i.e.,

512 KB) with fewest valid pages in a particular channel/way.

CISAEXT4 thus incurs fewer live page copies than RISA.

Despite the larger WAF value in RW, RISA works more

efficiently than CISAEXT4. This is because RISA can exploit

page caching in the host system for garbage collection. If the

data to move for garbage collection is available in the page

cache, RISA writes it directly to the storage device without

first reading it from the device. Although the page cache size

is relatively small compared to the working set of the bench-

marks, considerable data can often be found. Thus, RISA

just needs to write buffered data along with new user data

to the current active segments, and then it simply reclaims

free space by invalidating the victim segment. CISAEXT4 is

unaware of the existence or contents of the page cache, so

it must first read all of the valid pages from NAND flash

during garbage collection. Since the FTL has to stop servic-

ing normal I/O requests to create sufficient free space, user-

perceived performance is inevitably degraded.

9 2015/5/3



 0

 20

 40

 60

 80

 100

 120

1 6 12 24 48

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Number of Threads

CISAEXT4
CISAF2FS

RISA

(a) Sequential writes

 0

 200

 400

 600

 800

 1000

1 6 12 24 48

I/
O

 L
a
te

n
c
y
 (

u
s
)

Number of Threads

CISAEXT4
CISAF2FS

RISA

(b) Random writes

Figure 8: Experimental results with Tiobench

Finally, CISAF2FS shows the worst performance among

all the storage configurations. As listed in Table 4, CISAF2FS
file system has similar WAF values as RISA. However, due to

high garbage collection costs in the FTL, its performance is

greatly degraded. This inefficiency comes from duplicated

garbage collection. In our observation, the storage space

becomes highly fragmented with RW, which incurs many

writes for segment cleaning. In CISAF2FS, these extra writes

from F2FS also trigger additional garbage collection in the

FTL, and this results in high garbage collection overheads.

Tiobench: We evaluate the performance of RISA under

multi-threaded workloads generated by Tiobench. Our ex-

periments vary the number of threads from 1 to 48. Each

thread creates a file and performs two different types of I/O

operations: sequential writes followed by random writes.

Figure 8 illustrates our experimental results. RISA and

CISAF2FS both show good aggregate throughput – write

throughput of RISA and CISAF2FS is improved as the num-

ber of threads increases. Overall write latency for a 4 KB

block increases from 41µs to 98µs when 48 threads are run-

ning, but relatively speaking, it is not a serious degradation.

Unlike FIO, CISAF2FS works well in Tiobench because

of less storage fragmentation with lower file-system level

cleaning costs. CISAEXT4 suffers from high garbage collec-

tion overheads under multi-threaded workloads. As listed in

Table 4, the WAF value of CISAEXT4 increases with multi-

ple threads. Due to a large number of extra I/Os generated by

the FTL, user I/O requests are often delayed and this results

in low write throughput with high I/O latency.

Iozone: Using Iozone, we evaluate the performance of

different I/O request sizes. Iozone creates various sized files

ranging from 64 KB to 256 MB and performs write opera-

tions with different sizes from 4 KB to 16 MB. We study

two types of writes: unbuffered (direct) writes and buffered

writes. For unbuffered writes, Iozone opens files with a

O SYNC option so that file data and associated metadata are

completely transferred to the storage device before finishing

write() calls. This allows us to measure write performance

without a page cache. For buffered writes, Iozone uses a

fwrite() function that keeps user data in a temporal buffer

before sending it to the storage device.

Figure 9 illustrates write throughput according to dif-

ferent sizes of write requests. For all request sizes, RISA

shows the best performance for both unbuffered writes and

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Request Size (KB)

CISAEXT4
CISAF2FS

RISA

(a) Unbuffered writes

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

Request Size (KB)

CISAEXT4
CISAF2FS

RISA

(b) Buffered writes

Figure 9: Experimental results with Iozone

buffered writes with smallest garbage collection overheads.

CISAF2FS outperforms CISAEXT4, but cannot surpass RISA

because of a relatively large number of extra copy operations

in the FTL which are not observed in RISA.

4.3.2 Application Benchmarks

Database Application: We compare the performance of

CISAEXT4, CISAF2FS and RISA using database systems

benchmarks. MySQL 5.5 with an Innodb storage engine is

selected as the DBMS. Default parameters are used for both

MySQL and Innodb. Non-Trans is used to evaluate perfor-

mance with different types of queries: Select, Update (Key),

Update (NoKey), Insert and Delete. The non-transactional

mode of a SysBench benchmark tool is used to generate in-

dividual queries. OLTP is an I/O intensive online transaction

processing (OLTP) workload generated by the SysBench

tool. For both Non-Trans and OLTP, the table size is set

to 5,000,000 and 6 threads run simultaneously. TPC-C is a

well-known OLTP workload. We run TPC-C on 14 ware-

houses with 16 clients each for 1,200 seconds.

Figure 10 shows the number of transactions performed

under the different configurations. RISA outperformsCISAEXT4

and CISAF2FS under these complex I/O workloads. Perfor-

mance gains of RISA primarily come from less garbage col-

lection overheads. For Non-Trans, OLTP and TPC-C, the

WAF values of RISA are 20%, 15% and 20% lower than

those of CISAEXT4, respectively. For the Select query in

Non-Trans, RISA, CISAEXT4 and CISAF2FS show similar

performance because it is a read-only workload. CISAF2FS
exhibits the worst performance because of high garbage col-

lection overheads in the file system and the FTL.

Hadoop Application: We show measured execution

times of Hadoop applications in Figure 11. Hadoop appli-

cations run on top of the Hadoop Distributed File System

(HDFS) which manages distributed files in large clusters.

HDFS does not directly manage physical storage devices.

Instead, it runs on top of regular local disk file systems, such

as EXT4, which deal with local files. HDFS always cre-

10 2015/5/3



 10

 100

 1000

 10000

Select

U
pdate(Key)

U
pdate(N

oKey)

Insert

D
elete

R
e

q
u

e
s
ts

 p
e

r 
s
e

c
o

n
d

 (
L

o
g

)
CISAEXT4
CISAF2FS

RISA

(a) Non-Trans

 0

 100

 200

 300

 400

 500

T
ra

n
s
a
c
ti
o
n
s
 p

e
r 

s
e
c
o
n
d

(b) OLTP

 0

 200

 400

 600

 800

 1000

 1200

 1400

T
ra

n
s
a
c
ti
o
n
s
 p

e
r 

m
in

u
te

(c) TPC-C

Figure 10: Experimental results with database apps.

ates/deletes large files (e.g., 128 MB) on the disk file system

to efficiently handle large data sets and to leverage maxi-

mum I/O throughput from sequentially accessing these files.

This file management technique of HDFS is well-suited

for NAND flash. In our observation, a large file is sequen-

tially written across multiple flash blocks, and these flash

blocks are invalidated together when the file is removed from

HDFS. Therefore, FTL garbage collection is done by simply

erasing flash blocks without any live page copies. Similar

behavior is observed for all 3 storage configurations. This is

the reason RISA, CISAEXT4, and CISAF2FS all show good

performance for Hadoop applications.

The results from all of these benchmarks clearly show

that existing FTL-based storage is excessively over-designed.

With the exception of error management modules (e.g., bad-

block management), almost all storage management mod-

ules currently implemented in the storage device are not

strictly necessary. RISA uses significantly less hardware

resources, while maintaining, if not exceeding, the perfor-

mance of CISA systems.

4.4 Lifetime Analysis

We analyze the lifetime of the flash storage for 10 differ-

ent write workloads. We estimate expected flash lifetime us-

ing the number of block erasures performed by the work-

 0

 50

 100

 150

 200

 250

 300

DFSIO(R) DFSIO(W) TeraSort WordCount

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
)

CISAEXT4
CISAF2FS

RISA

Figure 11: Experimental results with Hadoop apps.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

F
IO

(S
W

)

F
IO

(R
W

)

T
io

b
e
n
c
h

Io
z
o
n
e

N
o
n
-T

ra
n
s

O
L
T

P

T
P

C
-C

D
F

S
IO

(W
)

T
e
ra

S
o
rt

W
o
rd

C
o
u
n
t

N
o
rm

a
liz

e
d
 E

ra
s
u
re

 C
o
u
n
t 3.5 2.2 2.8 4.9

CISAEXT4
CISAF2FS

RISA

Figure 12: Erasure operations normalized to CISAEXT4

loads since NAND chips are rated for a limited number

of program/erase cycles. As shown in Figure 12, RISA in-

curs noticeably fewer erase operations overall compared to

CISAEXT4 and CISAF2FS. This lifetime benefit of RISA

mainly comes from reduced number of copy operations

during garbage collection. The only exception is FIO(RW)

where RISA exhibits a higher WAF value than CISAEXT4 as

listed in Table 4.

4.5 Detailed Analysis

We also analyze the inode-map management overheads and

the effect of a segment size on performance in RISA.

Inode-mapManagement Overheads: I/O operations re-

quired to manage inode-map segments in RFS are extra over-

heads that are not observed in the conventional LFS. For

example, RFS writes TIMB blocks to inode-map segments

whenever a check-point is written and performs additional

garbage collection for inode-map segments.

Figure 13(a) shows the percentage of TIMB writes to

flash storage. We exclude read-only workloads. For all

benchmarks, TIMB writes account for a very small pro-

portion of the total writes. File-system check-pointing is not

frequently invoked, so the number of writes to a check-point

is very small compared to other writes. Moreover, the num-

ber of dirty TIMB blocks written together with a new check-

point is small – only 2.6 TIMB blocks are written, on aver-

age, when a check-point is written.

Figure 13(b) illustrates how many extra copies occur

for garbage collection in inode-map segments. Even though

there are minor differences among the benchmarks, overall

extra data copies for inode-map segments are insignificant

compared to the total number of copies performed in the file

system. This shows that inode-map garbage collection does

not negatively affect I/O latencies and throughput.

Effect of Segment Size: In order to understand the effect

of various segment sizes on performance, we measure ex-

tra I/Os incurred by the file-system garbage collector while

changing a segment size from 4 MB to 128 MB. For a 4 MB

segment, RSD is organized to have 4 channels and 2 ways;

8 512-KB flash blocks make up one segment. For a 128 MB

segment, 16 channels and 16 ways are used; 256 512-KB

flash blocks make up one segment. We conduct a set of ex-

periments for CISAF2FS and CISAEXT4 with different chan-

nels/ways organizations. Since our SSD platform has limited

11 2015/5/3



 0

 0.05

 0.1

 0.15

 0.2

F
IO

(S
W

)

F
IO

(R
W

)

T
io

b
e
n
c
h

Io
z
o
n
e

N
o
n
-T

ra
n
s

O
L
T

P

T
P

C
-C

D
F

S
IO

(W
)

T
e
ra

S
o
rt

W
o
rd

C
o
u
n
t

P
e

rc
e

n
ta

g
e

 (
%

)

(a) TIMB writes

 0
 0.02
 0.04
 0.06
 0.08
 0.1

F
IO

(S
W

)

F
IO

(R
W

)

T
io

b
e
n
c
h

Io
z
o
n
e

N
o
n
-T

ra
n
s

O
L
T

P

T
P

C
-C

D
F

S
IO

(W
)

T
e
ra

S
o
rt

W
o
rd

C
o
u
n
t

P
e

rc
e

n
ta

g
e

 (
%

)

(b) Inode-map garbage collection

Figure 13: Inode-map management overheads analysis

number of channels and ways, we used a DRAM-based SSD

emulator for this experiment. The same file system and de-

vice driver are used.

Figure 14 plots the change of WAFs with different chan-

nels/ways under the OLTPworkload. For CISAF2FS, we show

both F2FS and FTLWAF values independently on the graph.

All WAF values are normalized to the 4 channels and 2 ways

organization. As a segment size increases with more chan-

nels and ways, the value of WAF also increases in RISA.

A similar trend is observed in CISAEXT4 because the unit

of FTL garbage collection becomes larger. For RISA, the

WAF value does not significantly increase up to 8 channels

and 8 ways (i.e., a segment size is 32 MB). However, be-

yond that, the value of WAF jumps when the segment size is

larger than 64 MB (i.e. 16 x 8). As pointed out before, dur-

ing garbage collection, the FTL can select the cheapest vic-

tim flash blocks in individual channels/ways, but RISA has to

select the cheapest logical segment as victim (which is larger

than a flash block) and copy all valid data to free locations.

Therefore, it is inevitable that RISA incurs many more data

copies than CISAEXT4 when segment sizes become huge.

This problem can be addressed by using a smaller physi-

cal segment than the actual RSD organization. For example,

a physical segment can be composed of flash blocks on the

same way. If RSD has 16 channels and 16 ways, a physical

segment is a group of 16 flash blocks on different channels

belonging to the same way. A physical/logical segment size

is thus reduced to 8 MB. RISA still exploits way-level I/O

parallelism by writing data to logical segments sequentially

(from 0th ways to 15th ways). Whenever segment cleaning

is invoked, RISA should reclaim 16 free segments on differ-

ent ways (i.e., total 128 MB) to fully exploit I/O parallelism

when writing user data later. Since RISA has more freedom

to select smaller victim segments with fewer valid data, over-

all segment cleaning costs are lowered.

RISA(Impr) in Figure 14 shows preliminary experimen-

tal results when RISA uses a smaller physical segment size.

For 4 channels and 2 ways, a logical/physical segment size

is set to 2 MB and, for 16 channels and 16 ways, a 8 MB seg-

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

(4x2) (8x2) (8x4) (8x8) (16x8) (16x16)

R
e
la

ti
v
e
 W

A
F

Channels X Ways

CISAEXT4

CISAF2FS(FTL)

CISAF2FS(FS)

RISA

RISA(Impr)

Figure 14: Effect of a segment size

ment is used. RISA(Impr) shows much smaller WAF values

than RISA as expected. Currently, a physical segment size is

the same as the group of blocks belonging to the same way,

but its proper size should be carefully decided by consid-

ering I/O bandwidth, garbage collection efficiency and file-

system design complexity. We do not study it in detail here

because RISA performs well with relatively large segments

(e.g., 32 MB). We will further investigate the effects of a

small physical segment in several aspects.

Finally, CISAF2FS always uses the same segment size, so

the file-system WAF values are kept around 1.0. However,

the number of extra copies in the FTL increases with more

channels/ways because of the increase of the FTL garbage

collection unit. This shows that using a small/fixed segment

is not always beneficial because of interference by the FTL.

5. Conclusion

In this paper, we proposed a new reduced I/O system archi-

tecture (RISA) to overcome the problems of existing com-

plex I/O system architectures (CISA). By leveraging the ar-

chitectural advantage of LFS, which was well-suited to the

physical nature of NAND flash, the RISA file system di-

rectly handled the storage device using rich system-level in-

formation, removing the needs for logical-to-physical map-

ping and garbage collection on the storage side. The RISA

storage device was designed to be as simple as possible, to

only provide error-free storage access and high I/O through-

put. Our evaluation showed that RISA performed much bet-

ter than CISA with using significantly less resources.

In the near future, we plan to extend RISA for high-

performance database systems. Many modern database sys-

tems manage storage space in an LFS-like manner. Thus, the

data management techniques presented in RISA can be eas-

ily adapted to database systems using flash storage. This al-

lows us to directly access flash storage, bypassing a deep I/O

stack (the file system and the FTL), to achieve better I/O la-

tency and high I/O throughput. RISA will also be extended

to support efficient in-storage processingwith reconfigurable

hardware logic for data analytic applications. We expect that

the simple architecture of RSD will enable us to easily in-

tegrate hardware accelerators into existing storage manage-

ment functions in a straightforward manner, with minimum

intervention from firmware.

12 2015/5/3



References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-

asse, and R. Panigrahy. Design tradeoffs for ssd performance.

In Proceedings of the USENIX Annual Technical Conference,

pages 57–70, 2008.

[2] A. Ban. Flash file system, 1995. US Patent 5,404,485.

[3] M. Bjørling, J. Madsen, P. Bonnet, A. Zuck, Z. Bandic, and

Q. Wang. Lightnvm: Lightning fast evaluation platform for

non-volatile memories. In Proceedings of Non-Volatile Mem-

ory Workshop, 2014.

[4] L.-P. Chang. On efficient wear leveling for large-scale flash-

memory storage systems. In Proceedings of the Symposium

on Applied Computing, pages 1126–1130, 2007.

[5] Y.-B. Chang and L.-P. Chang. A self-balancing striping

scheme for nand-flash storage systems. In Proceedings of the

Symposium on Applied Computing, pages 1715–1719, 2008.

[6] M.-L. Chiang and R.-C. Chang. Cleaning policies in mobile

computers using flash memory. Journal of System Software,

48(3):213–231, 1999.

[7] H. J. Choi, S.-H. Lim, and K. H. Park. Jftl: A flash translation

layer based on a journal remapping for flash memory. ACM

Transactions on Storage, 4(4):14:1–14:22, 2009.

[8] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and

H.-J. Song. System software for flash memory: A survey.

In Proceedings of the International Conference on Embedded

and Ubiquitous Computing, pages 394–404, 2006.

[9] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future

of nand flash memory. In Proceedings of the USENIX Confer-

ence on File and Storage Technologies, 2012.

[10] A. Gupta, Y. Kim, and B. Urgaonkar. Dftl: A flash transla-

tion layer employing demand-based selective caching of page-

level address mappings. In Proceedings of the International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 229–240, 2009.

[11] K. Ha and J. Kim. A program context-aware data separation

technique for reducing garbage collection overhead in nand

flash memory. In Proceedings of the International Workshop

on Storage Network Architecture and Parallel I/O, 2011.

[12] S. Hahn, S. Lee, and J. Kim. Sos: Software-based out-of-order

scheduling for high-performance nand flash-based ssds. In

Proceedings of the International Symposium on Mass Storage

Systems and Technologies, pages 1–5, 2013.

[13] S. S. Hahn, J. Jeong, and J. Kim. To collect or not to

collect: Just-in-time garbage collection for high-performance

ssds with long lifetimes. In Proceedings of the USENIX

Symposium on Operating Systems Design and Implemenation

(Poster), 2014.

[14] S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann. Noftl:

Database systems on ftl-less flash storage. In Proceedings of

the VLDB Endowmen, pages 1278–1281, 2013.

[15] Hitachi. Hitachi accelerated flash, 2015.

[16] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench

benchmark suite: Characterization of the mapreduce-based

data analysis. In Proceedings of the International Workshop

on Data Engineering, pages 41–51, 2010.

[17] A. Hunter. A brief introduction to the design of ubifs, 2008.

[18] JEDEC. Onfi 4.0: Open nand flash interface 4.0 specification,

2014.

[19] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. Dfs: A

file system for virtualized flash storage. In Proceedings of the

USENIX Conference on File and Storage Technologies, 2010.

[20] M. Jung, E. H. Wilson, III, W. Choi, J. Shalf, H. M. Aktulga,

C. Yang, E. Saule, U. V. Catalyurek, and M. Kandemir. Ex-

ploring the future of out-of-core computing with compute-

local non-volatile memory. In Proceedings of the Interna-

tional Conference on High Performance Computing, Network-

ing, Storage and Analysis, pages 75:1–75:11, 2013.

[21] S.-M. Jung, J. Jang, W. Cho, H. Cho, J. Jeong, Y. Chang,

J. Kim, Y. Rah, Y. Son, J. Park, M.-S. Song, K.-H. Kim, J.-

S. Lim, and K. Kim. Three dimensionally stacked nand flash

memory technology using stacking single crystal si layers on

ild and tanos structure for beyond 30nm node. In Proceedings

of the International Electron Devices Meeting, pages 1–4,

2006.

[22] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A superblock-based

flash translation layer for nand flash memory. In Proceedings

of the International Conference on Embedded Software, pages

161–170, 2006.

[23] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho. The multi-

streamed solid-state drive. In Proceedings of the USENIX

Workshop on Hot Topics in Storage and File Systems, 2014.

[24] Y. Kang, J. Yang, and E. L. Miller. Efficient storage manage-

ment for object-based flash memory. In Proceedings of the In-

ternational Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems, 2010.

[25] H.-J. Kim and S.-G. Lee. A new flash memory management

for flash storage system. In Proceedings of the International

Computer Software and Applications Conference, 1999.

[26] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. A

space-efficient flash translation layer for compactflash sys-

tems. IEEE Transactions on Consumer Electronics, 48(2):

366–375, 2002.

[27] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and

S. Moriai. The linux implementation of a log-structured file

system. ACM SIGOPS Operating Systems Review, 40(3):102–

107, 2006.

[28] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2fs: A new

file system for flash storage. In Proceedings of the USENIX

Conference on File and Storage Technologies, 2015.

[29] S. Lee, J. Kim, and Arvind. Refactored design of i/o architec-

ture for flash storage. IEEE Computer Architecture Letters,

Preprint, 2014.

[30] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-

J. Song. A log buffer-based flash translation layer using fully-

associative sector translation. ACM Transactions Embedded

Computing Systems, 6(3), 2007.

[31] Y.-S. Lee, S.-H. Kim, J.-S. Kim, J. Lee, C. Park, and S.Maeng.

Ossd: A case for object-based solid state drives. In Proceed-

ings of the International Symposium on Mass Storage Systems

and Technologies, pages 1–13, 2013.

[32] C. Manning. Yaffs: Yet another flash file system, 2004.

13 2015/5/3



[33] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang,

and T. E. Anderson. Improving the performance of log-

structured file systems with adaptive methods. In Proceedings

of the ACM Symposium on Operating Systems Principles,

pages 238–251, 1997.

[34] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom. Sfs:

random write considered harmful in solid state drives. In

Proceedings of the USENIX Conference on File and Storage

Technologies, 2012.

[35] S. Mylavarapu, S. Choudhuri, A. Shrivastava, J. Lee, and

T. Givargis. Fsaf: File system aware flash translation layer

for nand flash memories. In Proceedings of the Design Au-

tomation Test in Europe Conference, pages 399–404, 2009.

[36] E. H. Nam, B. Kim, H. Eom, and S. L. Min. Ozone (o3):

An out-of-order flash memory controller architecture. IEEE

Transactions on Computers, 60(5):653–666, 2011.

[37] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. Panda.

Beyond block i/o: Rethinking traditional storage primitives.

In Proceedings of the International Symposium on High Per-

formance Computer Architecture, pages 301–311, 2011.

[38] Y. Pan, G. Dong, and T. Zhang. Error rate-based wear-leveling

for nand flash memory at highly scaled technology nodes.

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 21(7):1350–1354, July 2013.

[39] S. Park and K. Shen. Fios: a fair, efficient flash i/o scheduler.

In Proceedings of the USENIX Conference on File and Stor-

age Technologies, 2012.

[40] Phison. Ps3110 controller, 2014.

[41] M. Rosenblum and J. K. Ousterhout. The design and imple-

mentation of a log-structured file system. ACM Transactions

on Computer Systems, 10:1–15, 1991.

[42] Samsung. Samsung ssd 840 evo data sheet, rev. 1.1, 2013.

[43] D. Woodhouse. Jffs2: The journalling flash file system, ver-

sion 2, 2008.

[44] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. De-indirection for flash-based ssds with

nameless writes. In Proceedings of the USENIX Conference

on File and Storage Technologies, 2012.

14 2015/5/3


