
RFSA: A Minimalistic Clustered Flash Array

Abstract—NAND flash is seeing increasing adoption in cloud
and enterprise storage today because of its orders of magnitude
lower latency (∼100µs) and higher bandwidth (1-2GB/s) com-
pared to hard disks. However, traditional methods of scaling-out
storage using RAID arrays and Storage Area Networks (SAN) are
ineffective for flash. Modern networking hardware (e.g. Ethernet,
Fibre Channel) and software stacks add significant latency
relative to the access time of flash and become bandwidth bound
even with only a few flash devices. Flash performance is further
degraded by the use of Flash Translation Layers (FTL) commonly
found in flash drives today. The FTL performs flash management
functions to hide flash characteristics, such as bad blocks, bit
errors and erase-before-write, from the OS/applications. However,
FTLs often operate suboptimally because they lack higher level
information available to the OS/user. As a result, there has been a
trend to shift flash management into higher level software stacks.

In this paper, we propose a Reduced Flash Storage Array
(RFSA) that (i) uses a controller-to-controller network to enable
the scaling-out of multiple flash drives with very little overhead,
and (ii) exposes a fast, error-free raw flash interface to the OS
that enables higher level applications (e.g. file system, database) to
efficiently manage multiple flash devices. We envision RFSA to be
used within a rack cluster of servers to provide fast scalable flash
storage. We show through benchmarks that RFSA can provide
scalable capacity and bandwidth with negligible latency overhead,
and it can exploit near theoretical max performance of the NAND
chips.

I. INTRODUCTION

In addition to hard disks, NAND flash has risen to become
a ubiquitous storage medium in recent years in data centers and
enterprises. Flash offers a numerous benefits over traditional
hard disks, including scalable bandwidth, significantly lower
access latency and better power-performance [1]. However,
because NAND flash has characteristics that are very different
from hard disks, traditional storage architectures and system
hardware software stacks are often inefficient for flash.

The deployment of flash in the data center faces two
key challenges. The first problem is scalability. Because of
the high performance characteristics of flash, new system
bottlenecks have emerged that were previously unapparent with
hard disks. For example, raw flash latency is typically around
100µs, or 100x lower than hard disks. Consequently, deploying
flash in large clusters over networks (e.g. SAN or distributed
file systems), using commodity hardware solutions such as
Ethernet and Fibre Channel, can notably limit performance by
adding latency. It has been shown that using iSCSI protocols
over Ethernet adds almost 300µs of latency coming from the
NIC and software network and block I/O stacks [2]. Network
bandwidth is another bottleneck. A single flash drive, typically
with bandwidth of 1-2GB/s, can easily saturate traditional
SATA/SAS storage interface ports as well 10 Gbps Ethernet
and Fibre Channel connections. Faster networking hardware,
such Infiniband, is available, but comes at a prohibitive cost.

The second challenge is flash management. NAND flash is
a lossy storage medium with limited program/erase cycles, bit
errors, bad blocks and erase-before-write requirements. To hide
these undesirable properties, manufacturers typically employ
a Flash Translation Layer (FTL) within the storage device
that runs management algorithms, to expose a traditional
block device view to the operating system. However, FTL
not only requires significant hardware resources (multi-core
ARM controller with large DRAM [3]), it also negatively
impacts performance. Ouyang et al. has measured that the
FTL degrades flash bandwidth by as much as 49% [4]. Park
and Shen [5] has shown that FTL accounts for over half
of the I/O latency of the flash storage device. Furthermore,
FTL in the storage device has little information from higher
level applications. In a distributed storage environment, this
translates to suboptimal flash management decisions being
made by the FTL. There has been a push towards moving the
FTL out of the storage device. EMC [6] and PureStorage [7]
has built large flash arrays that globally manages multiple flash
devices at the same time. REDO [8] has also shown that using
a log-structured file system to manage flash can great reduce
the I/O stack complexity while achieving higher performance.
However, realizing these ideas require a redesign of the storage
device and flash controller that provides a raw interface to
flash.

In this paper, we introduce a scalable raw flash storage plat-
form called RFSA to address the above issues. First, RFSA can
be scaled in capacity and bandwidth, with negligible latency
overhead, by connecting multiple RFSA flash boards directly
to each other via inter-controller links. These links can run over
relatively long distances such that each flash board may reside
on a separate server. Second, the platform exposes an error-
free raw flash interface to the operating system that allows the
addressing of individual boards, channels, chips, blocks and
pages of the device. RFSA does not use an FTL at the level
of the storage device. Instead, it provides minimal support for
error-free flash access and relies on higher level software to
perform garbage collection, bad block management, address
mapping and wear leveling. Such types of file system for
flash already exists today and have shown notable performance
improvements (e.g. F2FS [9], REDO [8]). This simplified
I/O stack design allows RFSA to reach close to maximum
theoretical performance of the NAND chips.

The key contributions of this paper are as follows:

1) We present the architecture and implementation of
a RFSA storage device including a redesigned flash
controller that exposes a raw flash interface. We show
that by simplifying the FTL, we gain access to the
full performance potential of the NAND flash chips.

2) We link together multiple RFSA boards and show
that the design RFSA scales in both capacity and
bandwidth at negligible latency overhead on a rack
cluster of servers.



3) We show that RFSA can be used with a flash-aware
file system, and we run a database benchmark to
provide a glimpse of the performance gains from
exposing a raw flash interface.

In the rest of the paper, we compare our design with related
commercial and academic flash deployment solutions (Sec-
tion II). Then we discuss RFSA’s hardware architecture and
the RFSA flash controller. (Section III). Next, we present the
inter-controller logic that links multiple flash boards together in
a scalable manner (Section IV). We show our prototype hard-
ware platform (Section V). Finally, we present performance
results for single and multiple boards (Section VI). Finally,
we conclude with future works (Section VII).

II. RELATED WORK

Commercially there are a variety of flash solutions used in
the data center. Individual SATA/PCIe-based SSDs [10] are fre-
quently used to speed up database workloads or performance
critical applications. These SSDs can be pooled together to be
used as a caching layer for hot data in hard disks [11]. How-
ever, management of these SSDs are done by the individual
devices, which often translates into suboptimal performance.
Recognizing this, there has been an influx of all flash arrays on
the market today such as the PureStorage FlashArray [7] and
EMC XtremeIO [6]. These solutions package a large number
of flash cards into a single machine that runs a global flash
management software for hundreds of terabytes of flash, while
adding useful features such as deduplication and encryption.
While a packaged solution is attractive from in terms of
convenience and features, it greatly sacrifices performance.
Peak bandwidth from these flash arrays (many TB in size)
is only 3-7GB/s with milliseconds of latency. This is orders
of magnitude worse than the potential performance provided
by the NAND flash chips. RFSA is similar in that it also
aggregates multiple flash cards together, but our solution can
reach near maximum NAND chip bandwidth.

To scale out even further, a Storage Area Network (SAN)
is typically used. SAN is a software-based solution that uses
network fabrics (e.g. Ethernet or Fibre Channel) to connect
multiple storage nodes together. However, SAN adds signifi-
cant latency due to the network and software stacks. This was
studied in QuickSAN [2], where measured latencies were as
high as 300µs - 3x higher than typical flash latency. Combin-
ing network with storage improves performance is a proven
concept. For example, QuickSAN showed that the use of an
an emulated PCM device with built-in Ethernet connections
can help to reduce latency after bypassing software stacks.
BlueDBM [12] used inter-FPGA links to achieve scalable
bandwidth using several 16GB flash boards, although the
hardware used was slow and relatively old. We adopt this
idea in RFSA, using ultra-low latency inter-FPGA links to
connect the devices, and in addition, we take into consideration
management requirements of NAND flash.

Much research has gone into the design of the Flash
Translation Layer (FTL), which is commonly used in flash
devices today to hide undesirable flash characteristics and
to provide interoperability with existing hardware/software
interfaces [13]. However, running FTL requires significant
hardware resources, including gigabytes of DRAM for NAND

address mapping and multiple ARM cores for management
algorithms. More importantly, the FTL is often suboptimal be-
cause it does not have access to higher level OS and application
information. This can result in unnecessary data movement
within the flash device leading to degraded bandwidth and
higher access latency. In fact, modern SSDs only reaches 41%
to 51% of the theoretical write bandwidth [4]. The functionali-
ties of the FTL can also collide with the management functions
of the OS file system. For example, common log-structured
file systems has its own methods of address mapping and
garbage collection schemes. However, the FTL adds another
layer of translation and garbage collection. This management
duplication significantly affects performance and flash life
time due to unnecessary data movements. This problem is
exacerbated in a distributed storage environment, each flash
device is unaware of other devices, and operate their own
FTL independently. Previous works such as SDF [4] and
REDO [8] recognize this issue and they have shown greater
efficiency using higher level software stacks to perform flash
management. Similarly, as previous discussed, PureStorage
and EMC provide commercial solutions that globally manage
multiple flash devices. In RFSA, we adopt this thin-FTL
concept to provide a fast, error-free access to raw flash that
gives higher level software the freedom to better manage flash.

III. RFSA DEVICE ARCHITECTURE

Although the RFSA’s controller does not run flash manage-
ment routines, there are At the top level, RFSA is composed of
a set of flash devices directly connected to each other via high
speed links. Each RFSA device can be optionally attached to an
server via standard storage interfaces (i.e. PCIe). The hardware
architecture consists of a flash controller redesigned with a raw
interface, a flash interface router with a tag renaming engine,
a DMA transfer completion buffer, and an inter-controller
networking module. Figure 1 shows a logical view of the
architecture. On the software side, a driver provides raw access
the physical addresses of the entire flash array, presented as a
global shared-memory among all the servers. The hardware is
responsible for routing the requests and data to different flash
boards. The flash board is deployed on multiple machines in
the same rack - hence we call this a clustered flash array.
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Fig. 1: RFSA architecture: RFSA is composed of a set of
inter-controller connected flash devices, each of which can be
optionally attached to a host server.

A. Physical Storage Device

The physical RFSA storage device follows a design that
is similar to modern SSDs (Figure 2). Namely, we organize



multiple NAND flash chips (i.e. ways) into multiple individual
buses (i.e. channels) to provide capacity and bandwidth scal-
ing. Buses are controlled by an FPGA chip that implements
all of the RFSA logical hardware blocks we presented earlier
in Figure 1. However, the RFSA device also differs from
traditional SSDs in that it also provides a high-speed serial
network interface directly from the fabrics of the controller
chip. These links are chip-to-chip and hence have very low
latencies and high bandwidth. Implementation details of the
device will be discussed in Section V.
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Fig. 2: RFSA physical storage device: NAND chips organized
into buses with serial link coming from the controller chip.

To fully exploit the performance of this flash device,
we first need a driver interface which allows users to issue
hundreds of requests to the device for parallel out-of-order
execution. Secondly, we need a flash controller design that
maximizes bus utilization and minimizes access latency over-
head. We discuss our software driver interface below, followed
by the flash controller design.

B. Software Driver Interface

The RFSA device driver has two key characteristics. First,
to leverage flash device parallelism, it uses a tagging scheme
that labels requests and responses such that aggressive out-of-
order execution of requests is possible on the flash controller.
Second, unlike traditional SSDs, the device driver exposes
the internal organization of the flash array. As we have
previously discussed this opens up opportunities for higher
level applications to more efficiently manage the flash device.

To use the API, the user should create a multi-entry page
buffer, where each entry is a flash page buffer (typically 8KB)
and is associated with a unique tag. This buffer will be used
as a completion buffer for page reads, and as a write buffer
to temporarily hold write data until it can be transferred. We
provide only page aligned accesses to the flash array for higher
bandwidth since it is the minimum unit of transfer of the flash
chips. To issue commands to the flash array, the user first
obtains a free tag, and then calls a send command function,
passing along (1) the tag, (2) the operation (read page, write
page, erase block), (3) the target physical address (board,
bus, chip, block, page) and (4) a pointer to the page buffer
associated with the tag. When the operation completes, an

interrupt is raised with the tag of the completed command,
and a user-defined callback function will execute. Then the
command is considered done, and the tag as well as page buffer
space can be recycled.

This device interface gives the user complete control over
the management of the flash array. For example, file systems
such as REDO [8] can choose optimal segment sizes and
mappings that matches the organization of the flash array to
maximize bandwidth. Databases storage engines may explicitly
manage its data chunks to decide when to perform garbage
collection. We note that this interface also provides a global
shared-memory view of all connected flash devices. Any server
may access any of the boards by specifying the board ID as
part of the address. Concurrency control is left up to higher
level software such as a a database or a clustered file system
(e.g. GFS, NFS).

C. A Simplified Flash Controller

Unlike modern SSDs that use multi-core ARM CPUs and
gigabytes of DRAM, RFSA’s flash controller aims to use much
less hardware area to achieve near theoretical max NAND
performance. This is accomplished by providing only basic
flash management routines at the device level, and relying on
higher level applications to more efficiently manage flash. In
the controller, we chose to implement basic FTL tasks that
are naturally more amenable to hardware, including bit error
correction (ECC), bus/chip scheduling, and NAND I/O proto-
col communication (i.e. ONFI). The controller architecture is
shown in Figure 3. We discuss some of its details below.
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Fig. 3: RFSA flash controller: Each bus has a separate
controller that schedules commands, corrects bit errors and
provides I/O communication with NAND chips. The controller
has a tagged command/data interface.

1) Bus Controller and Scoreboard: Since flash buses are
independent from each other, we create a separate bus con-
troller for each. It is the the role of the bus controller to
maximize bus utilization and hide flash latency. Since a single
flash operation takes hundreds of microseconds to several
milliseconds to complete, their execution can be overlapped.
For example, while one chip is performing a read, control
of the bus can be given to another chip to stream in data



to be written. The bus controller schedules these operations
to maximize bandwidth. Incoming requests are distributed to
each bus controller, which are subsequently inserted into the
scoreboard and distributed to individual chip request FIFOs
to be executed in order (Figure 4). For each chip, we keep a
busy timer counter and a stage register. The current scheduler
works in a priority round robin fashion. It rotates to picks
the first request that has the highest priority among all the
chips and and enqueues it for execution. It then sets the busy
timer to a predefined estimate of when the stage would be
complete (NAND latencies are variable). Finally it updates
the stage register to indicate which stage of the request it is
currently on. It then moves to the next chip to schedule the next
request. When the busy timer expires, the scheduler queues a
poll request to check if the chip has finished its job. If it has,
the next stage is scheduled, otherwise the busy timer is set once
again to further wait a predefined amount of time. When the
request is complete, it is removed from the chip queue. We set
the scheduler to prioritize small short command/address bursts
on the bus over long data transfers to keep chips as busy as
possible.
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Fig. 4: Bus scheduling and scoreboard: Incoming requests are
distributed into separate chip queues. Scheduler enqueues each
stage of the request onto the bus using a priority round-robin
scheme.

2) Error Correction: Bit errors are common in NAND
flash chips, and error rate is influenced by many factors
such as the number of P/E cycles, the value of the data and
environment variables. Exposing bit errors to the software is
burdensome and unnecessary, hence we implement the ECC
portion of the FTL inside our flash controller to ensure that our
software interfaces are bit-error free. Commercial SSDs today
use multiple levels of DSP techniques to correct errors. BCH
codes or LDPC codes are commonly used [14]. For simplicity,
we use Reed-Solomon codes since it consumes less hardware
resources. In practice, we found that the RS(255, 243) con-
figuration with 12B parity (4.7%) meets the minimum ECC
requirements of the MLC chips we are using. We concede that
a disadvantage of using Reed-Solomon is its variable decoder
latency that could cause stalls on the bus. On a production
system, we would use a more advanced ECC algorithm, such
as LDPC.

3) Controller Hardware Interface: The flash controller
provides a tagged data/command interface in hardware. Similar

to the software interface, commands issued to the controller
are uniquely tagged. Read and write data transfers occurs in
tagged bursts (128-bit in our design) corresponding to the
command tag. This scheme is required because data from all
buses are aggressively packed and sent out at the interface for
maximum bandwidth. As a result, data from different buses
may be interleaved, and data from the same bus may appear
out of order with respect to the commands based on when it
was scheduled. We use a set of completion buffers to transfer
the data over to host server.

D. DMA Engine and Completion Buffer

We use two modes of data transfer between the server and
flash boards: (i) RPC-style memory-mapped I/O interface, and
(ii) DMA over PCIe to/from the server memory. Generally,
commands and acknowledgments are transferred using the
low-latency RPC interface, and page data is transferred via
high bandwidth DMA.

DMA should be performed on large chunks of data (e.g.
128 B) for high bandwidth. We distribute out-of-order data
bursts from the controller to a per-tag completion buffer to
queue up sufficient bursts for a DMA transfer. To ensure that
our hardware design meets FPGA timing, we divide up the
completion buffer into smaller memory chunks, where each
chunk is associated with a fixed portion of the tag space. The
DMA engine then performs the data transfer to the address
offset in host memory given by the software read request. An
acknowledgment is sent to the software to trigger an interrupt
upon completion of a full page transfer.

For writes, the controller receives a request with a pointer
to the location of write data in host memory. However, because
there is limited buffer space in the flash controller, data transfer
to the controller cannot begin until the command has been
scheduled and the controller has reserved space for the data.
Upon receiving this request, the DMA read engine relays the
entire page to the controller.

IV. MULTI-DEVICE LINKING

RFSA can be scaled in both capacity and internal band-
width by connecting multiple flash boards together via inter-
controller links. This is done in a transparent way to the
software, which simply sees an addition address dimension
(i.e. board ID). Since all of the routing is done by the flash
device, flash boards may be linked with or without attaching
to a server. In the former case, RFSA appears as a shared-
memory storage device to each server, similar to a SAN. In
the latter case, RFSA appears as a RAID array of flash devices
to a single server.

A. Shared Controller Management

To provide shared access to flash, we introduce a flash
interface router (Figure 1) that splits/merges remote and local
data/commands onto both the flash controller and the DMA
engine. To ensure fair resource sharing, we use rotating priority
arbiters for all datapaths.

Since multiple servers may issue commands to the same
controller, there could be tag collisions if each server is only
aware of their own set of unique tags. Using global unique tags



can resolve the problem, but this requires cooperation from the
software and refactoring of tag space when flash devices are
added or removed. Instead, we apply a layer of indirection
by renaming host tags into controller tags. Upon receiving a
command, the router obtains a free controller tag from the free
queue and stores the original host tag with the source server
ID of the command in a look-up table. Responses from the
controller that are labeled with controller tags will index into
the table to find the original host tag and command source,
which are repackaged with the response to be routed back to
its source. This look-up datapath is fully pipelined.

B. Controller-to-Controller Network

Since RFSA is aimed at rack level deployment where
the servers are separated over relatively short distances, we
assume a lossless network between the flash devices. We
use a linear array network topology which runs vertically
up and down the rack (average 2n/3 hops). This simplifies
routing of packets and allows us to connect the devices
using short, equidistant cables. We leverage direct chip-to-chip
multigigabit transceivers (MGT) to provide massive bandwidth
and extremely low latency. We use a packet switched router
on top of MGT with an arbiter that supports independent
virtual channels and token-based end-to-end flow control on
each virtual channel. We instantiate a virtual channel for each
datapath of the flash interface (read data, write data, command,
ack etc.) to connect multiple controllers together.

C. Scalability

We remark that the hardware design of RFSA allows it to
scale up with little increase in hardware resources. Address
width will become wider with more boards, but this does not
translate to additional hardware structures. This theoretically
allows us to chain hundreds of flash boards together for
capacity scalability. In terms of performance, the latency of
MGT links are so low (we measured 0.5µs/hop), that even
a hundred hops still translates to less latency than flash
access time. This easily surpasses modern SAN-based storage
architectures. Bandwidth will be affected with many boards
as the network can become congested and I/O interfaces to
the servers (e.g. PCIe) can become rate limiting. However, we
argue that the aggregated bandwidth of the entire flash array
scales, since all of the bandwidth of all flash devices is still
made available to the user. This is unlike some commercial
flash array appliances such as PureStorage, where only a
fraction of the total potential bandwidth of the flash chips is
exposed via Fibre Channel or Ethernet ports. We can further
increase cross-sectional bandwidth of the network by choosing
a different topology, such as a star or a mesh, provided that
the physical links can remain lossless.

V. RFSA PLATFORM HARDWARE

We implement RFSA using a Xilinx VC707 FPGA de-
velopment board [15], which has a Virtex-7 FPGA, x8 PCIe
Gen 2.0, and 8x10Gbps MGT serial links. This is the primary
carrier FPGA board. We designed a custom flash board to
attach to the VC707 via the FPGA Mezzanine Card interface
(FMC) [16]. Up to two flash boards may be attached to a
carrier board, but we use a single board for experiments in
this paper.

Fig. 5: RFSA prototype platform hardware

Parallel flash channels can provide linear bandwidth scal-
ing, but is limited by the number of I/O pins, hardware
resources on the controller (i.e. FPGA) and PCB routing. Chips
on the same bus also provide parallelism by hiding access
latency, but this is only effective if the bus bandwidth has not
saturated. Based on these constraints, we chose an 8-channel,
8-way design using 256Gbits Micron MLC NAND chips for a
total of 512GB of flash storage per board. Thus the maximum
aggregated bus bandwidth is 1.6 GB/s. Typical latencies for
the chip are 75µs for reads and 1300µs for writes.

We integrate a smaller Xilinx Artix-7 FPGA on the flash
board that serves as the flash controller. This controller con-
nects to the primary VC707 board via 4x 6.6Gbps MGT GTP
connections over the FMC port. In addition, the flash board
pins out 4x 10Gbps high speed serial connections (MGT GTX)
from the VC707 board in the form of SATA ports. We use
cross-over SATA cables as our inter-FPGA links to connect
multiple boards together on a rack. Figure 5 is a photo of the
flash board.

We used Ubuntu 12.04 with Linux 3.13.0 kernel for
our software implementation and benchmarks. We used the
Connectal [17] software-hardware codesign library to provide
RPC-style request/responses and DMA over PCIe. Connectal
allows us to expose our raw flash interface in both the
kernel and userspace. We used a modified version of the
Reed-Solomon ECC decoder from Agarwal et al. [18] in our
controller.

VI. EVALUATION

In this section, we measure and evaluate (1) single device
performance of RFSA, (2) multi-device, multi-host perfor-
mance and (3) application compatibility and performance. We
show that our RFSA device can reach peak bandwidth of
1.2 GB/s (75% of theoretical bus bandwidth) with a mere
15µs of I/O latency overhead. We show that chaining multiple
devices together in a distributed fashion adds trivial amount of
latency, while effectively increasing the aggregated bandwidth.
We demonstrate that RFSA is compatible with and improves
the performance existing software layers by running a flash-
aware file system and a database benchmark on top of RFSA.



A. Resource Usage

A breakdown of the resource usage is shown in Table I.
Note that only major components are shown. On the Artix-7
FPGA, the flash controller uses about half of the resources for
all 8 channels: 23% registers, 56% LUTs and 50% BRAM,
and 46% of I/O pins. On the Virtex-7 FPGA, PCIe with DMA
engine and the inter-FPGA network consumes 14% registers,
25% LUTS and 20% BRAM. Overall, the design is relatively
small. A large amount BRAM is required for network buffering
and flash burst buffering. Most LUTs and registers are used
for pipelining the design and muxing/demuxing datapath. ECC
uses the most area on the flash controller in terms of logic.

Module Name # Inst LUTs Registers BRAM
Bus Controller 8 7131 4870 21
→ ECC Decoder 2 1790 1233 2
→ Scoreboard 1 1149 780 0
→ PHY 1 1635 607 0
→ ECC Encoder 2 565 222 0
FMC SERDES 1 3061 3463 13

Artix-7 Total 75225 (56%) 62801 (23%) 181 (50%)
PCIe and DMA Engine 1 56302 62277 116
Serial Network 1 20448 25676 94

Virtex-7 Total 76750 (25%) 87953 (14%) 210 (20%)

TABLE I: Artix-7 and Virtex-7 Resource Breakdown

B. Single Local RFSA Board Performance

1) Page Access Latency: We define read page access la-
tency as the time it takes to receive the data for an entire
8KB page after issuing a single read page request (queue
depth of 1). Write access latency is similarly defined as the
time between issuing the write request, transferring data and
receiving an acknowledgment from the controller that the
operation is complete. The latency breakdowns are shown in
Table II.

Read Latency (µs) Write Latency (µs)
PHY Commands 1 1
NAND 69 418 (variable)
ECC 4 0.1
Data Transfer 43 43
PCIe/Software 11 14

Total 128 476 (variable)

TABLE II: Local Read and write access latencies

The NAND read latency of 69µs is within the expected
range based on the Micron datasheet (<75µs). With 8K pages
(8600B including ECC) transferring at 8-bit wide 100MHz
DDR bus speed, this page transfer process incur 43µs of
latency. We note that these latencies are intrinsic properties of
the NAND chip that are not related to the design of RFSA. The
Reed-Solomon ECC decoder latency varies with the number
of bit errors. On average, we observe 2.18 bit errors per page,
which translates into only 4µs of latency. This is expected to
increase as the chips age. Latency of carrier to flash board
communication over FMC and command scheduling/issue la-
tencies are both insignificant as there are no significant stalls
in the processing pipeline. PCIe flash request/responses, DMA
and driver software incurs an additional 11µs of latency. This
is in the range of industry storage interface standards such as
SCSI/SAS (6µs) and NVMe (2.8µs) [19]. In total, the read
access latency to a single RFSA device is 128µs, with a mere
11% overhead from the RFSA controller.

The overhead introduced for writes is similarly low. How-
ever, the total write latency must be taken with a grain of
salt since NAND programming latency is highly variable (up
to 2.1ms for our MLC chips). For example, programming
multiple bits that share the same MLC NAND cell requires
significantly more time than programming a single bit into the
cell. Disregarding these intrinsic NAND latencies, we observe
that by exposing a raw flash interface, without additional
software FTL layers at the device level, we can access flash
storage at close to native flash latency. In comparison, our
measurements show that simply running the FTL incurs up
to 30µs of additional latency. This is not including further
inefficiencies in the management algorithm.

2) Bandwidth vs. Transfer Size: For this benchmark, we
partition the address space such that data is striped across
channels and chips to leverage full parallelism of the flash
device. This is the typical way for modern FTLs to map
its address space. We measure the bandwidth from issuing
requests for various transfer sizes, starting from single 8KB
pages to 16MB chunks. We measure both sequential and
random accesses. The former setting has all pages of the chunk
in a linear address space (i.e. perfectly striped), and the latter
has chunks that contain pages that are spread out randomly in
the address space. Results are shown in Figure 6. We note that
random writes are not measured because of the erase-before-
write property of NAND flash that prevents us from randomly
writing data. Typically the FTL performs garbage collection
or address remapping to handle random writes. In RFSA, we
leave these functionalities to higher level software.
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Fig. 6: Bandwidth vs. transfer size of the RFSA device

For all curves, bandwidth grows quickly as more channels
are used at the beginning of the graph. The growth slows
when we move towards chip parallelism as the bus becomes
busier and eventually saturates. Random access performance
is slightly worse due to address collisions that would reduce
parallelism. This is, of course, orders of magnitude faster
than hard disks. Peak sequential performance is a respectable
1.2GB/s, which is 75% of the maximum bus bandwidth of the
device. We note that 5% of the overhead inherently arises from
transferring ECC parity bits. Additional overhead comes from
commands, addresses and chip status polling on the bus, as
well as some imperfections in scheduling. We conclude that
overall our raw interface design is very efficient, and is able
to fully expose the raw bandwidth of the flash array to the
software driver.
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Fig. 7: Multi-device bandwidth. (a) single host, multiple flash boards. (b) multiple hosts, single flash board. (c) multiple hosts,
multiple flash boards.

C. Multi-Device Performance

We chain together 4 RFSA flash boards attached to 4
separate host servers to measure multi-device performance.

1) Access Latency: Figure 8 show the flash page read
access latency over multiple hops of RFSA devices. Because
of direct chip-to-chip links, the inter-controller network latency
is virtually non-existent. In fact, latency variations (shown by
error bars) in software and NAND chips far exceed measurable
network latency. Our hardware counters indicate that each hop
is a trivial 0.5µs. Because accessing local PCIe attached flash
and remote flash boards are equally fast, RFSA’s global shared-
memory interface appears as local storage, even though it is
physically distributed among multiple machines. This is a vast
improvement over SAN-based storage architectures.
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Fig. 8: Multi-hop page access latency

2) Bandwidth: We measure RFSA’s bandwidth under the
following scenarios: (1) single host accessing multiple con-
nected RFSA devices (Figure 7a), (2) multiple hosts accessing
the same device (Figure 7b), and (3) multiple hosts accessing
multiple devices (Figure 7c). All accesses are random reads of
16MB chunks.

The first scenario is similar to a RAID-0 arrangement. We
get some speed-up (from 1.2 GB/s to 1.32 GB/s) by accessing
multiple boards in parallel, but ultimately we are bottlenecked

by our x8 PCIe Gen 1.0 implementation. We are in the process
of upgrading to Gen 2.0, which would double the interface
bandwidth. However, because the total aggregated bandwidth
from multiple RFSA flash boards is extremely high, we do
not expect any single server use up all of the bandwidth.
RFSA is more powerful than RAID arrays in that it makes the
aggregated bandwidth available to multiple compute servers
while maintaining the low latencies of direct attached storage.

The second scenario examines the behavior of RFSA when
there is resource contention for the same flash device. The
graph shows that the RFSA controller and the network routers
can very fairly distribute the bandwidth to each host, while
maintaining peak overall bandwidth. This is important when
hosts are performing parallel computations.

The last graph shows the aggregated bandwidth scalability
of the global shared-memory flash store, with multiple servers
randomly accessing the entire address space. The line in the
graph shows the total maximum internal bandwidth provided
by the flash devices (a simple multiple of the bandwidth
of a single device). The bars in the graph are the achieved
aggregated throughput from the hosts’ perspective. We reach
92% of the maximum potential scaling with 2 hosts and 84%
with 3 hosts for a total of 3 GB/s. We expect RFSA to continue
scaling well for up to a cluster of 10-20 servers on a single
rack, given our high bandwidth 80Gbps serial network.

D. Application Performance

Finally, we run a flash-aware file system called REDO [8]
on top of RFSA to illustrate its compatibility with OS and user
applications as well as to show the advantage of exposing a
raw flash interface. REDO is a log-structured file system that
contains built-in flash management functionalities. By remov-
ing redundancies that arise from separately using FTL and
traditional file systems, REDO can achieve higher performance
using less hardware resources. To validate this on our RFSA
platform, we run the popular Yahoo Cloud Serving Benchmark
(YCSB) [20] with MySQL+InnoDB at default settings. YCSB
was configured to perform 200,000 updates to 750,000 records
in the database. We compare two I/O stack configurations: (1)
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Fig. 9: YCSB benchmark results comparing (1) RFSA +
REDO and (2) RFSA + page FTL + EXT4

RFSA+REDO file system and (2) RFSA + host page-level
FTL + EXT4 file system. The latter configuration emulates a
traditional SSD I/O architecture. Measurements are shown in
Figure 9.

We see that RFSA+REDO doubles the performance of
RFSA+FTL+EXT4 in both throughput and latency. This is
gain primarily comes from reduced number of I/O operations
that REDO performs for the same workload. By merging file
system and FTL functions, REDO can cut down on redundant
and unnecessary I/Os in garbage collection, while maximizing
the parallelism of the flash device. REDO is one of many
examples of OS-level and user-level software that can take
advantage of the raw flash interface provided by RFSA.

VII. CONCLUSION AND FUTURE WORK

We have presented RFSA, a clustered flash array that
provides scalable and distributed raw flash storage to rack
servers. We proposed a simplified flash controller for RFSA
that exposes a low-overhead error-free interface to flash. We
have shown that such an interface can be effectively combined
with a flash-aware file system to double the performance of
some database workloads. RFSA scales by using chip-to-chip
serial links to directly connect flash controllers to each other.
Latency overhead of this network is negligible and aggregated
bandwidth of the system scales close to linearly.

On the hardware side, we are examining new network
topologies that would increase cross-sectional bandwidth to
allow the system to scale out to greater number of devices
and even beyond a rack. On the software side, we are looking
into supporting distributed flash management at the file system
level, potentially using the serial network to pass metadata
information between nodes.
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