
ZIP-IO: Architecture for Application-Specific
Compression of Big Data

Sang Woo Jun?, Kermin E. Fleming?, Michael Adler† and Joel Emer†
?Computation Structures Group, CSAIL †VSSAD Group
Massachusetts Institute of Technology Intel Corporation

{wjun, kfleming}@csail.mit.edu {michael.adler, joel.emer}@intel.com

Abstract—We have entered the “Big Data” age: systems are
being asked to deal with exponentially increasing amounts
of data. Moore’s law continues to deliver cheaper and more
plentiful transistors with which to process this data, but pin
count, bandwidth, and frequency have not scaled as quickly,
exacerbating the already painful I/O bottleneck. As data sets
continue to scale in size, this bottleneck represents a serious
concern in system architecture.

Compression is an effective way to deal with many large data
sets. As a result, application-specific compression algorithms,
which provide superior compression to general-purpose entropy
compression algorithms, have become popular. Unfortunately,
compression algorithms are often computationally difficult and
can resulting in application-level slow-down when implemented
in software. To address this issue, we investigate integrating a
framework for FPGA-accelerated compression into a general-
purpose system. Using this system we demonstrate that an
unmodified industrial software workload can be accelerated 3x
while simultaneously achieving more than 1000x compression in
its data set.

I. INTRODUCTION

The evolution of computer networks and the increasing scale
of electronic integration into our daily lives has lead to an
explosion of data. Individuals post entire life-times worth [2]
of photos to the internet; camera networks monitor traffic
activiry across entire cities. Moreover, the size of this data
is growing exponentially as networks and sensors become
cheaper to deploy. One of the key challenges in computer
architecture moving forward is operating efficiently on these
large data sets.

Fortunately, Moore’s law continues its steady march, and
transistors continue to get cheaper and more plentiful, bal-
ancing the steady growth in data. However, the future is
not completely bright. While the potential for computation
continues to scale, memory, chip, and network bandwidths are
not scaling nearly as quickly, exacerbating the already-painful
I/O bottleneck. As we move farther into the “Big Data” age,
the problem becomes not how to compute the data on chip,
but how to get the data from storage or sensors, across the
network, and onto the chip.

One solution to these burgeoning I/O and capacity problems
is data compression: trading computation at the processor
for increased bandwidth and capacity in network and storage
systems. The idea of applying compression to I/O systems
is not new and has been studied in several contexts. Many
existing file systems [15], [19] support software-based data
compression to increase apparent disk storage capacity. IBM

developed hardware data compression to extend DRAM capac-
ity [22], but this technology did not gain wide deployment.
Recent FLASH-based storage systems [5] are thought to
include automated support for compression to help hide the
effect of write asymmetry in FLASH systems.

The main failing of these efforts is that general purpose
compression schemes [24] do a a poor job of compressing
generic data, resulting in limited performance gains [14].
To get higher levels of compression one must develop
application-specific algorithms that take advantage of the
intrinsic properties of a specific data set. Application-specific
compression is also not new: compression algorithms for
important data sets like video [8] have been well-studied. How-
ever, as problem sizes have grown, compression algorithms
have been proposed for many high-performance workloads,
including processor simulation [12], bioinformatics [13], and
web search [7]. These algorithms seek to either increase the
amount of data that can be stored locally (e.g. in fast DRAM)
or to minimize the amount of traffic on the network, while
improving performance metrics like run time.

The question, then, is how to implement these algorithms.
One possibility, as general-purpose core counts scale, is to
map compression algorithms onto dedicated cores. However,
compression does not map well to general-purpose processors
or GPUs. Compression algorithms typically feature complex,
scheme-specific bit manipulations and highly variable control
which are ill-suited to the wide, deep processing pipelines
found in modern GPUs and CPUs. Moreover, most compres-
sion algorithms have tight feedback loops and strong data-
dependencies, making core-level parallelization difficult. Us-
ing general purpose processors to implement compression and
decompression operations may slow application codes layered
on top of these algorithms to the point that using the best
available compression scheme becomes a losing proposition
in terms of run-time. As compression schemes become more
complicated in an attempt to balance data volume, these
performance issues worsen.

Compression implementations are better suited to computa-
tional structures supporting fine-grained bit manipulation, vari-
able control, and fast feedback. As a result, application-specific
compression schemes that require high performance, such as
video, are typically implemented in hardware. However, due
to cost, hardware implementation can only be considered for
widely deployed applications, leaving a large set of applica-
tions in need of acceleration. Fortunately, most compression



schemes are also amenable to implementation on a fine-
grained reconfigurable substrate, such as FPGA. As transistor
counts increase, including such a substrate on die becomes
both increasingly feasible and increasingly attractive [21],
since fine-grained reconfigurable substrates capture different
workloads than general purpose processors.

Compression maps well to FPGAs. However, integrating
general-purpose software with FPGAs based accelerators, and,
in general, implementing anything on FPGAs, is a difficult
proposition. An important system-level consideration in con-
structing a general framework for application-specific com-
pression is that we must integrate seamlessly with existing
software. To ease this integration, we provide a novel FPGA-
based implementation of the UNIX Standard I/O library,
which permits the integration of user programs and FPGA-
accelerated compression by way of commonly used shell
commands.

Processor trace compression, which we will consider at
length in this paper, is one example of a highly-compressible
workload well-suited to decompression on the FPGA. Al-
though recognized as computationally difficult, processor sim-
ulation is not typically thought of as a “Big Data” problem.
However, to avoid the cost of running largely redundant
functional simulations, detailed simulators may store a trace
of instruction-by-instruction execution results. These execution
traces are then used to drive a diverse set of simulators [9],
[10], which can be orders of magnitude faster than the original
detailed simulation. Traces are enormous: even for small pro-
grams, a detailed trace can consume, uncompressed, terabytes
of storage. Moreover, typical production simulation systems
consist of thousands of machines simultaneously accessing
traces. This level of traffic can quickly cripple even high-
end storage arrays. As a result, processor traces are a prime
candidate for application-specific compression.

In this paper, we examine a prototype system architecture
for application-specific compression, which we call ZIP-IO.
This system consists of a processor and a tightly coupled
reconfigurable substrate. Using trace-based processor simula-
tion as an example, we will show that our system architecture
not only provides the opportunity to deploy compression, and
thereby network bandwidth and storage system utilization, but
also that existing user-level applications can be accelerated by
significant multiples as compared to a conventional software
implementation.

II. BACKGROUND

A. Trace-Based Simulation

Detailed simulation of processors is a computationally in-
tensive task. Detailed software simulators operate at speeds
of kilo-instructions per second, and complete benchmark
executions take days to complete. Since architectural path-
finding times are limited, architects frequently adopt a two-
phased approach to simulation. Detailed functional simulations
are run once, and during the run a trace of architectural
updates is collected. This trace contains all architectural state
changes, such as register writes and status flag updates, for

each instruction executed. Traces are quite large, since each
instruction takes tens of bytes to store and programs execute
trillions of instructions. These traces are then repeatedly reused
to drive many other simulators. For example, a full instruction
trace can be used to extract memory traces, which can, in turn,
be used to drive a cache hierarchy simulator. These secondary,
trace-driven simulators run orders of magnitude faster than
the original detailed simulation, permitting a broader range of
architectural exploration.

The two-phased approach has a second benefit: parallelism.
Once the traces have been collected, fast, parallel simulation
is available. This parallelism is important because typical
architectural studies will test a linear combination of pa-
rameters, for example, cache size and associativity, across a
set of benchmark programs, such as SPEC [4]. Since each
program/architecture experiment is independent, each can be
run separately.

To exploit this parallelism, and to complete experiments
quickly, industrial and academic researchers use large network
batching systems. Although parallelism is abundant in this
workload organization, sophisticated network infrastructure is
needed to support all of the machines running simultaneously.
As we remarked previously, detailed instruction traces are
enormous. Parallel simulators making use of these traces do
not have the disk capacity to store even a single full-length
trace in their local disk. As a result, systems designed for pro-
cessor simulation make use of large-scale, expensive, network
storage. However, since many experiments run in parallel,
this shared storage can represent a significant performance
bottleneck. As figure 5(a) shows, even a handful of simulators
simultaneously accessing a network store can result in large
performance loss. Worse, industrial simulation deployments
frequently have thousands to tens of thousands of experiments
running in parallel.

B. Trace Compression

Predictor CPU 

Model CPU 

==? 

Unpredictable Trace 
Predicted Trace 

Model Trace 
Predicted Trace Indicator 

Fig. 1. Compression using Instruction Interpretation

Because traces are so large, significant effort has been spent
in attempting to compress them. Most compression efforts [6],
[16] have focused on specific kinds of traces, for example
instruction streams. These specialized compressors can obtain



compression ratios hundreds to thousands of times better than
conventional entropy compression. However, to minimize the
need for detailed simulation, a general trace compression
scheme, from which many different simulators can be driven,
is needed. General trace compression [11] schemes have also
been implemented using entropy-based methods tuned for
traces. However, entropy based compression schemes are not
attractive for high-performance implementation because they
tend to be memory bound.

Cohn and Kanev [12] have shown that due to the character-
istics of program execution, it is possible to implement highly
efficient compression of instruction traces by emulating a sim-
ple CPU. Although modern processors are very complicated
(even RISC machines have hundreds of instructions [3]), the
majority of executed instructions are drawn from a small part
of the ISA. Therefore, a large portion of program execution can
be emulated using a simple predictor CPU that implements
only the frequently used instructions. Using this observation,
the execution trace can highly compressed by recording only
those instructions not implemented by the predictor CPU. This
algorithm, called Zcompr, is highly amenable to FPGA imple-
mentation because the core of the compression algorithm, the
predictor CPU, is effectively hardware and largely streaming.
This stands in contrast to traditional entropy trace compression
schemes which operate on complicated, memory-based data
structures to store portions of the trace. Because Zcompr is a
general trace compression algorithm, it can be used to drive
any trace-based simulation with minimal post-processing.

Figure 1 shows a block diagram of the compression process.
During the detailed trace run, the behavior of the detailed
model CPU and the predictor CPU are compared at each
instruction. If the two CPUs produce matching outputs, then
a marker is recorded in the compressed trace and the state
update is omitted. However, when the predictor encounters
an instruction that it does not implement, the complete state
modification made by the detailed model must be recorded in
the compressed output. Decompression is the inverse of com-
pression: the predictor CPU will again run over the program,
inflating the omission indicators. When the decompression
predictor CPU encounters an unimplemented instruction, it
injects the state update stored in the compressed trace stream
and continues execution after patching its internal state to
reflect the execution of the un-implemented instruction.

Figure 2 shows the percentage of executed instructions
that are covered by our Zcompr implementation. The original
Zcompr implementation did not include support for traps,
protection management, and syscalls; neither does our imple-
mentation. Since we target the FPGA, we also omit floating
point operations and certain complex memory operations. The
remaining 10% of the instruction set accounts for more than
98% of the dynamic executions across the SPEC bench-
marks, suggesting that 50 to 1 compression ratios should be
achievable. In reality, the compression ratio is slightly less,
both because, in addition to unimplemented instructions, the
predictor CPU cannot correctly predict the effects of external
processor I/O events and because some meta-data must be

included in the compressed trace.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

E
xe

cu
te

d
 I
n
st

ru
ct

io
n
s(

%
)

Implemented Instructions(%)

Fig. 2. Percentage of Implemented Instructions in Instruction Trace

C. FPGA-Software Interfacing

The goal of ZIP-IO is to provide an easy-to-use and high-
performance architecture for accelerating big data applications
through application-specific compression. Good support for
FPGA-software I/O is essential to ZIP-IO: it should be as
easy to integrate ZIP-IO with existing software programs
as it is to integrate other common Unix tools with them.
Unfortunately, FPGAs generally have no easy-to-use software
interfaces. Indeed, the problem of FPGA-software co-design
has traditionally been viewed as difficult and error prone. This
difficulty stems from the raw nature of physical devices, both
in hardware and software, which require substantial expertise
to incorporate into a design.

To address these issues, we have, over the past several
years, developed the LEAP[1] FPGA operating system. The
LEAP framework is designed to serve many of the roles of
operating systems on general purpose processors, enabling
portable application development across a variety of hardware.
LEAP abstracts platform-specific device interfaces into a set
of general interfaces, common across all FPGA platforms.
For example, LEAP provides Host-FPGA I/O with an RPC-
like mechanism, RRR [18]. To communicate with processes
running on the host processor, developers instantiate simple
communications stubs in their FPGA source. In this work, we
extend LEAP to support a subset of the commonly used Unix
STDIO library.

Other attempts at FPGA operating systems have been made.
For example, BORPH [21], also addresses the I/O problem
[20]. BORPH unifies the operating system file descriptor
space across software and FPGAs, permitting communication
between reconfigurable logic and general purpose processors
using Unix pipes. However, BORPH’s hardware implementa-
tions are largely static, for example BORPH does not admit
of hardware opening arbitrary file handles dynamically, a
functionality that we support in our STDIO implementation.



III. ZIP-IO ARCHITECTURE

A. System Overview

Figure 3 shows the reference implementation of what we
envision to be a typical deployment of ZIP-IO, namely a net-
work store in which data resides and a tightly coupled FPGA-
general purpose processor connected by a fast interconnect.
On to this generic system, we have superimposed the data-
flow of our Zcompr implementation to illustrate architectural
support needed by a typical compression algorithm.

Our implementation incorporates three different methods to
compress instruction traces: simple entropy compression of the
full text format traces, an FPGA implementation of Zcompr,
and gzip. These programs are connected in a processing
pipeline and interposed between the compressed trace in the
network store and the final consumer of the decompressed
trace: a trace-driven simulator.

We augment Zcompr, which has been accelerated on the
FPGA, with gzip to obtain even larger compression ratios. It
may seem counter-intuitive that we have chosen to place gzip
in software, since we have argued that compression algorithms
are not well-suited to general purpose cores. However, in this
case, gzip is operating on a significantly compressed data and
does not represent a performance bottleneck. To the contrary,
requiring a user to implement gzip, or a similar entropy
compression scheme, in hardware for a marginal performance
gain represents an unnecessary burden on the user.

B. Handling I/O Complexity

One goal of ZIP-IO is that FPGA-based accelerators, like
trace compression, should be as easy to integrate with existing
software as existing Unix tools. Therefore, ZIP-IO accelerators
must be able to connect to software applications using existing
software interfaces, and users should be able to incorporate
FPGA accelerators into natural program flows:

./runhw | ./runsw

The most common modality of interacting with compression
algorithms in software is through file I/O and pipes. Therefore,
we have extended LEAP to support a Unix-style STDIO
library. The LEAP STDIO service implements a subset of
STDIO methods, including allocation of file and pipe handles,
formatted printing and raw I/O. Although it provides much of
the functionality of Unix STDIO, the LEAP STDIO library
has a different, FPGA-tuned interface.

LEAP STDIO relies on software support. Effectively all
STDIO operations are carried over RRR to the host processor,
where they are executed using the host STDIO implemen-
tation. Because LEAP STDIO relies on software support,
operations that require a meaningful response, such as fread,
can have long latencies relative to the speed of the user
hardware. To help hide the latency of these operations, we
separate them into distinct request and response operations,
rather than the blocking calls found in C. This spereration
permits user programs to issue multiple outstanding requests,
overlapping the latency of the requests.

A critical step in realizing an STDIO implementation in
FPGA is handling strings well, because strings are the primary
means of interacting with many basic STDIO operations.
Unfortunately, strings create problems in hardware because
hardware is static and fixed in size, while strings are intrinsi-
cally unbounded structures. We solve the strings problem by
creating a new string handle primitive in our HDL. Strings
are never passed directly from hardware to software. Instead,
a global string table is constructed at compile time and
shared between hardware and software. Only string handles,
effectively pointers into the table, are passed as printf format
strings, file names in fopen, etc. Although the string table is
statically initialized, it can be dynamically modified. For ex-
ample, LEAP STDIO provides an sprintf function that returns
a dynamically allocated string handle, permitting dynamic
construction of new string references in the hardware itself.

ZIP-IO implementations use the LEAP STDIO library both
consumes the compressed input trace and writes back the
uncompressed result. For trace compression, the input is a
software pipe produced by gunzip and the output is a pipe to
an architectural simulator. ZIP-IO also uses STDIO to write
log files useful for debugging.

C. Interfacing with Programs

Because ZIP-IO provides such a simple interface to pro-
grammers, integrating it into an industrial simulation flow is
easy. Decompressed data is fed using a common Unix FIFO
to the input of the trace-driven simulator. Allowing us to
conduct complete end-to-end system using unmodified real-
world applications. The entire system execution can be invoked
using the following sequence of commands:

mkfifo compressed.bin
mkfifo decompressed.log
gunzip -c /[network]/compressed.gz \

> compressed.bin \&
./run_hardware.sh compressed.bin \

> decompressed.log \&
./simulator [configuration] <\
decompressed.log

It is worth noting that the simulator used in this script
requires neither modification nor recompilation to integrate
with ZIP-IO. However, we typically need to insert a program
to adapt the output of ZIP-IO to the format expected by the
simulator. This trivial program is needed even for conventional
software implementations.

IV. IMPLEMENTING ZCOMPR

A. ZCompr Microarchitecture

The blowup on the right of Figure 3 shows the microar-
chitectural details of the hardware Zcompr implementation.
The main component of the system is the predictor CPU,
which consists of a prediction core and the core controller.
The prediction core implements a subset of the MIPS ISA.
This core is similar to a normal pipelined RISC core, except
that it is augmented with extra control interfaces used to



High Speed Interconnect 

Compressed 
Trace 

gzip 

Hardware 
Decompressor 

Program 
Binary 

Network Interface 

Network Storage 

Host PC 

FPGA 

Simulator 
Trace 

Translator 

Decompressor 
Controller 

Predictor CPU 

Output FIFO 

PC 

Predictor 
Core 

regs Cache 

Input FIFO 

+ 

Unpredictable Trace 
Predicted Trace 

Predictable Trace Indicator 

Core Controller 

Fig. 3. Structure of the ZIP-IO System

handle unimplemented instructions and to export state updates.
The first control interface halts processor execution before the
issue of a particular instruction. The controller core uses this
interface to stop the processor from beginning to execute unim-
plemented instructions. The state elements of the predictor
CPU - the PC, register file, and memory system are modifiable
by way of a second control interface. To the predictor core,
these structures appear unmodified. However, the controller
core can modify any value in the state space, permitting the
controller to correct the state of the predictor CPU in the case
of an unimplemented instruction. Finally, the predictor CPU
outputs state updates as a part of its final pipeline stage.

During operation, a compressed trace is streamed from the
host PC via LEAP STDIO. There are two possibilities for the
compressed trace: either it is a correctly predicted instruction
or it is an unimplemented instruction. When the controller
core recieves a correctly predicted marker, it feeds a control
token to the core controller and predictor CPU. This allows the
predictor CPU to start inflating, or executing, the instruction
corresponding to the marker. When the core controller receives
an unimplemented instruction, the core controller waits for
the predictor core to complete inflating its current set of
trace steps. The core controller then halts the predictor core,
modifies the state elements according to the result of the
unimplemented instruction, and then restarts the predictor core
on the next block of correctly predicted trace steps. In the
case of a correctly predicted instruction, the predictor CPU
will output the state updates into the output FIFO, but in the
case of an unimplemented instruction, the inflated state updates
will come directly from the input controller. Data in the output

FIFO is streamed back to the host processor over STDIO.
On the host side, we introduce a software translation layer to

convert the output of Zcompr in to the format required by the
trace-driven simulator. This format is, itself, lightly encoded in
a C-like binary format to simplify transmission to the host and
processing on the host side. We choose to implement the final
translation layer, which can be viewed as a sort of middle-
ware, in software to allow rapid integration with a diverse set
of trace-driven simulators.

B. Improved Trace Compression

The original Zcompr algorithm does a good job of com-
pression by capturing the majority of trace behavior in a
manner that provides excellent local compression at the cost
of increased, but parallel computation. Zcompr then relies
on traditional entropy coding in the form of gzip to recover
additional compression by discovering repetitions in the trace
output, for example loops and function calls.

However, better compression can be achieved by recog-
nizing that many of the unimplemented instructions in the
trace have very similar behavior, in terms of state modifica-
tion. Common modifications include increasing the program
counter by four, repeatedly reading the same value (e.g. 0)
from an unknown memory addresses, and writing the same
value to a continuous region of memory. In these cases, the
behavior of the unimplemented instruction relative to another
unimplemented instruction can be summarized succinctly: the
new unimplemented instruction can be described as a pointer
into a memory containing previous unimplemented instruc-
tions. However, general entropy schemes are oblivious to these



structured relationships between instructions and suffer sub-
optimal compression as a result.

Decompressor Controller 

Instruction 
Buffer 

Unpredictable Trace 

To Predictor CPU 

Zcompr+ 

Parser 

Fig. 4. Zcompr+, in the context of the Zcompr pipeline

In an ideal case, we would be able to maintain a full
history of previously seen, unimplemented instruction to use
for as a reference, as in the PDATs [11] compression al-
gorithm. However, this sort of implementation is infeasible
when trace lengths scale to multiple terabytes. Instead, we
accomplish a similar, specialized entropy compression by
maintaining a small cache of previously-encountered unim-
plemented instructions and their effects on system state. We
then reduce “predictable” unimplemented instructions in the
compress scheme to indices into this table. We call this scheme
Zcompr+. Zcompr+ captures most of the benefit of PDATs-
style compression on unimplemented instructions, without
requiring a complicated and costly memory interface.

ZCompr+ introduces an interesting decision problem in the
compressor: given a limited number of slots for unimple-
mented instructions, we must choose the best set to retain. The
compressor tags these retained unimplemented instructions
with a special flag, which causes the decompresser to update
its table. Our current compression scheme uses a simple LRU
policy in selecting which instructions to retain. It is likely that
a better instruction selection algorithm in software could yeild
substantially better compression.

V. RESULTS

A. Experimental Setup
Our primary FPGA implementation platform in this study

is the Nallatech ACP [17], a pair of Virtex 5 LX330T FPGAs
that can be placed in a motherboard CPU socket along with
other general purpose processors. Because the FPGAs can
communicate over the front-side bus (FSB), interfacing to
software has relatively low latency and high bandwidth. We
consider this style of system to be a reasonable prototype
of future tightly coupled FPGA-CPU systems, though we
note that die-level integration would substantially improve
communication latency and bandwidth.

The environment that we consider in evaluating ZIP-IO is
a portion of an industrial batching system. The entire system
is quite large, with thousands of machines, reflecting the need
for enormous computational resources in the development and
verification of modern processors. However, we have isolated
our test machines within a single network and given them a
dedicated, relatively local NFS store. Although this system
may be slightly noisy, it permits us to set up much larger
experiments that are more representative of an industrial use
case. The system consists of several large, Ivy Bridge-class
servers and some older Xeon machines with ACPs inside
of them. All communication between programs is achieved
through file system pipes.

The simulator we have chosen to evaluate in this paper is the
Dinero IV uniprocessor cache simulator [9]. Dinero IV simu-
lates a memory hierarchy consisting of multiple levels of cache
and a main system memory, extracting useful statistics, such as
hit and miss rate, for each cache. Because Dinero IV is a cache
simulator, it requires only the memory access information from
the decompressed trace information. Dinero can operate in
excess of 5 MIPS on the Ivy Bridge machines under optimal
conditions. Because Dinero is a relatively simple simulator, it
serves as a useful limit study of the performance of our trace-
based simulation systems, since it can consume even very fast
trace streams before it becomes the system bottleneck. In our
simulations, we drive Dinero with a mix of SPEC benchmark
traces stored remotely on the network share, or locally in
DRAM, depending on the system configuration.

B. Benefit of Compression

Figure 5(a) shows Dinero’s average throughput as the num-
ber the number of simultaneous simulations scales for different
compression scenarios. In general, performance degrades as
the network store and network bandwidth are progressively
overwhelmed by trace traffic. Uncompressed and gzipped
traces require less computation to decompress and, as a result,
have high throughput if there are relatively few consumers.
However, because these schemes require more network band-
width, they experience a steep decline in performance as
the number of simulations increases. On the other hand, the
combination of gzip and Zcompr+ has low single processor
performance, due to the overhead of running the Zcompr+
algorithm. However, this scheme scales well beacuse it re-
quires very little network traffic. Since industrial simulation
workloads typically consist of hundreds or thousands of paral-
lel simulators, ZCompr+ based compression is clearly a good
choice because improved network bandwidth usage quickly
outweighs the additional complexity of ZCompr+.

We also attempted to drive Dinero with remote, uncom-
pressed traces. However, even a handful of simulators required
hours to complete: uncompressed traces are simply infeasible
in a production setting.

C. Improvement to Zcompr

Figure 5(c) shows the performance of Zcompr and our
augmentation, Zcompr+. Though relatively simple, Zcompr+



 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35  40

M
IP

S
 P

e
r 

T
h
re

a
d

Client Count

zcompr
gzip

zcompr+gzip

(a) Software Throughput Decreases with Multiple Consumers

 0

 0.5

 1

 1.5

 2

 0  5  10  15  20  25  30  35

N
o
rm

a
liz

e
d

 T
h
ro

u
g

h
p

u
t 

Pe
r 

T
h
re

a
d

Client Count

hw decompress, no simulation
hw decompress

sw decompress, no simulation
sw decompress

(b) Hardware Decompression Can Reclaim Performance

 1

 10

 100

 1000

 10000

linuxboot gzip gap crafty parser geomean

M
u
lt

ip
le

Workload

gzip
Zcompr

Zcompr+
Zcompr + gzip

Zcompr+ + gzip

(c) Compression Performance on Multiple Workloads

 0

 0.5

 1

 1.5

 2

 2.5

 3

linux gzip gap crafty parser geomean

M
IP

S

Workload

local uncompressed
sw Zompr

sw Zcompr+
hw decompress

(d) Decompression Throughput on Multiple Workloads

Fig. 5. Performance Results

improves compression by 20% over the baseline Zcompr
implementation. This relative advantage is maintained even
after applying gzip to the compressed result, confirming that
gzip is not able to extract the relative instruction behavior that
Zcompr+ targets.

Figure 5(d) compares, among others, the throughput of
ZCompr and ZCompr+. Zcompr+ achieves better compression,
but at a cost of around 20% software throughput. This is
another argument for the FPGA-based implementation: algo-
rithmic complexity reduces overall throughput in software.
An FPGA-based implementation of ZCompr+ suffer no such
degradation.

D. Compression Performance

Figure 5(c) shows the compression performance of the
various compression schemes across different SPEC work-
loads. Stand-alone Zcompr has a compression performance
comparable to gzip. However, Zcompr addresses compression
scenarios, such as randomly mutating register values, that are
not well-handled by gzip, and therefore composes with gzip
to produce even better compression. Indeed, by composing the
two compression algorithms, we achieve total compression of
more than 1000x in some cases.

E. Decompression Throughput

Figure 5(d) shows the throughput of the Dinero simula-
tions across workload traces and with different compression

schemes on the ACP platform. In an effort to normalize
performance across silicon generations, we present results only
from Xeon processor coupled with the ACP platform. As a
limit study, we loaded a small trace in the RAM of the ACP
machine.

On average, Dinero using ZIP-IO Zcompr has equivalent
performance to Dinero running on uncompressed traces pre-
loaded into DRAM, demonstrating that ZIP-IO is able to
satisfy the bandwidth requirements of Dinero running on a
Xeon server. Indeed, the hardware Zcompr implementation can
sustain trace decompression rates of up to 15 MIPS, which is
sufficient to accelerate Dinero even on the high-end Ivy Bridge
servers.

Figure 5(b) shows the throughput of hardware-accelerated
Dinero relative to a pure software implementation. Because
the ACP must operate inside of a relatively old Xeon server
as opposed to the newer Ivy Bridge servers, we normalize the
performances in the graph against the speed of decompressing
a small trace loaded on RAM, a performance upper bound.
It is evident that using hardware decompression is effective
in reclaiming most of the performance lost by using general
purpose processor for decompression. We do not completely
reclaim the performance of decompressing from DRAM due
to non-idealities in the network.

The performance of the hardware-accelerated system is
actually limited by the throughput of Dinero. If Dinero is
removed, the hardware achieves nearly a 5x performance gain



Module fMax(MHz) LUTs Registers BRAM
Instruction Cache 100 771 342 3
Decompresser Control 100 1780 1105 58
Predictor CPU 115 2346 802 9
Total 100 10100 6969 99

TABLE I
RESOURCE USAGE FOR FPGA ZCOMPR IMPLEMENTATION, TARGETING

XILINX VIRTEX-5.

over the software decompression. Although Dinero cannot
make use of this bandwidth, other, less computationally inten-
sive simulators, for example simulators doing statistical sam-
pling [23], might be able to saturate the hardware bandwidth.

F. Hardware Implementation Requirements

For ZIP-IO to be successful, interesting compression algo-
rithms must be implementable in a reasonable area. Although
we are currently using a V5LX330T for prototyping, this
large FPGA is not necessary. Many interesting compression
algorithms, including Zcompr can fit into a very small area.
Table I gives a modular break down of the reconfigurable logic
required for Zcompr. This resource usage is approximately 4%
of the LX330T logic area, and 30% of the total memory, most
of which is used for somewhat over-provisioned caches. This
suggests that a future ZIP-IO would do well to have some kind
of hardened memory interface.

In the throughput experiments discussed in Section V-B,
we used modern Ivy Bridge processors, which have several
cores per chip. Thus, a real deployment of ZCompr would
need to support multiple simultaneous trace decompressions
in the same fabric. There are two ways to extend our Zcompr
hardware to handle this scenario. Zcompr itself could be re-
architected to support GPU-style simultaneous multi-threading
(SMT) for multiple on-going decompressions, while sharing a
common memory subsystem among the threads. Alternatively,
since Zcompr is so small, multiple instances could be laid
out on a single fabric, again sharing a common memory
subsystem. Our standard I/O implementation would make this
sort of extension relatively straightforward – software could
simply pass file handles to each of the Zcompr instances at
runtime.

VI. CONCLUSION

“Big Data” is a serious problem which must be addressed
in future computer architectures. Application-specific com-
pression is one means of dealing with the big data problem,
provided that application-specific compression schemes can
be well implemented in future platforms. In this paper, we
presented ZIP-IO, a system architecture and libraries intended
to accelerate these algorithms. We examined ZIP-IO in the
context of trace-based processor simulation. However, the
methods we employed implementing ZIP-IO can extend to
many other workloads, including video, computational biol-
ogy, and internet search, by way of our general Standard I/O
interface.

As general purpose computers become increasingly het-
erogeneous, it is worth considering the integration of a fine
grained reconfigurable substrate on-die. Application-specific
compression, one means of mitigating the “Big Data” problem,
is one workload that could benefit from such an integra-
tion. With tighter processor-fabric integration, the performance
gains that we observe in this paper would be amplified, perhaps
by as much as an order of magnitude. This acceleration is
especially valuable in power-sensitive deployments, in which
software capabilities may be severely constrained.



REFERENCES

[1] [Online]. Available: http://asim.csail.mit.edu/redmine/projects/show/leap
[2] “Facebook newsroom.” [Online]. Available: http://newsroom.fb.com
[3] “MIPS IV Instruction Set.” [Online]. Available:

http://techpubs.sgi.com/library/manuals/2000/007-2597-001/pdf/007-
2597-001.pdf

[4] “Standard Performance Evaluation Corporation,” http://www.spec.org.
[5] “The Secret Sauce: 0.5x Write Amplification,” 2009. [Online].

Available: http://www.anandtech.com/show/2899/3
[6] K. C. Barr and K. Asanovi, “Branch trace compression for snapshot-

based simulation,” in In International Symposium on Performance Anal-
ysis of Systems and Software, 2006.

[7] G. Beskales, M. Fontoura, M. Gurevich, S. Vassilvitskii, and
V. Josifovski, “Factorization-based Lossless Compression of Inverted
Indices,” in Proceedings of the 20th ACM international conference
on Information and knowledge management, ser. CIKM ’11. New
York, NY, USA: ACM, 2011, pp. 327–332. [Online]. Available:
http://doi.acm.org/10.1145/2063576.2063628

[8] I.-T. V. C. E. Group, “Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification,” May, 2003.

[9] J. Edler and M. D. Hill, “Dinero iv trace-driven uniprocessor cache sim-
ulator.” [Online]. Available: http://pages.cs.wisc.edu/ markhill/DineroIV/

[10] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob, “Cmp$im: A Binary
Instrumentation Approach to Modeling Memory Behavior of Workloads
on CMPs,” Tech. Rep., 2006.

[11] Johnson, Eric E. and Ha, Jiheng and Zaidi, M. Baqar, “Lossless Trace
Compression,” IEEE Trans. Comput., pp. 158–173, Feb. 2001.

[12] S. Kanev and R. Cohn, “Portable Trace Compression Through Instruc-
tion Interpretation,” in ISPASS, 2011, pp. 107–116.

[13] C. Kozanitis, C. Saunders, S. Kruglyak, V. Bafna, and G. Varghese,
“Compressing Genomic Sequence Fragments Using SlimGene,” in In-
ternational Conference on Research in Molecular Biology, 2010.

[14] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim, “Improving Perfor-
mance and Lifetime of Solid-state Drives Using Hardware-accelerated
Compression,” Trans. on Consumer Electronics, vol. 57, no. 4, pp. 1732
–1739, november 2011.

[15] Microsoft Corporation, “NTFS Technical Reference,”
2011. [Online]. Available: http://technet.microsoft.com/en-
us/library/cc758691%28WS.10%29.aspx

[16] Milenković, Aleksandar and Milenković, Milena, “An efficient single-
pass trace compression technique utilizing instruction streams,” ACM
Trans. Model. Comput. Simul., vol. 17, no. 1, Jan. 2007.

[17] Nallatech, “Intel xeon fsb fpga socket fillers,”
http://www.nallatech.com/intel-xeon-fsb-fpga-socket-fillers.html.

[18] A. Parashar, M. Adler, M. Pellauer, and J. Emer, “Hybrid cpu/fpga
performance models,” in 3rd Workshop on Architectural Research Pro-
totyping (WARP 2008), June 2008.

[19] Red Hat Corporation, “JFFS2: The Journalling Flash File System,”
2001. [Online]. Available: http://sources.redhat.com/jffs2/jffs2.pdf

[20] H. K.-H. So and R. W. Brodersen, “File system access from reconfig-
urable fpga hardware processes in borph,” in FPL, 2008, pp. 567–570.

[21] H. K.-H. So and R. Brodersen, “Improving Usability of FPGA-Based
Reconfigurable Computers Through Operating System Support,” in Field
Programmable Logic and Applications, 2006. FPL ’06. International
Conference on, 2006, pp. 1 –6.

[22] R. Tremaine, P. Franaszek, J. Robinson, C.Schulz, T. Smith, M. Wa-
zowski, and P. Bland, “IBM Memory Expansion Technology,” in IBM
Journal of Research and Developement, 2001.

[23] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical Sam-
pling,” in ISCA, 2003.

[24] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE TRANSACTIONS ON INFORMATION THEORY,
vol. 23, no. 3, pp. 337–343, 1977.


