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Abstract—Flash storage devices behave quite differently from hard disk drives (HDDs); a page on flash has to be erased before

it can be rewritten, and the erasure has to be performed on a block which consists of a large number of contiguous pages. It is

also important to distribute writes evenly among flash blocks to avoid premature wearing. To achieve interoperability with existing

block I/O subsystems for HDDs, NAND flash devices employ an intermediate software layer, called the flash translation layer (FTL),

which hides these differences. Unfortunately, FTL implementations require powerful processors with a large amount of DRAM in flash

controllers and also incur many unnecessary I/O operations which degrade flash storage performance and lifetime. In this paper, we

present a refactored design of I/O architecture for flash storage which dramatically increases storage performance and lifetime while

decreasing the cost of the flash controller. In comparison with page-level FTL, our preliminary experiments show a reduction of 19%

in I/O operations, improvement of I/O performance by 9% and storage lifetime by 36%. In addition, our scheme uses only 1

128
DRAM

memory in the flash controller.

Index Terms—Storage Systems, File Systems, NAND Flash Memory, I/O Architectures

✦

1 INTRODUCTION

I T is well-known that the physical properties of NAND flash
are different from those of HDDs. To provide interoperabil-

ity with existing block I/O subsystems, NAND flash-based
devices employ an intermediate software layer, called a flash
translation layer (FTL) [7]. Though interoperability is highly
desirable, the usefulness of FTL-based storage is continuously
being questioned. In FTL-based storage, NAND flash is man-
aged by two different software layers, a file system and FTL,
each of which has a different design goal. This duplicate
management incurs high inefficiency in terms of performance,
lifetime, and cost. FTL has to maintain a huge mapping table
in DRAM and requires powerful embedded processors (e.g.,
3 CPUs w/ 1 GB DRAM [10]) to run complicated firmware
algorithms, including logical-to-physical mapping and garbage
collection [7]. The duplicate storage management by two dif-
ferent layers also incurs lots of extra I/Os, degrading storage
performance and lifetime.
In order to overcome the inefficiency of FTL-based storage,

several alternative software architectures have been proposed.
A host-based FTL solution like DFS [4], [12], [14] mitigates
these problems by moving some key functions of FTL to a host
device driver. Supporting FTL functions in the host, however,
cannot eliminate the duplicate management problem of flash
storage because it simply changes the system software layer
where FTL is running. Thus, the host-based FTL still wastes
considerable host resources and incurs many extra I/Os.
Another alternative solution is to use flash file systems

(FFS) like JFFS2 and YAFFS. Using NAND-specific interface
layers (e.g., MTD), FFS directly manages flash blocks of raw
NAND chips without any helps from FTL. However, FFS have
serious limitations for use in recent flash devices like SSDs and
eMMCs. The internal architecture (e.g., channel organizations
and I/O interleaving) of flash devices is both quite complex
and different for each storage vendor [7]. Storage vendors
are also reluctant to divulge the internal architecture of their
devices and prefer hiding all those details behind the block I/O
interface. FTL, provided by the storage vendor, performs inter-
nal storage management using rich proprietary information. In
practice, FFS cannot work with most flash devices and is only
used in limited embedded systems with few raw NAND chips.
In this paper, we propose a REfactored Design of I/O

architecture, called REDO, which solves the duplicate man-
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agement problem while preserving the advantages of FTL-
based storage. REDO refactors two main components of the
I/O subsystem – the file system and the storage device. REDO
removes logical-to-physical mapping and garbage collection
from the storage device. Instead, a refactored file system (RFS)
directly manages the storage address space, including the
garbage collection. Unlike host-based FTL, all those functions
are conducted by RFS without any helps from an intermediate
host layer like a device driver. This eliminates the need for
maintaining a large logical-to-physical page-map table, allow-
ing us to perform garbage collection more efficiently at the
file system level. A refactored storage device controller (RSD)
becomes simpler because it runs a small number of essential
flash management functions. RSD maintains a much smaller
logical-to-physical segment-map table to manage wear-leveling
and bad blocks. Unlike FFS, REDO provides interoperability
with block I/O subsystems, allowing SSD vendors to hide all
the details of their devices and NAND characteristics.
We have implemented RFS as a new file system in the Linux

kernel and tested it using a flash storage device emulator for
RSD. Our preliminary experiments show that REDO eliminates
the well-known trade-off between performance and cost in
designing flash storage – it shows better I/O performance with
smaller hardware resources than page-level FTL.

2 REFACTORED I/O ARCHITECTURE FOR FLASH

REDO is based on a log-structured file system (LFS) and, in
the remainder of this paper, we assume LFS as a baseline
file system. This is reasonable because many new file systems
for SSDs are based on LFS. Usually, LFS works better than
traditional file systems like EXT4, so it is regarded as a better
file system solution to SSDs.
Fig. 1(a) shows the architecture of the FTL-based storage

with LFS. Typical LFS (e.g., Sprite LFS [6], NILFS [9], and
F2FS [3]) manages a logical address space as one huge log
and FTL also manages a physical address space in an LFS-
like manner with a logical-to-physical mapping table. LFS and
FTL also run their own garbage collection algorithms. The
same NAND flash is thus doubly managed by two different
layers in a similar manner. REDO eliminates this duplicate
storage management. As depicted in Fig. 1(b), the storage space
management and garbage collection modules of RFS directly
manage NAND flash, removing logical-to-physical mapping
and garbage collection from a storage device. Only simple
wear-leveling and bad-blocks management remain in RSD. As
the reliability of NAND substrate continuously degrades, those
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Fig. 1: A comparison between FTL-based storage and REDO

lifetime management functions can be effectively supported
by the storage controller where detailed physical information
for NAND devices is available. REDO maintains compatibility
with the existing block I/O interface, enabling us to use
existing block I/O subsystems. It is important to notice that
the interface between the RFS and RSD does not interfere with
exploiting device-level parallelism.

Nomenclature: We will use the following nomenclature for a
page, a block and a segment in this paper. A file usually
consists of 4 KB blocks, which we will refer to as pages. Flash
storage typically consists of 4 KB flash pages and much larger
blocks (typically 64 to 128 pages). In LFS, storage management
is often done in much larger chunks, known as logical segments
or simply segments. Typically, a segment is 2MB which is 2 to
4 times larger than a flash block.

2.1 Duplicate Storage Management Problem

To explain the problems associated with the duplicate storage
management, we begin with a description of LFS (Fig. 2). Our
explanation is based on Sprite LFS [6] because it is well-known
and many LFSs follow its design concept. The problem of
Sprite LFS is also observed in modern LFS like NILFS [9] and
F2FS [3]. LFS first buffers file data and inodes in DRAM and
it periodically performs an out-place update in segment size
chunks to HDD or SSD. LFS needs to maintain an inode map
which indicates the locations of inodes scattered across the stor-
age space. An out-place update by its very nature invalidates
some old pages in the file system which causes changes in the
inode map. For crash recovery, LFS also maintains a check-
point which points to pieces of the inode map. LFS stores the
check-point in a fixed location for fast construction of the file
system at mount time. Otherwise, LFS would have to scan the
entire storage space to build the file system. The check-point
is typically updated every 30 seconds or when an explicit sync
command is issued. Once all the free space is exhausted, LFS
performs garbage collection to reclaim free space.
Even though the overall architecture of LFS is well suited

to the physical natures of NAND flash, the plain combination
of LFS and FTL works inefficiently. Using the write request
sequence used in Fig. 2, we show the problems that arise
with such a simple combination in Fig. 3. We assume that the
segment size is twice the flash block size, and the file-system
page size is the same as the flash page size.
Using a logical-to-physical mapping table, FTL writes the

incoming data to free space in a similar way that LFS does,
overcoming the limitation of NAND flash to perform in-place
updates. In Fig. 3(a), the check-point CP is initially written and
then is updated twice after the pieces of the inode map, IM#1
and IM#2, are written. Since the check-point is updated in
the fixed location with the same logical address, FTL writes
the new check-point to the free space of NAND flash while

Fig. 2: An example of how LFS handles write requests. Five
files are written to free space along with their inodes in the
following order: A, B, C, B, D, and E. The file B is written
twice. The pieces of the inode map, IM#1 and IM#2, which
point to the locations of inodes, are written together. The check-
point CP is overwritten in the fixed location of the segment 0
which is reserved for the check-point.

invalidating the previous version. In LFS with FTL, both FTL
and LFS perform garbage collection with their own policies.
Suppose that FTL is the first one to trigger garbage collection.
In Fig. 3(b), the blocks 0 and 2 are chosen as a victim and
four valid pages for the file A and IM#1 are copied to free
blocks. The victim blocks are then erased. LFS must trigger
garbage collection whenever the file system runs out of space.
In Fig. 3(c), the files A and C are copied to the free space of a
file system, and IM#1 is updated to IM#3 to indicate the new
locations of A and C. LFS finally informs the storage device
that the victim segment has become garbage by issuing a TRIM
command. Notice that the movement of the pages for A and
IM#1 by the FTL garbage collection turns out to be useless.
Useless page copies do not occur in traditional file systems

like EXT4 and NTFS. However, such systems cause an inor-
dinate amount of in-place updates which, in turn, triggers
much more garbage collection at the flash device level. This
is confirmed by our empirical results in Section 3 where for 4
out of 5 benchmarks REDO outperforms other systems.

2.2 Refactored File System (RFS)

To solve the problem of the duplicate storage management,
RFS is designed differently from the conventional LFS in two
ways; it only issues out-place update commands and informs
a storage device about which blocks have become erasable via
TRIM commands. This frees the flash controller from the task
of garbage collection all together. The question of unnecessary
copies in the flash storage never arises in REDO.
A logical segment in RFS corresponds directly to a “physical

segment”, which is the group of flash blocks. This eliminates
the need of logical-to-physical page-map table, enabling us to
access NAND flash directly. In the next section, we will see
that RSD maintains a segment-map table that maps segment
addresses supplied by RFS to real physical segments. This
remapping requires much smaller tables and is for bad-block
management and wear-leveling only.
Fig. 4 shows how RFS manages NAND flash when the

write requests shown in Fig. 2 are issued. As depicted in
Fig. 4(a), RFS writes file data, inodes, and the pieces of the
inode map in an out-place update manner. Unlike LFS, the
incoming data are written to a physical segment corresponding
to a logical segment, and their relative offsets in the logical
segment are preserved in the physical one. For check-pointing,
RFS reserves two fixed logical segments, called check-point
segments. In Fig. 4, the logical segments 0 and 1 are
check-point segments (the segment 1 is not shown). RFS then
appends new check-points with different version numbers, so
that the overwrites never happen. RFS manages all the obsolete
data at the level of a file system and triggers garbage collection
when free space is exhausted. In Fig. 4(b), RFS chooses the
logical segment 2 as a victim and copies live data to free
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Fig. 3: An example of how LFS and FTL manage NAND flash. The file A and IM#1 are copied unnecessarily.

Fig. 4: An example of how RFS in REDO manages NAND flash.

space. The victim segment becomes free for future use. To
inform that the physical segment for the victim has obsolete
data, RFS delivers a TRIM command to RSD. Finally, RSD
marks the physical segment out-of-date and erases flash blocks.
At mount time, RFS finds a check-point with the latest

version number by scanning two check-point segments and
then uses it to build a file system. Considering that the segment
size is several megabytes, the time taken to find the latest
check-point is negligible. If the free space in two segments is
exhausted, RFS reclaims a free segment by garbage collection.
The garbage collection for check-point segments is simple. The
latest version of a check-point is always stored in one of two
check-point segments. If one segment has the latest check-
point, the other segment has only the old versions. RFS frees
this old segment and issues a TRIM command to inform the
storage device that the corresponding physical segment has
obsolete data. Then, RFS reuses the freed logical segment to
write new check-points. Even if RFS uses two logical segments
repeatedly, it does not imply a rapid wear-out of those seg-
ments because the storage device manages the wear-leveling.
Note that RFS does not change the existing storage space

management and garbage collection modules of LFS. It merely
modifies the check-point management module to avoid in-
place updates. This simplicity enables RFS to be easily adapted
to other LFSs. The crash recovery of RFS is also not changed
greatly; in fact, the recovery process is exactly the same as that
of LFS except for finding the latest check-point.

2.3 Refactored Storage Device (RSD)

The direct storage management of RFS greatly simplifies the
architecture of RSD, lowering the cost of building a storage
device close to that of SSDs with simple block-level FTL. The

Fig. 5: Logical and physical segment mapping

flash blocks belonging to a physical segment are mapped to
different channels and ways that can be operated in parallel.
File-system pages and flash pages in the logical and physical
segments are statically mapped to maximize device-level par-
allelism. Fig. 5 shows an example of how a logical segment is
mapped to a physical segment when there are four channels
and one way. The number of file-system pages per logical
segment is assumed to be 16. RFS transfers the bulk of data
to RSD in the ascending order of their logical addresses after
buffering them in DRAM. Thus, this simple static mapping can
maximally exploit device-level I/O parallelism.

The handling of write requests in RSD is depicted in Fig. 6.
RSD maintains the segment-map table, and each entry of the
table points to physical blocks that are mapped to a logical
segment. When write requests come, RSD calculates a logical
segment number (i.e., 100) using the logical file-system page
number (i.e., 1600). Then, it looks up the remapping table to
find the physical blocks mapped to the logical segment. If
physical blocks are not mapped yet, RSD builds the physical
segment by allocating new flash blocks. RSD picks up free
blocks with the smallest P/E cycles in the corresponding
channel/way. A bad block is ignored. If there are flash blocks
already mapped, RSD writes the data to the fixed location
in the physical segment as depicted in Fig. 5. Block erasure
commands are not explicitly issued from RFS. But, RSD easily
figures out which blocks are out-of-date and are ready for
erasure because RFS informs RSD of physical segments only
with obsolete data via a TRIM command. RSD handles over-
writes like block-level FTL. This is inefficient, but since RFS
only issues out-place updates, it works efficiently with RFS.

Fig. 6: Handling of write requests in RSD
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Fig. 7: Reduction in I/O operations
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TABLE 1: The number of block erasure operations

Benchmark F2FS+BFTL EXT4+PFTL F2FS+PFTL REDO

TIOBENCH 115,168 478,561 40,861 21,564
SYSBENCH 7,085 27,742 5,318 3,197
IOZONE 18,325 9,686 10,602 7,900

BONNIE++ 1,237,200 4,275 6,662 3,776
POSTMARK 2,011,481 16,342 46,426 37,085

TABLE 2: The size of a mapping table

Capacity F2FS+BFTL EXT4+PFTL F2FS+PFTL REDO

512 MB 4 KB 512 KB 512 KB 4 KB
1 TB 8 MB 1 GB 1 GB 8 MB

RSD has a simple architecture compared with other flash de-
vices. Thus, we expect that existing flash devices can be easily
modified to support RSD. It is also worth noting the differences
between REDO and nameless write [15]. The nameless write
removes duplicate storage management by moving file-system
functions to a storage device. This makes a storage device
more complicated, and, furthermore, requires many custom
I/O interfaces for the interactions between the host and the
device. REDO not only reduces complexity of a flash controller,
but also does not require any custom interfaces.

3 EXPERIMENTS

We implemented RFS in F2FS [3]. RSD was implemented in
an SSD emulator, called FlashBench [11], which emulated the
array of NAND flash using host DRAM. FlashBench also
ran several firmware algorithms, including address mapping
and garbage collection. FlashBench was organized with two
channels and two ways. A flash block consisted of 4 KB 128
pages. The total SSD capacity was 512 MB.
We compared REDO with F2FS running on top of two

different FTL designs: block-level and page-level FTLs, which
are denoted by F2FS+BFTL and F2FS+PFTL. RFS in REDO was
based on F2FS, so RFS used the exactly same module as F2FS
for address management and garbage collection. To eliminate
in-place updates, we modified the check-point module of F2FS.
Since F2FS allowed in-place updates to the inode map, we
modified F2FS so that it wrote the inode map in an out-
place-update manner. For page-level FTL, a greedy policy was
used [7]. We also compared REDO with EXT4 running with
page-level FTL, which is denoted by EXT4+PFTL.
For our evaluation, we used five benchmarks: POSTMARK [2],

BONNIE++ [8], TIOBENCH [5], SYSBENCH [1], and IOZONE [13],
and set parameter values so that the maximum file size created
did not exceed the storage capacity. The benchmarks were con-
figured to generate sufficient I/Os for meaningful evaluation.
For other parameters, default values were used.
Fig. 7 shows the impact of the elimination of useless

copies on the reduction of I/O operations. Since useless page
copies do not occur in EXT4+PFTL, we compare REDO with
F2FS+BFTL and F2FS+PFTL. On average, REDO reduces the
number of I/O operations by 61% and 19% over F2FS+BFTL
and F2FS+PFTL. The benefit of eliminating useless copies
increases in proportion to garbage collection overheads at the
FTL. BONNIE++ exhibits high garbage collection overheads,
incurring lots of page copies. By eliminating unnecessary
copies, REDO reduces the number of I/O operations by 51%
over F2FS+PFTL. For IOZONE with low garbage collection
overheads, the number of I/O operations decreases by 5%.
Fig. 8 shows the runtime of F2FS+BFTL, EXT4+PFTL,

F2FS+PFTL, and REDO. REDO reduces the runtime by
50.1%, 40.1%, and 9.2% over F2FS+BFTL, EXT4+PFTL, and
F2FS+PFTL. Except for F2FS+BFTL, for TIOBENCH, SYS-
BENCH, and IOZONE, EXT4+PFTL shows the worst perfor-
mance because of many extra I/Os at the FTL level. In case
of BONNIE++, EXT4+PFTL works better than F2FS+PFTL

because of higher garbage collection overheads of F2FS+PFTL
at the FTL. By removing useless copies, REDO reduces the
runtime by 3% and 28% over EXT4+PFTL and F2FS+PFTL. For
POSTMARK, both F2FS+PFTL and REDO perform worse than
EXT4+PFTL. POSTMARK is a small-file-oriented benchmark.
F2FS does not efficiently handle lots of small files, issuing 1.9x
more I/O requests to the SSD over EXT4+PFTL, which in turn
increases the overall runtime of F2FS+PFTL and REDO.
TABLE 1 shows that REDO reduces the number of block

erasures by 36%, 62%, and 94% over F2FS+PFTL, EXT4+PFTL,
and F2FS+BFTL. This implies that REDO improves the SSD
lifetime by the same amount. TABLE 2 lists the mapping table
sizes. When the SSD capacity is 512 MB, the mapping table
sizes for F2FS+BFTL, EXT4+PFTL, F2FS+PFTL, and REDO are
4KB, 512 KB, 512 KB, and 4 KB, respectively. If the SSD capacity
is 1 TB, the mapping table increases to 1 GB in EXT4+PFTL

and F2FS+PFTL. Even if only a small fraction of DRAM is
required (which is the same as F2FS+BFTL), REDO outperforms
F2FS+PFTL and EXT4+PFTL.
In conclusion, our results showed that REDO eliminated the

trade-off between performance and cost in designing SSDs,
realizing a high-performance and low-cost storage solution.
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4 CONCLUSION

We presented a new I/O architecture, called REDO, for flash-
based SSDs. Experimental results showed that refactoring the
file system and the storage device software was very effec-
tive – reducing the number of I/O operations by 19% while
improving the storage performance and lifetime by 9% and
36%, respectively, and simultaneously lowering the amount of
DRAM by 1

128
over page-level FTL with F2FS.
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