
A Transport-Layer Network for Distributed FPGA
Platforms

Abstract—We present a transport-layer network that aids
developers in building safe, high-performance distributed FPGA
applications. Two essential features of such a network are virtual
channels and end-to-end flow control. Since different virtual
channels can have vastly different traffic patterns, a proper
network design requires flexibility in setting buffer sizes and
flow control credits. In addition, the protocol must have very
low latency and low memory resource requirements, because
the communication links between FPGAs have very low latency,
and FPGAs have limited on-chip memory. These resource re-
quirements make protocols such as TCP/IP unsuitable in this
environment. Our network implements these features, and takes
advantage of the low error characteristic of a rack level network
deployment to implement a low overhead credit based end-to-end
flow control. Our design has many parameters in the source code
which can be set at the time of FPGA synthesis.

Our prototype cluster, which is composed of 20 Xilinx VC707
boards, each with 4 20Gb/s serial links, achieves effective band-
width of 85% of the maximum physical bandwidth, and a latency
of 0.5us per hop. Our network exposes a variable width FIFO
channel abstraction, with the ability to adjust buffer size and flow
control credits per channel. Several applications have already
been developed using this network. The user feedback suggest
that these features make application development significantly
easier.

I. INTRODUCTION

In order to tackle large data intensive applications, many
modern FPGA-based deployments are exploring the use of
FPGA clusters, where a network of FPGAs are deployed
and a large body of work is distributed across the FPGAs.
A network protocol for an FPGA cluster largely has three
important criteria: (1) it must be easily usable by an application
developer, (2) It must have high performance with low latency,
and (3) it must consume only a small amount of scarce on-chip
FPGA memory.

Two essential features for a usable network implementa-
tion are virtual channel and end-to-end flow control, both of
which correspond to the transport layer of the OSI network
model. Virtual channels are useful because most distributed
applications need to communicate multiple types of messages
such as command, data and status packets. The messages often
have different priorities which when sent on a single link, can
cause head-of-line blocking. Without virtual channel support,
the developer must handle multiplexing the network link
manually. Another crucial feature for building safe distributed
systems is end-to-end flow control, which is needed so that
one blocked channel would not block other channels. Ensuring
these properties without a proper transport layer protocol
makes the development of high performance distributed FPGA
applications difficult.

An FPGA cluster is often networked using low-overhead
link-layer protocols such as Aurora which runs on the high-
speed serial transceivers included in the FPGA fabric. Such
links provide reliable multi-gigabit bandwidth at a sub-
microsecond latency. Such low-latency network fabric and
scarce on-chip memory resources on FPGAs make TCP/IP not
an attractive option.

For deadlock-free operations, all virtual channels need
separate packet buffers, and such packet buffers have to be
large enough to mask network latency as well as bursts
from multiple sources. Scarcity of on-chip memory resources
can limit the bandwidth even in the presence of low-latency
inter-FPGA networks. A solution may be to use a large off-
chip DRAM packet buffers, but in such a scenario, the high
performance serial links will consume a non-trivial amount of
DRAM bandwidth which may affect application performance,
especially if the application is using an accelerator on the
FPGA. Another solution is clever allocation of buffer space
by allowing different amount of buffers for different channels.
Application developers can adjust the buffer space per channel
to meet the performance criteria without increasing the total
buffer requirement.

The contributions of this paper are twofold: We present the
design of a paramterized low-overhead transport level network
for a cluster of FPGAs that implement the useful features
described earlier, and we evaluate the performance of our
networ design using a prototype deployment.

Our network design includes transport layer implementa-
tions such as virtual channels via multiplexing, and end-to-end
flow control. It features an end-to-end low-overhead credit-
based flow control per virtual channel, making a distributed
FPGA application developer’s job much easier. It also includes
a network layer implementation including packet forwarding.
In our router, we make use of the high reliability of the
serial link and deterministic routing to ensure lossless in-order
arriving of packets, greatly simplifying the transport layer
protocol.

Our transport layer is parameterized such that flow control
features for each virtual channel can be configured at FPGA
synthesis time. Parameters include buffer size and flow control
credits. We demonstrate that a parameterized transport-layer
implementation can achieve high performance in a distributed
FPGA environment while maintaining a small BRAM foot-
print, by adjusting a few parameters to best fit the usage
characteristics of a virtual channel.

We have implemented a prototype of our network on a
cluster of 20 Xilinx VC707 FPGA development boards, with
4 20Gb/s serial links each. Our prototype implementation
achieves an effective bandwidth of 17Gb/s per link, which is

85% of maximum physical link bandwidth, at a latency of
0.5us.

The rest of the paper is organized as follows: Section II
covers the previous and related work. Section III describes
our implementation of the network and transport layer, and
Section IV describes the details of a prototype implementation
of the network. Section V presents the performance evaluation
of our implementation, and conclude in Section VI.

II. RELATED WORK

FPGAs offer very desirable performance and power charac-
teristics, but modern data-intensive applications often require
more resources that are available on a single FPGA chip. As
a result, exploration of distributed FPGA computing systems
is gaining popularity. The scale of distributed FPGA system
being built range from a cluster-in-a-box systems such as
BlueHive [1], to rack-level deployments such as Maxwell [2],
to datacenter scale deployments such as Catapult [3]. Such
systems offer a much better power performance characteristics
over their off-the-shelf server counterparts. Attempts to ex-
ploit the different characteristics of various computing entities
such as FPGAs, GPGPUs and CPUs using a heterogeneous
cluster have also proven successful [4]. Some have explored
inserting FPGA accelerators into the computation datapath,
so acceleration happen without the overhead of copying the
data to the FPGA accelerator. In BlueDBM [5], the FPGA
managed the data transfer between distributed flash devices
over an integrated controller network, achieving very low
latency acceleration.

The TCP/IP network protocol stack is by far the most
popular protocol for internetworking computer systems, but it
may not be a good fit for inter-FPGA communication. The IP
protocol is a best effort delivery protocol designed for a large
and unpredictable network. Because packets delivered over IP
may be lost or reordered, it is up to TCP to implement end-to-
end management and ensure safe delivery. Such requirements
makes the TCP protocol complex and resource heavy, making
it a good fit for the internet, but not the best choice for
datacenter or rack-level deployments where the constraints
are different. Such complexities also make it unfit for imple-
mentation on FPGAs. Some FPGA cluster projects have used
Ethernet’s physical and data link layers for its network, but
full implementation of the TCP/IP stack is rare unless it has
to interact with a legacy interface [6].

Datacenter scale protocols such as Infiniband [7] provide
better managed flow control in the network layers, ensuring no
packets are dropped due to network congestion. This allows
a more efficient transport layer protocol implementation. A
modified TCP protocol DCTCP [8] aims to achieve similar
goals by using a special flag set by a router when a packet has
experienced congestion to intelligently modify traffic rate, re-
sulting in a much smaller packet buffer requirement. Infiniband
also offloads a major part of the protocol implementation to the
hardware NIC, in order to achieve much better performance
than software implementations of other protocols.

Most existing network solutions provide many transport
layer features, such as virtual channels and end-to-end flow
control. Virtual channels multiplex the network link so that
it can be used by multiple components as if it had exclusive

access to a network link. End-to-end flow control hides under-
lying network details from the virtual channel endpoints, by
resending packets that may have dropped, managing reorder
buffers to handle out-of-order delivery, or managing flow
control credits so that congestion does not cause packet drops.

Due to the high engineering and performance overhead
of existing network solutions, many inter-FPGA networks on
a distributed FPGA deployment are implemented using low-
overhead link-layer protocols such as Aurora using multi-
gigabit serial transceivers included in the FPGA. BlueLink [9]
demonstrated that a new protocol using high-speed serial links
has a better area-performance characteristics than trying to
implement existing network protocols. In a rack-level de-
ployment, the reliability of such links are so high, that the
constraints for the design of a network are different from
larger scale networks. Many distributed FPGA computing
systems have their FPGA nodes networked over such high-
speed serial links [10], [2], [11], [12]. These systems have
demonstrated very high network performance by organizing
the nodes into various topologies optimized for their target
applications. Some have developed meta language compilers
that generate application-specific network logic with features
such as flow control from separate network specifications [13].

Most distributed FPGA computing systems using high-
speed serial links as the network fabric often provide link
and network level interfaces, but they rarely provide higher-
level functionality such as end-to-end flow control. We have
discovered during our own FPGA cluster construction that an
FPGA developer who is attempting to implement an acceler-
ated application on our cluster had trouble writing deadlock-
free code without per-virtual channel flow end-to-end flow
control.

III. NETWORK ARCHITECTURE

The overall architecture of the network components can
be seen in Figure 1. The network architecture can be divided
largely into two parts, the network layer and the transport layer.
The network layer is implemented in the form of the router,
and the transport layer is implemented in the endpoints that are
chained to the router interface. Flow control is implemented
in both layers. Link level flow control is implemented in the
network layer so that back pressure can be propagated across
the network to ensure there are no packet drops. End-to-end
flow control is implemented in the transport layer so packets
in the network are always assured to have empty receiving
buffers.

The distributed application components communicate with
remote nodes using the network endpoints. Endpoints expose
send and receive interfaces, and behaves like a FIFO, in that
it blocks when it cannot safely send any more packets. Many
endpoints can be instantiated, resources permitting, and each
endpoint can have a different type, meaning it can expose
send and receive interfaces of different bit widths. Sending
a message can be done by calling send with the data and
destination node ID, and receive returns a tuple of data and
source node ID.

A. Network Layer

The network layer implements lossless, in-order routing,
which assures that packets always arrive in the order they

R
o

u
te

r

Physical Port

Physical Port

Physical Port

Endpoints

Fig. 1: Network Architecture

were sent. This removes the need for try-resend or reordering
functionalities at the transport layer, allowing a much simpler
design.

Router Architecture : The router logic is deterministic,
in that a certain packet type from a certain source node
being delivered to a certain destination node will always travel
through the same path, even when there are multiple possible
paths. Parallelism is achieved by distributing packets from
different endpoints to different paths, when there are multiple
different paths that the packet can be routed through. This is to
ensure in-order delivery of packets to an endpoint, eliminating
the need for packet reordering logic and buffer resources at
the receiving end. Because this design eliminates network
level congestion control, the network may suffer suboptimal
performance if one endpoint generates the majority of network
traffic.

Each physical port implements a link-layer flow control.
It has a large enough buffer to saturate the physical link
bandwidth, and assures there are no packet drops when even
the data rate exceeds to available physical bandwidth.

Endpoint Interface : User endpoints expose two separate
interfaces, the user interface and the system interface. The user
interface exposes send and receive ports for the application
to use to communicate with remote nodes, while the system
interface exposes another set of send and receive ports, which
are chained together to communicate with the router, as seen
in Figure 1. The multiplexers used to chain the endpoints
together are designed to have alternating priorities between
its two inputs, in order to achieve fairness while maintaining
high performance.

The system interface of each endpoint can send a pair of
payload and destination node ID to the endpoint chain. The
chain logic will augment the packet with the packet type,
which is the index of the endpoint in the endpoint chain.
The final piece of the packet is the source node ID, which is
filled out at the router. The system interface can also receive
a pair of payload and source node ID. The router inserts a
received packet into the endpoint chain if the destination node
ID matches its own, and the chain logic forwards the packet
to the correct endpoint according to the packet type.

Packet Structure : The network layer manages packet
forwarding between the user endpoints, and the physical ports
that connect to neighboring nodes. Each packet consists of
four fields: source node ID, destination node ID, packet type
and payload data. The contents of a packet can be seen in
Figure 2. Each packet is broken into multiple fixed-width beats
when it’s sent over the physical link. The control field at the
beginning is used to deliver meta-information, to designate the
beat as a flow control credit, or to mark the beat as the last

one of a packet. The router is oblivious to the existence of
multiple network endpoints or virtual channels they represent.
The router only deals with routing individual packets, and
higher level functions such as virtual channels and end-to-end
flow control is implemented by the chain of endpoints.

src dst ptype data

Control

data

data

64 bits

Fig. 2: Packet Structure

B. Transport Layer

Virtual channels multiplex a single physical network link
to provide the logical interface of multiple links. Figure 3
describes the flow of packets in such an environment. For
virtual channels to be useful, the channels needs to be logically
separate so that they do not interfere with each other. Unless
they are safely separated, traffic congestion in one channel can
cause the physical link to become congested and cause other
channels to block. Our network implements a per-channel end-
to-end flow control, so that a sender can only send data onto
the network when it is guaranteed that the receiving endpoint
has enough buffer space to accommodate it. This assures the
physical link and router will never deadlock, which will cause
the whole network to stop.

Endpoint 1

Endpoint 2

Router

Endpoint 1

Endpoint 2

Router

Link

Fig. 3: Packet Flow in Virtual Channels

The transport layer is implemented in individual endpoints,
and its design aims to provide a very low latency and efficient
memory space usage. Each design can have multiple instanti-
ations of endpoints, parameterized differently. Each endpoint
act as a virtual channel entry and exit points. The structure of
an endpoint is described in Figure 4. An endpoint performs
two major functions: Managing packet transfer between the
user application logic and the router layer, and end-to-end flow
control. The network also provides an unmanaged endpoint,
which does not provide flow control guarantees but provides
fastest performance.

Packet Management : Packets arriving from end endpoint
chain are enqueued into the receive buffer as tuples of source
node ID and packet data, and the user logic can dequeue the
receive buffer to consume the packet. User logic can send a
packet to a virtual channel by inserting a tuple of destination
node ID and packet data into the send buffer. Independently

from this, the endpoint internal logic can insert flow control
packets into the ack queue to notify remote endpoints of
available buffer space, and a multiplexer interleaves packets
from the send buffer and ack queue onto the endpoint chain.
When a packet arrives from the endpoint chain that is directed
at this particular endpoint, it is pushed into the receive queue.
The flow control logic ensures there is always available space
in the receive queue, and the user logic can receive a pair
of source node ID and payload data by dequeuing from the
receive queue.

User
Interface

To Router

recvQ

sendQ

ackQ

Fig. 4: Endpoint Architecture

Parameterized Flow Control : Whenever a packet is
received by an endpoint, it checks a table of packets received
per source node to determine if it is time to send a flow control
credit to the source node. If the send budget of the source
node is predicted to have become small enough, it enters a
request into the ack queue. A multiplexer that arbitrates the
send and ack queues only sends the flow control packet into
the network if there is enough space left on the receive buffer,
and then marks an amount of space as allocated. By enqueuing
flow control packets and sending them as soon as buffer space
is ready, the sender can receive send budget updates at a low
latency without having to repeatedly send requests.

Determining when is the right time to send a flow control
packet is very important in an effective endpoint design. In
order to maintain a high bandwidth, the data transfer packets
and flow control packets must be overlapped, as seen in the
different between Figure 5 (a) and Figure 5 (b). For such
an overlap to happen, the flow control packet must be sent
a certain amount of time before the send budget of the source
node runs out. Ideally, the space allocated per flow control
packet (or Stride) is large enough, and the packet send offset
large enough, that the flow control packet will receive it before
its budget runs out. However, it is often not possible to provide
a large enough buffer to conservatively accommodate traffic
from all nodes in the system.

Under such constraints, each endpoint can have a different
flow control configuration that attempts to best suit its usage.
For example, for some endpoints the expected traffic pattern
may be that most of the data transfer happens between a pair
of two nodes. In such a case, it might be effective to have
a very low granularity flow control (or a large Stride), so
that a large buffer is allocated on request, but the total receive
buffer may be small. On the other hand, if many nodes are
expected to send data to one node, a fine granularity (or smaller
Stride) flow control and a large buffer may be required for
performance. If the endpoint is used for low-bandwidth traffic
such as commands, the buffer size and granularity can be set to
a small value. To enable such control, endpoints are initialized
with the parameters described in Table I.

src dst src dst

Flow Control Packet
Data to Dynamic Buffer

(a) (b)

Offset

Stride

Fig. 5: Packet Timing Comparison

Initially, all nodes start with a small send budget
(initBudget) to all remote nodes, and therefore the actual
size of the receive packet buffer is initBudget×nodeCount
slots larger than the BufferSize parameter. When the first
packet arrives, space in the receive buffer is allocated to the
source node and a flow control packet is sent. When a node
decides it will not send more packets for some time and will
rather stop receiving flow control packets, it can set a bit in
the packet control field that tells the receiving endpoint to only
allocate initBudget for the next stride, so the send budget
state can go back to its initial state. Yielding buffers like this
achieves better buffer usage when many nodes are going to
send data to one node. The receiving endpoint can also choose
to periodically allocate only initBudget size buffers, in
an attempt to more fairly allocate buffer space across source
nodes.

Unmanaged Endpoint : The network infrastructure also
provides an unmanaged endpoint which does not implement a
transport layer protocol. The unmanaged endpoint can sustain
the highest bandwidth and lowest latency as it does not check
if the receiving endpoint has available buffers before sending
packets. It should be used very carefully, since if the arriving
data is not always immediately consumed and dequeued from
the receiving buffer, it may cause the entire network to block.

Node 0

Node 1

Node 2

Node 3

Fig. 6: Prototype Topology

Parameter Description
BufferSize Size of the total allocated buffer space
FlowOffset Offset of flow control packet transmission
FlowStride Number of packets each flow control credit represents

TABLE I: Endpoint Parameters

IV. IMPLEMENTATION DETAILS

We have implemented a prototype of the network described
using a cluster machines. Each node in the cluster consists
of one Intel Xeon-based server, Xilinx VC707 FPGA devel-
opment board, and a network expansion card. Each VC707
development board was augmented with a network expansion
card that plugged into the FMC expansion port, which pinned
out the four GTX multi-gigabit serial transceivers assigned to
the high pin count FMC port into four SATA ports. SATA
crossover cables were used to connect the network expansion
cards. Two lanes, or two SATA cables were grouped together
to form a channel. In the prototype system the cluster was
networked into a one-dimensional bar topology, depicted in
Figure 6. Since the VC707 board has two FMC ports, each
node can have a fan out of up to 4 channels, which can
be used to implement other various kinds of topologies. Any
direct network with a fan-out per node of 4 or less can be
implemented. Some examples of such topologies are depicted
in Figure 7.

(a) Star (b) Tree

Node

Link

(c) Mesh

Fig. 7: Any Network Topology With Less Than 4 Fan-Out is
Possible

The link latency of an aurora link based on the GTX multi-
gigabit transceiver was measured to be around 0.48us, which
translates to about 75 cycles on the 6.4ns user clock. The link
layer flow control was implemented with a conservative size
of 200 beats for the round trip delay.

A. FPGA Resource Utilization

We have measured the FPGA resource utilization of our
network using a simple setup with two endpoints: one high
speed endpoint with larger flow control stride and buffer size
(Stride of 200 and buffer size of 1024 packets), and one small
endpoint with smaller buffers. The endpoint row in the table
below described the larger endpoint. The router component
includes the chaining logic used to link the endpoints to it.
The user logic was clocked at 125MHz.

Component LUTS RAMB36
Aurora Link 4843 36
Router 3743 0
Endpoint (×2) 753 3
Total 10092 42
Virtex 7 Percentage (3%) (4%)

TABLE II: FPGA Resource Utilization

 0

 5

 10

 15

 20

 6
4

 1
28

 1
92

 2
56

 3
20

 3
84

 4
48

 5
12

B
an

dw
id

th
 (

G
bp

s)

Flow Control Stride(Packets)

1 Hop

2 Hops

3 Hops

Fig. 8: Network Bandwidth With Variable Network Distance

V. PERFORMANCE EVALUATION

A. Bandwidth Evaluation

We demonstrate that the performance of the network
does not suffer from the addition of transport-layer network
functions. We measured the bandwidth of the network under
various configurations, such as transporting data to nodes of
variable distance, with multiple endpoints with various buffer
size and flow control credits. We show that our network can
usually achieve a bandwidth of 17Gb/s, which is 85% of
the maximum physical link bandwidth. This performance is
reasonable considering the packet header and flow control
overhead.

Single Endpoint Over Multiple Hops : We measured the
bandwidth of the network implementation by using a single
endpoint to send a large amount of data to a remote node
and measure the elapsed time. Data was sent to nodes that are
varying hops away. We also measured the performance of the
network with various flow control stride settings. Larger Stride
settings mean a larger buffer size is required. Flow control
offset was set to be half of the stride length. The results can
be seen in Figure 8.

When the flow control stride was small, performance of the
network was lower when going over a longer network distance.
This is because the round trip latency over multiple hops is
longer than the time it takes to deplete the send buffer, resulting
in idle cycles when no data can safely be sent over the network.
With the low network latency of the serial links, maximum
bandwidth over 3 network hops could be achieved using a
single endpoint when the flow control stride is over 512 packets
large.

Multiple Endpoints Over Multiple Hops : Since most
interesting distributed FPGA applications will have more than
one network endpoint, maximum network performance can be
achieved even when a single endpoint’s stride length is large
enough. We measured the aggregate network bandwidth of a
varying number of endpoints sending data to a node three
network hops away. We also measured the performance with

varying flow control stride lengths. Flow control offset was
set to be half of the stride length. The results can be seen in
Figure 9. It shows that a collection of smaller sized endpoints
can saturate the network by filling in each others’ idle cycles.

Buffer Size and Flow Control Offset : Endpoints can
be characterized not only by its flow control stride length,
but also by the flow control offset and buffer size parameters.
Having a larger buffer size means being able to reserve space
to allocate buffers for more remote nodes. The same amount
of buffer space can also be allocated to a different number of
nodes with different flow control strides. The size of the flow
control offset also effects endpoint characteristics. A larger
offset generally requires a larger buffer as space for a new
stride has to be allocated while the receive queue is not quite
emptied of the previous stride. But setting a smaller offset has
the risk of incurring idle time by delivering a flow control
packet too late.

We measured the effect of such parameters by having
three nodes send a stream of packets to the same remote
node. We tested three scenarios, two had the same total buffer
size organized into different organizations, and one had a
smaller buffer. Table III describe the three scenarios. In the
first scenario, the three source nodes will be contending to be
scheduled into the two possible stride slots, where in the latter
two scenarios they will be contending for one 64 packet stride
slot.

Setting Description
32*2+16 Buffer has space for two 32 packet strides, with offset of 16
64*1+16 Buffer has space for one 64 packet stride, with offset of 16
64*1+8 Buffer has space for one 64 packet stride, with offset of 8

TABLE III: Flow Control Parameters

The results can be seen in Figure 10. It shows that even
with the same buffer size, having a larger stride with is
beneficial to a small buffer configuration. The difference is
pronounced enough that even reducing buffer usage further
by making the offset smaller results in a better performance

 0

 5

 10

 15

 20

 6
4

 1
28

 1
92

 2
56

B
an

dw
id

th
 (

G
bp

s)

Flow Control Stride(Packets)

4 Links

3 Links

2 Links

1 Link

Fig. 9: Network Bandwidth With Variable Number of Channels

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

32*2+16 64*1+16 64*1+8

T
hr

ou
gh

pu
t (

G
bp

s)

Flow Control Settings

Fig. 10: Network Bandwidth With Different Flow Control
Settings

compared to the configuration with smaller stride lengths.
These results suggest that for smaller endpoints with small
buffer sizes, buffer space can most effectively be used by
using it for larger strides, while using a relatively small offset.
For large endpoints attempting to exert the most amount of
bandwidth, a larger offset may be required to fill in the time
between the flow control packet latency.

B. Latency Evaluation

Network latency was measured by measuring the round-
trip latency by sending a packet to nodes of varying distances,
where the user logic immediately sends the packet back to the
original sender. The results can be seen in Figure 11. We show
a consistent latency of less than 0.5us per hop.

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4

La
te

nc
y

(u
s)

Hops

Latency(us)

Fig. 11: Network Latency Per Hop

VI. CONCLUSION

An efficient and high-performance network is essential
for development of an effective distributed FPGA computing
platform. Due to high engineering cost and the scarce on-
chip memory resource, many existing inter-FPGA network
implementations do not provide transport-level network func-
tionality such as end-to-end flow control and virtual channels.
Because such systems depend on the user application developer
to implement such features and write safe applications, it
becomes difficult to create complex distributed FPGA appli-
cations which are also deadlock-safe and high performance.

In this paper, we have presented our design of a parameter-
ized, low overhead transport-layer network that provides useful
features such as virtual channels and end-to-end flow control.
Our network takes advantage of the high reliability of the high-
speed serial links, which are integrated in the FPGA fabric, to
implement a lossless in-order network layer, which allowed us
to simplify the transport layer and use less FPGA resources.
The design of the transport layer is parameterized, so that
the developer can choose to use less resources while meeting
the performance requirements of the individual endpoint. Our
prototype implementation demonstrated a high performance in
an FPGA cluster setting. We predict that our network will
accelerate future research of distributed FPGA applications.

REFERENCES

[1] S. Moore, P. Fox, S. Marsh, A. Markettos, and A. Mujumdar, “Bluehive
- a field-programable custom computing machine for extreme-scale
real-time neural network simulation,” in Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on, April 2012, pp. 133–140.

[2] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons,
A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle,
R. Chamberlain, and G. Genest, “Maxwell - a 64 fpga supercomputer,”
in Adaptive Hardware and Systems, 2007. AHS 2007. Second NASA/ESA
Conference on, Aug 2007, pp. 287–294.

[3] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. Prashanth, G. Jan,
G. Michael, H. S. Hauck, S. Heil, A. Hormati, J.-Y. Kim,
S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,
P. Yi, and X. D. Burger, “A reconfigurable fabric for accelerating
large-scale datacenter services,” SIGARCH Comput. Archit. News,
vol. 42, no. 3, pp. 13–24, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2678373.2665678

[4] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with fpgas and
gpus,” in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’10.
New York, NY, USA: ACM, 2010, pp. 115–124. [Online]. Available:
http://doi.acm.org/10.1145/1723112.1723134

[5] S.-W. Jun, M. Liu, K. E. Fleming, and Arvind, “Scalable multi-access
flash store for big data analytics,” in Proceedings of the 2014
ACM/SIGDA International Symposium on Field-programmable Gate
Arrays, ser. FPGA ’14. New York, NY, USA: ACM, 2014, pp. 55–64.
[Online]. Available: http://doi.acm.org/10.1145/2554688.2554789

[6] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István,
“Achieving 10gbps line-rate key-value stores with fpgas,” in
Presented as part of the 5th USENIX Workshop on Hot Topics
in Cloud Computing. Berkeley, CA: USENIX, 2013. [Online].
Available: https://www.usenix.org/conference/hotcloud13/workshop-
program/presentations/Blott

[7] I. T. Association, Infiniband, 2014 (Accessed November 18, 2014).
[Online]. Available: http://www.infinibandta.org

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctcp),” in Proceedings of the ACM SIGCOMM 2010 Conference,

ser. SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 63–74.
[Online]. Available: http://doi.acm.org/10.1145/1851182.1851192

[9] A. Theodore Markettos, P. Fox, S. Moore, and A. Moore, “Interconnect
for commodity fpga clusters: Standardized or customized?” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, Sept 2014, pp. 1–8.

[10] T. Bunker and S. Swanson, “Latency-optimized networks for clustering
fpgas,” in Field-Programmable Custom Computing Machines (FCCM),
2013 IEEE 21st Annual International Symposium on, April 2013, pp.
129–136.

[11] A. Patel, C. Madill, M. Saldana, C. Comis, R. Pomes, and P. Chow,
“A scalable fpga-based multiprocessor,” in Field-Programmable Custom
Computing Machines, 2006. FCCM ’06. 14th Annual IEEE Symposium
on, April 2006, pp. 111–120.

[12] R. Sass, W. Kritikos, A. Schmidt, S. Beeravolu, and P. Beeraka,
“Reconfigurable computing cluster (rcc) project: Investigating the fea-
sibility of fpga-based petascale computing,” in Field-Programmable
Custom Computing Machines, 2007. FCCM 2007. 15th Annual IEEE
Symposium on, April 2007, pp. 127–140.

[13] K. E. Fleming, M. Adler, M. Pellauer, A. Parashar, A. Mithal,
and J. Emer, “Leveraging latency-insensitivity to ease multiple
fpga design,” in Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’12.
New York, NY, USA: ACM, 2012, pp. 175–184. [Online]. Available:
http://doi.acm.org/10.1145/2145694.2145725

