
Language Technologies for Understanding Law,
Politics, and Public Policy

by

William P. Li
B.A.Sc. Engineering Science, University of Toronto (2009)

S.M. Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2012)

S.M. Technology and Policy,
Massachusetts Institute of Technology (2012)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 15, 2016
Certified by. .

Andrew W. Lo
Professor

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Language Technologies for Understanding Law, Politics, and

Public Policy

by

William P. Li

Submitted to the Department of Electrical Engineering and Computer Science
on January 15, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

This thesis focuses on the development of machine learning and natural language pro-
cessing methods and their application to large, text-based open government datasets.
We focus on models that uncover patterns and insights by inferring the origins of
legal and political texts, with a particular emphasis on identifying text reuse and text
similarity in these document collections. First, we present an authorship attribution
model on unsigned U.S. Supreme Court opinions, offering insights into the authorship
of important cases and the dynamics of Supreme Court decision-making. Second, we
apply software engineering metrics to analyze the complexity of the United States
Code of Laws, thereby illustrating the structure and evolution of the U.S. Code over
the past century. Third, we trace policy trajectories of legislative bills in the United
States Congress, enabling us to visualize the contents of four key bills during the
Financial Crisis. These applications on diverse open government datasets reveal that
text reuse occurs widely in legal and political texts: similar ideas often repeat in the
same corpus, different historical versions of documents are usually quite similar, or
legitimate reasons for copying or borrowing text may exist. Motivated by this ob-
servation, we present a novel statistical text model, Probabilistic Text Reuse (PTR),
for finding repeated passages of text in large document collections. We illustrate the
utility of PTR by finding template ideas, less-common voices, and insights into doc-
ument structure in a large collection of public comments on regulations proposed by
the U.S. Federal Communications Commission (FCC) on net neutrality. These tech-
niques aim to help citizens better understand political processes and help governments
better understand political speech.

Thesis Supervisor: Andrew W. Lo
Title: Professor

3

4

Acknowledgments

I may have clicked my computer’s keys in a previously unseen, carefully ordered

sequence of characters to write this thesis, but it really takes a village to create a

dissertation. I owe my gratitude to many people:

Advisors. My PhD committee shaped and strengthened this thesis: First, Andrew

Lo’s zeal for big, ambitious ideas drove the interdisciplinary nature of this work —

he encouraged me to think beyond the traditional boundaries of computer science

and take on fascinating research questions, from unmasking the authors of unsigned

Supreme Court opinions to analyzing the United States Code as a large software

codebase. Second, Bob Berwick guided me on computational linguistics and natural

language processing, and his insights at key points in the research process helped

give this thesis rigor. He was always available, often on short notice, to discuss my

progress and to provide encouragement. Finally, it was my good fortune to take

Ethan Zuckerman’s Future of News and Participatory Media class in the MIT Media

Lab, both for the opportunity to learn from Ethan and for his kind, compassionate

mentorship and support in my last two years at MIT. This work was made possible

only through the support of these three remarkable, accomplished human beings.

I also thank my master’s co-advisors for their continued support and mentorship.

Nick Roy and his Robust Robotics Group introduced me to machine learning and

statistical modeling, and I would not be where I am today without Nick’s high expec-

tations and continued guidance. With his patience and gentle approach, Jim Glass

taught me about automatic speech recognition, running experiments, and why speech

is an excellent substrate for learning about statistical modeling, artificial intelligence,

and machine learning; one spectrogram at a time, Jim ignited my interest in the

computational study of language and speech. Last, but certainly not least, I thank

Seth Teller, whose energy and ethos as a researcher, teacher, and mentor in his life

have had a profound personal and professional impact. Nick, Jim, and Seth: Thank

you.

Collaborators. I am fortunate to have had an unusually large number of research

5

co-authors during my time at MIT: Pablo Azar, David Larochelle, Phil Hill, Jay Cox,

Finale Doshi-Velez, Emad William, Descartes Holland, Jason Chuang, Sands Fish,

Rebecca Weiss, Erika Lee, Minh Phan, Alex Sekula, Sophie Chou, Ramesh Sridharan,

Yoni Battat, Jun-geun Park, Dorothy Curtis, Sachithra Hemachandra, Bryan Reimer,

Javier Velez, Cynthia Walsh, Don Fredette, Alex Burnham, Bob Lamoureux, Marva

Serotkin, Simone Fontanesi, Alessandro Frigerio, and Nick Wang. I also learned from

a great set of internship supervisors: John Hershey, Daniel Nikovski, Belle Tseng,

Gunnar Evermann, and Larry Gillick. In particular, I wish to highlight Pablo, David,

and Phil’s roles as the nucleus of the two law review papers that make up the first

part of this thesis; the thousands of hours I spent with Sachi in 32-337 and his help

with getting me started as a graduate student; Don’s instrumental role in my work

with the Boston Home, both in research and in many MIT assistive technology efforts;

and Finale’s guidance and mentorship in both my first project in 2009 (on improving

resident safety using Wi-Fi localization at the Boston Home) and my last one in 2016

(on Probabilistic Text Reuse). I have learned so many things from every one of these

collaborators, including how to solve problems and do effective research, good coding

and software engineering practices, core concepts in statistics, machine learning, and

natural language processing, and much more from their deep expertise in fields as

diverse as assistive technology, health care, and law.

The opportunity to co-teach the Fall 2014 offering of 6.811: Principles and Practice

of Assistive Technology (PPAT) was both the most challenging and most rewarding

part of my experience at MIT. I am deeply thankful that Rob Miller entrusted me to

co-lead the course and offered his mentorship as an accomplished computer science

educator, as well as for the support of EECS, the d’Arbeloff Fund for Excellence in

Education, and MIT OpenCourseWare for sustaining Seth Teller’s vision for assistive

technology education at MIT. The course would not have been possible without our

extraordinary team, including Grace Teo, Michelle Chen, Ishwarya Ananthabhotla,

Abigail Klein, and Jeff Dusek, as well as the new team in Fall 2015: Grace, Jeff,

Ishwarya, Wenxin Feng, Len Evenchik, Matthew Schneps, and both Julie Greenberg

and John Leonard for ensuring the continued success of the course in 2016 and beyond.

6

Finally, I thank Rachel Zimmerman for her strength and support for the class and

for assistive technology at MIT.

Supporters. Dozens of MIT staff and faculty have had major positive roles in

my experience at MIT, both within and outside of the world of research. They

include Bryt Bradley, Sophia Hasenfus, Marcia Davidson, Jayna Cummings, Patsy

Thompson, Allie McDonough, Janet Fischer, Elizabeth Bruce, Pattie Maes, Sam

Madden, Alison Hynd, Mary Ziegler, Kathleen Cahill, Sydney Miller, Ed Ballo, Roger

and Dottie Mark, Annette Kim and Roland Tang, Andreas Schulz and Berit Johannes,

Julie and Neel Shah, Steve Ward, Dava Newman, and Leslie Kolodziejski. Their

helpfulness, generosity, and insight contributed immensely positively to my experience

in graduate school, my well-being, and my ability to get to this point today.

Communities. Graduate school has been about much more than research; the

communities and teams I have been a part of have shaped my life at MIT for the

better. Sidney Pacific, TPP, TBH, RRG, RVSN, SLS, CSAIL/EECS, LFE, CoSI,

ATHack, PSC, Law Is Code, and the Berkman Center have all been a sources of

friendships and shared experiences.

Friends. I feel fortunate to count the people listed above not only as professional

collaborators and mentors, but also as friends. In addition, though, there have been

many people who I need to acknowledge for their support throughout grad school.

They include TPPers like Pam DeAmicis, Rachna Pande and Akhil Basha (and Theo),

Rubén Garcia, James Merrick, Francisco Alonso, Judy Wang, Tommy Leung, and

Nathan Perkins; SPers like David Kwabi, Boris Braverman, George Chen, Rachael

Harding, Mirna Slim, Armen Mkrtchyan, Kelli Xu, Brian Spatocco, Stephen Morgan,

Lily Xu, William Li (not a typo), George Lan, Stephanie Nam, Bernhard Zimmer-

mann, Holly Johnsen, George Tucker, Ramesh Sridharan, Audrey Fan, Tarun Jain,

Vishnu Desaraju, Diana Chien, Matt D’Asaro, Steven Chang, Danica Chang, Frank

Wang, and Michael Peng; Stephen Shum, Ekapol Chuangsuwanich, David Harwath,

Ann Lee, Steve Levine, Sudeep Pillai, Ross Finman, David Hayden, Javier Velez, Josh

Joseph, Charlie Richter, Elena Glassman, Juho Kim, Amy Zhang, Adam Marcus, Eu-

gene Wu, and many others in CSAIL; and friends from across MIT and other places,

7

including William Palin, David Colarusso, Karn Saroya, Anand Dhillon, Alfred Chan,

Kelvin So, and Sahitya Gupta.

Among all of these friends and colleagues, Carrie Cai deserves her own paragraph

— this thesis would not have been possible without her. In addition to being a source

of regular encouragement, it is worth noting that Carrie has contributed substantially

to many aspects of my life, including long discussions about research, professional

development, career opportunities, and even a shared interest in topics ranging from

social sciences and the humanities to the Asian-American experience. I could not

have asked for a better friend, ally, and partner through the roller-coaster ups and

downs of graduate school.

Family. Last, but not least, I thank my family — my sister Joyce, my Mom, and

my Dad — for helping me get here. By example, my parents taught me the value of

hard work and integrity, and they gave me the support, independence, and confidence

to succeed. I dedicate this thesis to them.

8

Contents

1 Introduction 21

1.1 Motivation . 21

1.2 Background . 22

1.2.1 Opportunity: Big Data and E-Government 23

1.2.2 Technology: Data Science for Large Document Collections . . 24

1.3 Related Work . 26

1.3.1 Open Government Data . 26

1.4 Research Hypothesis . 31

1.5 Roadmap . 31

2 Authorship Attribution of Unsigned Supreme Court Opinions 33

2.1 Introduction . 33

2.2 Unsigned Opinions . 34

2.2.1 Historical Context of Unsigned Opinions 35

2.2.2 Problems with Unsigned Opinions 37

2.2.3 Solving Attributional Questions the Old-Fashioned Way . . . 39

2.2.4 Solving Attributional Questions Algorithmically 41

2.3 Test Case: Obamacare . 41

2.4 Experimental Setup . 45

2.4.1 Experimental Questions . 45

2.4.2 Data Preparation . 46

2.4.3 Machine Learning System Overview 47

2.4.4 Design of Authorship Attribution System 49

9

2.5 Empirical Results and Discussion . 55

2.5.1 Feature Sets and Classification Methods 55

2.5.2 Comparison of Feature Selection Models 57

2.5.3 Interpreting Authorship Attribution Model Scores 57

2.5.4 Insights on Writing Styles . 58

2.5.5 Controlling for Clerks . 59

2.5.6 Authorship Prediction for Sebelius 61

2.5.7 Comparison to Predictions by Domain Experts 62

2.5.8 Section-by-Section Analysis 64

2.6 Authorship Predictions for Per Curiam Opinions of the Roberts Court 65

2.7 Conclusion . 72

3 Law Is Code: A Software Engineering Approach to Analyzing the

United States Code 75

3.1 Context . 75

3.2 Abstract . 76

3.3 Introduction . 77

3.4 The United States Code . 79

3.4.1 Early Federal Codification Problems 80

3.4.2 Early Problems with the U.S. Code 82

3.4.3 The U.S. Code, 1926 to Today 84

3.4.4 Criticisms and Aspirations for the U.S. Code 85

3.5 Software Engineering Approaches to Analyzing the Law 87

3.5.1 Analogizing Legal Code to Software Code 87

3.5.2 U.S. Code Datasets for Analysis 89

3.5.3 Choosing Software Engineering Approaches and Metrics . . . 90

3.6 Evolution of the U.S. Code . 101

3.6.1 Conciseness: Evolution of the Size of the U.S. Code 102

3.6.2 Change: Evolution of Content in the U.S. Code 104

3.6.3 Coupling: Evolution of Structure of U.S. Code 109

10

3.6.4 Complexity: Complexity: Evolution of Conditional Statements

in the U.S. Code . 115

3.7 Structure of Current Laws: 111th Congress 115

3.8 Structure of the Current U.S. Code: Titles 12 (Banks and Banking)

and 26 (Internal Revenue Service) . 124

3.8.1 Case Study of Title 12 . 124

3.8.2 Case Study of Title 26 (Internal Revenue Code) 126

3.8.3 Comparing Titles 12 and 26 to Other Titles 128

3.9 Conclusion . 130

4 Text Reuse and Financial Crisis Policy Trajectories in Congress 133

4.1 Introduction: “Legitimate” Text Reuse in Legal and Political Texts . . 133

4.2 Text Reuse in Financial Crisis Legislation 136

4.3 Related Work . 136

4.4 Dataset and Methodology . 136

4.4.1 Finding Similar Sections . 137

4.4.2 Classifying Matched Sections 139

4.5 Results and Visualization . 139

4.5.1 Housing and Economic Recovery Act (HERA) of 2008 140

4.5.2 Emergency Economic Stabilization Act of 2008 (including TARP)141

4.5.3 American Recovery and Reinvestment Act (ARRA) of 2009 . . 142

4.5.4 Dodd-Frank Wall Street Reform and Consumer Protection Act

of 2010 . 143

4.6 Bill Consideration Time Metrics . 144

4.7 Analysis and Discussion . 145

4.7.1 Consideration Times of Financial Crisis Bills 145

4.7.2 Summarizing Congressional Lawmaking Activity 146

4.7.3 Distribution of Consideration Times 146

4.7.4 Finding Unsuccessful Policy Ideas 147

4.8 Limitations and Further Work . 148

11

4.9 Conclusions . 149

5 Probabilistic Text Reuse 151

5.1 Introduction . 152

5.2 Related Work . 153

5.2.1 Text Reuse Approaches . 153

5.2.2 Probabilistic Models of Text Corpora 154

5.2.3 Text Summarization . 155

5.3 Probabilistic Text Reuse Model . 156

5.4 Inference . 161

5.4.1 Initialization . 161

5.4.2 Updating Ideas . 162

5.4.3 Updating Partitions and Assignments 162

5.4.4 Merging Ideas . 163

5.4.5 Assignment Probabilities . 163

5.5 Dataset: FCC Comments on Net Neutrality 163

5.6 Results . 165

5.6.1 Noteworthy Top Ideas . 165

5.6.2 Less-Common Voices . 166

5.6.3 Baseline Comparisons . 166

5.6.4 Quantitative Comparison to LDA 168

5.7 Discussion and Further Work . 169

5.8 Conclusions . 172

6 Conclusions 175

6.1 The Role of Text Reuse in Public Data and Public Speech 175

6.1.1 Measuring Political Speech . 177

6.2 Summary of Contributions . 179

6.3 Future Work . 180

A Law Is Code: Mathematical Definitions 183

12

B Law Is Code: Cores of Appropriations Bills 189

C Law Is Code: Bills with large cores 195

D Law Is Code: Cores of Titles of the U.S. Code 199

13

14

List of Figures

1-1 Size of United States Code, 1925-2011 23

2-1 Histograms of probabilities of most probable justice 58

2-2 Effect of abstaining threshold on size of correct, incorrect, and abstain-

ing classes of opinions . 59

2-3 Authorship attribution model prediction for Sebelius majority opinion 63

2-4 Authorship attribution model prediction for Sebelius joint dissent . . 63

3-1 Network representation of references to and from 37 U.S.C. §329 . . . 97

3-2 if-else statement common in software code 100

3-3 Number of words in the U.S. Code by title. 103

3-4 Title 12 (Banks and Banking) comparisons between 1934 and 1940

editions (left) and 1934 and 1970 editions (right). 104

3-5 Words conserved and added to Title 12 between 1934 and 1976 105

3-6 Term frequency plots over time for selected phrases. 107

3-7 Appearance of “whistleblower” in U.S. Code titles by year and title . 109

3-8 Appearance of “privacy” in U.S. Code titles by year and title 110

3-9 Comparisons of Sections of the U.S. Code affected by Dodd-Frank

Wall Street Reform and Consumer Protection Act, Financial Insti-

tutions Reform, Recovery, and Enforcement Act of 1989 (FIRREA),

and Gramm-Leach-Bliley Act (GLB) 114

15

3-10 Comparison of sections of the U.S. Code affected by Patient Protection

and Affordable Care Act (PPACA), Social Security Act of 1935, and

Medicare Prescription Drug, Improvement, and Modernization Act of

2003 (MMA). 115

3-11 Cyclomatic complexity (number of conditional statements) in U.S. Code116

3-12 Distribution of lengths of laws passed by 111th Congress 120

3-13 Distribution of coupling metric for laws passed by 111th Congress . . 120

3-14 Distribution of cyclomatic complexity for laws passed by the 111th

Congress . 121

3-15 Sections of the U.S. Code modified by PPACA 122

3-16 Sections of the U.S. Code modified by the Omnibus Appropriations

Act of 2009 . 122

3-17 Core-Periphery Network of Title 12 (Banks and Banking) 126

3-18 Core-Periphery Network of Title 26 (Internal Revenue Service) 128

4-1 Jaccard coefficients and lengths for 246 labeled matching and non-

matching bill sections. 140

4-2 Housing and Economic Recovery Act (HERA) 141

4-3 Troubled Asset Relief Program (TARP) 142

4-4 American Recovery and Reinvestment Act 143

4-5 Dodd-Frank Wall Street Reform and Consumer Protection Act 144

4-6 Bill sizes and average gestation times in 110th Congress. 146

4-7 Trajectories of sections of S. 2338, FHA Modernization Act of 2007 . 148

5-1 Probabilistic finite state transducer (PFST) for three-word idea . . . 161

5-2 Inputs and outputs of Probabilistic Text Reuse (PTR) 161

5-3 Topic-based clusters of public comments, with nodes sized by the num-

ber of comments in the cluster . 168

5-4 Summary of pipeline for finding key phrases with PTR vs. bag-of-

words PLSA and LDA models . 171

16

6-1 Spectrum of political speech measurement systems, from numbers to

text . 178

B-1 Network Representation of Cores of Appropriations Bills 190

B-2 Network Representation of Cores of Appropriations Bills 191

B-3 Network Representation of Cores of Appropriations Bills 192

B-4 Network Representation of Cores of Appropriations Bills 193

C-1 Network Representation of Cores of Laws with Core of Size greater

than 50 . 196

D-1 Network representation of U.S. Code Titles 1 through 10 200

D-2 Network representation of U.S. Code Titles 11 through 20 201

D-3 Network representation of U.S. Code Titles 21 through 30 202

D-4 Network representation of U.S. Code Titles 31 through 40 203

D-5 Network representation of U.S. Code Titles 41 through 50 204

17

18

List of Tables

2.1 Example of sentence decomposed into unigrams, bigrams, and trigrams 50

2.2 Examples of n-gram features selected by Document Frequency (DF)

and Information Gain (IG) methods 55

2.3 Authorship prediction accuracy by feature set and classifier 56

2.4 Performance of MaxEnt models with Document Frequency (DF) and

Information Gain (IG) feature selection 57

2.5 Informative features by justice . 60

2.6 Prediction accuracy of models trained on opinions from different years 61

2.7 Predictions of authorship of minority opinion by domain experts . . . 64

2.8 Prediction of authorship of minority opinion by section 65

2.9 Predicted authorship of Roberts Court per curiam decisions 65

2.10 Predicted author ideology of per curiam opinions by year 72

3.1 Description of Principles and Metrics for U.S. Code 101

3.2 First Appearance of Terms in the U.S. Code 108

3.3 Bills with Highest Similarity to Dodd-Frank Wall Street Reform and

Consumer Protection Act . 112

3.4 Bills with Highest Similarity to Patient Protection and Affordable Care

Act . 113

3.5 Laws from the 111th Congress Ranked by Length 118

3.6 Laws from the 111th Congress Ranked by Coupling. The coupling

metric used is the number of sections in the law that also belong to

the core of the U.S. Code. 119

19

3.7 Laws from the 111th Congress Ranked by Cyclomatic Complexity . . 119

3.8 Sections of Title 12 with Highest Cyclomatic Complexity 125

3.9 Title 12 Sections with Highest PageRank 127

3.10 Sections of Title 26 with Highest Cyclomatic Complexity 128

3.11 Title 26 Sections with Highest PageRank 129

3.12 U.S. Code Titles with Largest Cores 130

4.1 Summary of Bills in 110th and 111th Congresses 137

4.2 Consideration Time Metrics for Financial Crisis Bills 145

4.3 S. 2338 Policy Sections Excluded from HERA 147

5.1 Summary of FCC comment corpus (N=800000) 164

5.2 Variations on “the internet should be open” (168 assignments) 166

5.3 Variations on “keep the internet a level playing field” (244 comments) 167

5.4 Top ten words from selected topics of LDA model with 50 topics . . 167

5.5 Top sentences in corpus, by frequency. 169

5.6 Log Likelihood per token with unigram, LDA, and PTR models . . . 169

20

Chapter 1

Introduction

How do we, as a society, collectively make decisions? Who writes our laws, regulations,

and judicial opinions? What are the impacts of the policy choices that governments

make? Given its profound impacts on our lives, governments and political processes

are fascinating and essential to study; moreover, an unprecedented amount of data on

legal and political processes, is easily available for download and analysis. The am-

bition of this thesis is to develop and apply computational techniques — algorithms,

applications, and systems — that make sense of the large collections of public data

on government and political processes.

1.1 Motivation

This thesis focuses on the development and application of “civic” technology: The

collection of projects aim to illustrate how language technologies, particularly the

analysis and understanding of large public text datasets, can promote the common

good. To that end, we focus on two overarching goals:

1. To help citizens better understand government processes: Govern-

ments are large, multi-dimensional organizations charged with managing and

addressing complex, society-scale problems. In modern liberal democracies, we

delegate policymaking to elected professional representatives and the execution

21

of laws to large groups of civil servants; however, in order to make informed

choices and to keep institutions accountable, it seems reasonable that citizens

should understand government processes. Our work on Supreme Court author-

ship attribution (Chapter 2), analyzing the complexity of the law using software

engineering metrics (Chapter 3), and identifying the trajectories of policy ideas

in Congress (Chapter 4) show how the analysis of large government text corpora

can reveal useful insights into these legal and political processes.

2. To help government better understand public speech: In democratic

societies, governments should understand and serve the preferences of the peo-

ple they represent. In small societies, such as ancient Athens or today’s small

towns and communities, hearing all of these voices is feasible, perhaps in the

form of physical gatherings; in larger contexts, a central challenge is capturing

and understanding public opinion from millions or billions of citizens. Today,

governments have elaborate apparatuses, from elections to polls and petitions,

to measure the will of the people; notably, however, these measurement meth-

ods largely involve reducing citizen voices to counts of pre-ordained ideas and

viewpoints. Understanding the rich diversity of ideas and opinions by members

of society, perhaps through text or other forms of language, is both a challenge

and an opportunity that this thesis seeks to tackle. Chapter 5 introduces a

novel computational model, called Probabilistic Text Reuse (PTR), and applies

it to a real-world example of a large collection of public speech: nearly a million

public comments on the U.S. Federal Communication Commission’s proposed

2014 regulations on Net Neutrality.

1.2 Background

The work in this thesis is situated at the intersection of 1) the unprecedented amount

of government data available for analysis, 2) the rise of the field of data science

and its accompanying techniques and tools, and 3) the unique position of computer

scientists, in collaboration with stakeholders and researchers in other disciplines, to

22

tackle these problems and catalyze further activity in this domain. We discuss each

of these developments in turn.

1.2.1 Opportunity: Big Data and E-Government

Government has become bigger and more complex, with deeper involvement in all

many aspects of society. As just one example, Figure 1-1 shows that, by 2011, the size

of the United States Code of Laws had increased to nearly 16 times its length since

1925, when it was first introduced. This enormous growth reflects the complexity

of the federal government’s role, from healthcare and environmental protection to

financial regulation and space exploration. It is simply impractical to read all of the

laws, regulations, or other documents generated by government.

Figure 1-1: Size of United States Code, 1925-2011

In addition to the increase in the sheer size of government, an unprecedented

amount of this data is now publicly available. Many of these efforts are initia-

23

tives of the federal government itself; portals such as the Government Printing Office

(GPO) and data.gov have made other datasets available [32]. In addition, efforts

by civil society groups and journalists have liberated more data and made it acces-

sible for novel applications, from the Sunlight Foundation’s work to track legislation

through Congress [3] to documents released by Freedom of Information Act (FOIA)

requests. In another era, such data might be locked in file cabinets, libraries, or

physical archives; today, collecting this data from different digital sources can require

much less effort.

Finally, the issues faced by government and society are growing in complexity. To

take banking and finance laws as one example, the Financial Crisis of 2007-2009 pro-

duced major legislative responses, from the Troubled Asset Relief Program (TARP)

in 2008 to the Dodd-Frank Wall Street Reform and Consumer Protection Act of

2010. The intricacies of the financial sector, coupled with the nuances of the legisla-

tive response, make it difficult for even the most informed citizen to understand the

implications of the government’s actions. Similar arguments can be made about the

complexity of the regulations promulgated by federal agencies or the issues tackled

by the judicial system. For these reasons, new, more scalable approaches to under-

standing government are needed.

1.2.2 Technology: Data Science for Large Document Collec-

tions

To address the challenges outlined in the previous section, this research uses tools

and techniques from machine learning and statistical natural language processing.

Advances in supervised learning, structured prediction [e.g., 51], and unsupervised

algorithms such as probabilistic topic modeling [e.g., 7] or computing vector repre-

sentations of words [34].

In this thesis, the objective in each of the presented projects is to derive useful

insights from legal and political documents. The recent rise of the discipline of data

science provides a model for our work: In addition to developing machine learning

24

data.gov

models, the chapters of this thesis all involve real-world datasets and a discussion

of the implications of the findings for diverse stakeholders and audiences. The full

process of each chapter is as follows:

1. Data: Finding and preparing the dataset for the task is the first, and often

most important, step in a data science research project. While this thesis is

fundamentally motivated by the unprecedented public availability of govern-

ment data, choosing the right dataset for the task and structuring the data into

a usable form are important decisions with downstream analysis implications.

2. Task Definition: The next task is to refine the goal of “discovering insights” into

an appropriately scoped, achievable objective. In some cases, a quantitative

loss function can be minimized; in other situations, the goal may be sufficient

to find interesting patterns in the dataset.

3. Features and Models: Often the focus of academic machine learning, computing

features and developing a model is explicitly just one component of the approach

taken in this thesis to solve problems.1

4. Evaluation: Choosing the right model requires some criteria comparing compet-

ing models. Determining the right metric for the specific problem being solved

is central to the goal of understanding government using machine learning.

5. Communication and Visualization: Presenting the results in a meaningful, ac-

cessible manner, especially to non-experts, is not an afterthought. Being able

to communicate the results effectively could make the difference between wider

adoption of the work of this research and having it simply languish as a theo-

retical research result.

1The work “Machine Learning That Matters” by Wagstaff [53] is well worth reading and provides
a more in-depth discussion of this point.

25

Fit: A Need for Data Science on Open Government Datasets

While the new availability of large public datasets offers a window into modern gov-

ernment, this potential cannot be unlocked without the right kinds of analysis. In

particular, large, unstructured text datasets often require different algorithms, sys-

tems, and skills that those that are currently available. Similarly, these skillsets are

often lacking in resource-constrained media and watchdog organizations that seek to

promote government understanding and transparency [12].

In general, media and civil society organizations have begun to build interesting

applications on top of government data to make it more accessible [59]. In 2009,

for example, researchers developed RECAP, a Firefox extension that crowd-sources

the free availability of court documents from the pay-per-use PACER online law

database [15]. Meanwhile, the Sunlight Foundation built application programming

interfaces (APIs) to make congressional activities easier to access. Few applications,

however, involve sophisticated data science techniques and analysis of these datasets.

Building on these early efforts, this dissertation aims to add value through the analysis

and visualization of these text-based datasets, and to lower the barriers that prevent

other researchers, activists, and government itself from adopting these technologies.

1.3 Related Work

This section begins with a description of advances in making government data avail-

able. It then provides a summary of the methodological advances and noteworthy

applications related to the research goals described in this thesis.

1.3.1 Open Government Data

Through its many activities, the U.S. government leaves a large “paper trail” of text

data as it conducts its activities. Audio or video recordings of legislative, judicial, or

regulatory proceedings are often kept, and the government undertakes the expense

of producing complete transcripts. Today, much of this data is freely available for

26

download online.

Beyond this surface description, however, there are important caveats. One lim-

itation is that not all interesting datasets are publicly available: some activities are

not recorded, some are classified, some are incomplete, and some are not made public

by default. Even if the desired dataset existed, however, the data is often highly

heterogeneous and difficult to process. The federal government alone has hundreds

of agencies, each with its own reporting formats and standards, and current and

historical data may be available only in print, as scanned images, or as difficult-to-

process PDFs or other digital forms. These barriers present challenges and barriers

to applying machine learning algorithms to these datasets.

To address these issues, a number of parties have proposed paradigms or initiatives

that address these problems for different datasets. To begin, Robinson et al. [44] argue

that, as an information technology policy, government should expose the underlying

data and allow third parties to provide services and insights. It would allow both

government agencies and private parties to build innovative presentations and analysis

of the data. Practically, being able to download and access data in bulk would solve

the problem of having to scrape government websites, a task that can range from

highly tedious to technically infeasible. Among other benefits, the authors argue

that, by exposing the underlying data, outside parties could develop more advanced

features, including “mashups with other data sources,” “visualization”, and “automated

content and topic analysis” [44]. This thesis seeks to accelerate the development and

adoption of technologies for government datasets.

In the United States, some noteworthy open data projects from governments and

civil society organizations include:

∙ The Cornell Legal Information Institute (LII) was founded in 1992 and is a

pioneer of making legal information available in a structured format [9]. Cur-

rently, documents ranging from the Constitution to Supreme Court decisions

are available in machine-readable formats [8].

∙ 2004 saw the launch of GovTrack, which screen scrapes official government

27

websites and makes the data available in a structured database. Currently, in-

formation about members of Congress, bills and resolutions, voting records, and

committee activity are available from http://www.govtrack.us in a structured

form that can be accessed via an API or as a bulk download. As of June 2014,

34 other open government websites use GovTrack as their data platform [52].

∙ Open government advocates created the “8 Principles of Open Government

Data” at a workshop in December 2007 [1]. The eight principles are that data

should be 1) complete, 2) primary, 3) timely, 4) accessible, 5) machine pro-

cessable, 6) non-discriminatory, 7) non-proprietary, and 8) license-free. The

availability of data that complies with these principles underpins the research

that this thesis will contain.

∙ The administration of President Barack Obama has taken an interest in open

government, with mixed success. In January 2009, the Administration issued an

executive memorandum on “Transparency and Open Government” that called

for the federal government to be more transparent, participatory, and collab-

orative [40]. This memo was followed by the Open Government Directive in

December 2009, which called for government agencies to form open data plans

and to post datasets on the newly established Data.gov website Data.gov [42],

which has had mixed success; many open government advocates applauded the

idea, but noted that many datasets were incomplete, out of date, or only fo-

cused on non-controversial issues [32]. An Executive Order in 2013 that called

for government information to be open and machine readable led to changes in

Data.gov, including more powerful search tools and APIs to access data [41].

∙ The OpenGov Foundation and the StateDecoded Project have focused on mak-

ing proposed laws and existing legal codes machine readable and accessible in

more user-friendly, interactive formats. For example, the first StateDecoded

project, VirginaDecoded, includes hyperlinks to definitions and makes the laws

of Virginia searchable [2]. The Madison Project, meanwhile, focuses on allow-

ing citizens to participate in the lawmaking process by inviting the public to

28

comment on policy documents and even crowd-source new laws. In both cases,

the availability of the text of the law in a structured, machine-readable format

enables these projects, along with other, potentially more advanced analyses of

the text.

∙ The Sunlight Foundation is dedicated to government transparency, making it a

key advocate for making government data openly available. A portion of their

work includes a number of tools focused on tracking influence, the activities of

Congress [50].

∙ The Congressional Bills Project is an annotated database of bills from 1947 to

the present [4]. Bill sponsor information, relevant event dates, and the original

bill text segmented by section are all available. Recently, data from the project

was used in the 2014 Unshared Task in PoliInformatics, which focused on com-

putational approaches to understanding the 2007-2009 Financial Crisis [11].

NLP Applications on Legal and Political Texts

By analyzing large government datasets, an opportunity exists to advance our under-

standing of legal and political systems. This section provides a sketch of the goals of

broad areas of natural language processing and noteworthy applications in the area

of government datasets.

Supervised Learning: Classification and Regression

Given a set of documents that are labeled with a known target variable, supervised

learning seeks to make label predictions on unseen test documents. In classification,

the possible targets are typically two or more categories; in regression, a continuous

value is the target. A myriad of classification algorithms exists, including logistic

regression, decision trees, support vector machines, and boosting; each of these algo-

rithms has counterparts for regression. Some noteworthy applications on legal and

political texts include:

29

Authorship Attribution: Mosteller and Wallace applied statistical techniques to

infer the authorship of 12 disputed Federalist Papers [37]. Their 1963 paper, which

found that James Madison was the most likely author of the papers, was one of

the earliest examples of Bayesian inference. Other recent work has focused on the

Supreme Court, including efforts to understand the influence of clerks in the writ-

ing of judicial opinions [45] and to unmask the authors of unsigned or controversial

opinions [27].

Bill Success : Yano, Smith, and Wilkerson demonstrated the potential of text

features to predict bill survival in Congressional committees [57].

Political Positions and Affiliations : Laver et al. pioneered efforts to bring sta-

tistical techniques to political texts, showing that a bag-of-words approach could

successfully predict the movement of the British Labour Party from the left to the

center of the political spectrum between 1992 and 1997 [25]. Past work has also

included classifying party affiliations and ideologies from political speech [58, 48, 18].

Structure Recovery : A key challenge in many real-world government datasets is

that they are not fully annotated, making them less machine-readable and amenable

to large-scale analysis. An interesting approach, therefore, is to use automated ap-

proaches to try to imbue documents with structure. For example, automatically

identifying citations in public comment submissions might be solved by manually

labeling a few hundred examples and letting machine learning algorithms learn the

appropriate patterns [e.g., 5].

Pattern Discovery and Unsupervised Learning

Insights can also emerge from finding patterns or structure in large collections of legal

and political documents. For example, using text similarity approaches, Wilkerson et

al. showed the trajectory of bill sections in the 2009 Patient Protection and Affordable

Care Act (PPACA) and other bills [56]. Similar techniques have also been applied to

estimate policy trajectories and consideration times of bills related to the 2007-2009

Financial Crisis [28].

30

1.4 Research Hypothesis

The central hypothesis unifying this dissertation is:

Machine learning techniques that focus on inferring the origins of

text-based legal and political datasets can reveal novel insights into

government processes and public speech.

Specifically, approaches that find hidden sources or structure from these datasets

are well-suited to uncovering patterns in open government datasets, including Supreme

Court opinions, the United States Code, and Congressional bills. The final chapter

of this thesis focuses on one particular methodology, text reuse, and develop a novel

algorithmic approach and application to public comments on government regulations.

1.5 Roadmap

This thesis begins with three projects on diverse text datasets. First, in Chapter 2, we

present an authorship attribution model on unsigned U.S. Supreme Court opinions,

offering insights about the authorship of important cases and the dynamics of Supreme

Court decision-making. This model makes predictions on a case of particular interest

(the authors of the majority and dissenting opinions of the controversial 2012 NFIB

v. Sebelius (“Obamacare”) decision, as well as reveals trends about the authorship of

unsigned “per curiam” opinions in the current Supreme Court, as led by Chief Justice

John Roberts.

Second, in Chapter 3, we apply concepts and metrics from software engineering to

analyze the current and historical complexity of all laws in the United States Code,

revealing the structure and evolution of the U.S. Code over the past 100 years. The

rise of specific terms and concepts in the U.S. Code, changes in the content of different

areas of federal law, and the differences in the structure of various kinds of legislation

emerge from this analysis.

Chapter 4 traces policy trajectories of bills in Congress, making it possible to

visualize the contents of four key bills during the Financial Crisis and when ideas

31

in these bills were first introduced. By applying text reuse techniques, it becomes

possible to identify some key contents of these bills, when policy ideas first emerged,

and the “consideration time” of these ideas in Congress before they were passed into

legislation.

Motivated by the commonalities of these three datasets and research questions,

the final part of this thesis focuses on techniques and applications for finding text

reuse in government datasets. Text reuse occurs in legal and political documents

because documents present similar ideas, different versions of documents are often

quite similar, and because legitimate reasons for copying text exists. Chapter 5

describes how text reuse occurs legitimately in legal and political contexts — unlike

plagiarism, text reuse is often a reasonable approach to writing in legal and political

contexts, or a perfectly understandable artifact of government activities. This chapter

presents Probabilistic Text Reuse (PTR), a generative model for how reused passages

of text occur in a large corpus of documents, and tractable methods for inferring the

parameters of the model from real data. Then, this chapter illustrates the utility of

PTR and other text reuse methods through the analysis of common text reuse that

occurs in public comments on the Federal Communication Commission’s proposed

regulations on net neutrality.

This thesis concludes in Chapter 6 by speculating on areas of potential future

work on data science with open government datasets.

32

Chapter 2

Authorship Attribution of Unsigned

Supreme Court Opinions

Preamble

This chapter is largely adapted from the following paper:

Li, W., Azar, P., Larochelle, D., Hill, P., Cox, J., Berwick, R. C., Lo, A. W. Using

Algorithmic Attribution Techniques to Determine Authorship in Unsigned Judicial

Opinions. Stanford Technology Law Review, 16, 503-533, June 2013 [27].

2.1 Introduction

U.S. courts publish a shocking number of opinions without divulging the author. Un-

signed per curiam opinions, as traditionally and popularly conceived, are a means of

quickly deciding uncontroversial cases in which all judges or justices are in agreement.

Today, however, unsigned per curiam opinions often dispose of highly controversial

issues, frequently over significant disagreement within a court. Obscuring authorship

removes the sense of accountability for each decision’s outcome and the reasoning that

led to it. Anonymity also makes it more difficult for scholars, historians, practitioners,

political commentators, and — where applicable — the electorate, to glean valuable

information about legal decision-makers and the way they make their decisions. The

33

value of determining authorship for unsigned opinions has long been recognized but,

until now, the methods of doing so have been cumbersome, imprecise, and altogether

unsatisfactory. Currently, to obtain information on how decisions were made and

authored, the public relies on anecdotal evidence from clerks, legal observers, and

occasional comments by judges and justices themselves.

Given the importance of unsigned opinions and the large corpus of signed judi-

cial writings, we demonstrate that novel computational tools can add quantitative,

non-partisan insight into judicial opinion authorship. Our work uses statistical data

mining and machine learning algorithms to predict authorship of judicial opinions

that are unsigned or whose attribution is disputed. Using a dataset of opinions with

known authorship, we identify key words and phrases that can, to a high degree of ac-

curacy, predict authorship using only the text from a judicial opinion (with obvious

identifying markers removed). After training “writing style models” for the differ-

ent justices under consideration, we can predict the author of an unsigned opinion

by analyzing only that unsigned opinion’s text. Our method provides insight into

which authors were most influential in writing the published opinion, thereby giving

interested parties access to an important class of cases heretofore inaccessible.

Part 2.2 summarizes the historical context of unsigned per curiam opinions, crit-

icisms of the practice, and compares our attribution solution to other approaches.

To illustrate our method, the remaining parts of this paper describe the process of

determining authorship in a recent, high profile Supreme Court case in which the

author of the dissenting opinion was subject to much popular speculation. Part II

describes this illustrative test case. Part III describes the experimental setup and

Part IV explains the results. Part V provides the results of applying our process to

every unsigned per curiam opinion of the Roberts Court.

2.2 Unsigned Opinions

Over the last 150 years, there has been an astonishing number of court decisions issued

without attribution. Unsigned opinions have been the subject of great controversy

34

since their inception and present many problems today. Although unsigned opinions

appear in all appellate courts — federal or state — the example set by the Supreme

Court is particularly illustrative. Part 2.2.1 provides historical context for unsigned

per curiam opinions. Part 2.2.2 summarizes some of the problems that have been

associated with judicial anonymity. Part 2.2.3 evaluates some of the current methods

used to determine authorship. Part 2.2.4 briefly describes how our method provides

a better means of determining authorship.

2.2.1 Historical Context of Unsigned Opinions

The Supreme Court’s attribution practices have a long and colorful history.1 The

Court has delivered opinions in one of four ways.2 First, in the early days, the Court

would issue decisions “seriatim,” whereby the Justices wrote separate opinions that

were published in order of seniority, and were sometimes followed by a summary

order “By the Court” with the overall disposition.3 Second, for uncontroversial and

unanimous decisions, the Court would deliver an opinion under the heading “By the

Court.”4 Third, the Court would deliver a single opinion under the name of the Chief

Justice, while indicating that he was speaking “for the Court.”5 Finally, the Court

would issue a majority opinion with justices writing separately as they desired.6

The fourth attribution option — a majority opinion accompanied by separate

dissents and concurrences — has become the familiar means of delivering opinions.7

However, during the Marshall era, the Chief Justice chose the third option in an effort

to enhance the Court’s image of solidarity and authority.8 Even when the justices

disagreed, Marshall insisted that the Court issue only one opinion in his name, even

1For a more robust history, see generally John P. Kelsh, The Opinion Practices of the United
States Supreme Court 1790-1945, 77 WASH. U. L.Q. 137 (1999); James Markham, Note, Against
Individually Signed Judicial Opinions, 56 DUKE L.J. 923, 28 (2006).

2Markham, supra note 1, at 928.
3Id.
4Id.
5Id.
6Id.
7Id. at 29
8Id.

35

when he disagreed in the judgment.9 This practice gradually gave way and by 1832,

all members of the Court had written separately at least once. By the time Marshall

died in 1835, the practice of writing separate opinions was solidified.10

Throughout these shifts in the Court’s attributional philosophy, the “per curiam”

decision — in which an opinion states the ostensible opinion of “the Court” rather than

any particular justice(s) — has remained a viable option. However, such decisions

have not been confined to uncontroversial or unanimous topics as they were in the

early days of the Court. The classic occasion for a per curiam decision is when the

law is so clear that the justices are unanimous and the issue does not merit the time

necessary to craft a detailed opinion.11

However, with great frequency today’s per curiam opinions are neither unanimous

nor uncontroversial. A 1992 study found that only 44% of per curiam opinions were

unanimous.12 For the other 56% of per curiam opinions, there are two ineluctable

conclusions: (1) despite the label, an ostensibly “per curiam” opinion cannot speak “for

the Court” as a whole, and (2) there is at least some controversy to the disposition.

Some of the most important and controversial cases in our nation’s history came

through badly divided per curiam opinions.13 Such decisions include invalidating the

death penalty in Furman v. Georgia (five concurrences, four dissents),14 dealing with

campaign finance reform in Buckley v. Valeo (involving a 137-page per curiam with

five opinions concurring in part and dissenting in part),15 resolving the Pentagon

Papers case (six concurrences, three dissents),16 and ending the presidential election

of 2000 in Bush v. Gore (one concurrence, four dissents),17 to name a few.

9Id.
10Id.
11See, e.g., id. at 934; Ira P. Robbins, Hiding Behind the Cloak of Invisibility: The Supreme Court

and Per Curiam Opinions, 86 TUL. L. REV. 1197, 1200-02 (2012); Laura Krugman Ray, The Road
to Bush v. Gore: The History of The Supreme Court’s Use of the Per Curiam Opinion, 79 Neb.
L. Rev. 517, 521- 24 (2000); Stephen L. Wasby et al., The Per Curiam Opinion: Its Nature and
Functions, 76 JUDICATURE 29, 30 (1992).

12Wasby et al., supra note 11, at 35.
13See Michael C. Gizzi & Stephen L. Wasby, Per Curiams Revisited: Assessing the Unsigned

Opinion, 96 JUDICATURE 110, 113 (2012).
14408 U.S. 238 (1972).
15424 U.S. 1 (1976).
16403 U.S. 713 (1971).
17531 U.S. 98 (2000).

36

With these qualitative concerns in mind, the number of per curiam opinions is

alarming. The Warren Court used per curiam opinions 28.7% of the time, the Berger

Court 17.7%, the Rehnquist Court 10.3%, and the Roberts Court 13.3%.18 In 2011,

the federal courts of appeal issued per curiam opinions 7.6% of the time, with sig-

nificant variation across circuits.19 Whereas the D.C. Circuit relied on per curiam

opinions only 0.3% of the time, the Fifth Circuit used them 15.9% of the time.20 The

problem is direr in some state courts, where per curiam opinions constitute more than

half of an elected court’s decisions.21

2.2.2 Problems with Unsigned Opinions

The previous section highlighted the quantity and quality of cases using unsigned

opinions, but what is the harm? The most compelling complaints focus on the theme

of accountability: poor quality of opinions, evasion of difficult issues, lack of trans-

parency to the public, and the like.22

Critics voicing the accountability concern are numerous and frequently high pro-

file. In response to Chief Justice Marshall’s edict that the Supreme Court issue a

single opinion in his name, Thomas Jefferson wrote that “secret, unanimous opinions”

written on behalf of the Court would undermine judicial accountability.23 When “no-

body knows what opinion any individual member gave in any case, nor even that he

who delivers the opinion concurred in it himself, [a justice’s reputation] is shielded

completely.”24 Jefferson disapproved of opinions reached by justices “huddled up in a

conclave, perhaps by a majority of one, delivered as if unanimous, and with the silent

acquiescence of lazy or timid associates, by a crafty chief judge, who sophisticates
18Gizzi & Wasby, supra note 13, at 111.
19Id. at 114.
20Id. at 115.
21In the Shadows: A Look into the Texas Supreme Court’s Overuse of Anonymous Opinions, at 1,

TEXAS WATCH (May 2008), available at http://www.texaswatch.org/wordpress/wp-content/
uploads/2009/12/PerCuriamReportFinal.pdf.

22See generally Robbins, supra note 11. Other critiques include stunting the development of the
law by reducing the ability to analyze a judge or justice’s jurisprudence and put to use any lessons
derived from such analysis. See id. 1224-41.

23Markham, supra note 2, at 930 (quoting Letter from President Thomas Jefferson to Justice
William Johnson (Oct. 27, 1820).

24Id.

37

http://www.texaswatch.org/wordpress/wp-content/uploads/2009/12/PerCuriamReportFinal.pdf
http://www.texaswatch.org/wordpress/wp-content/uploads/2009/12/PerCuriamReportFinal.pdf

the law to his own mind, by the turn of his own reasoning.”25 Per curiam opinions,

according to Jefferson, are “certainly convenient for the lazy, the modest, and the

incompetent.”26

Jefferson’s disapproval and call for accountability has echoed since. President

Madison called for a return to seriatim opinions “so that Republican judges could

record their position on the issues.”27 When she was a circuit judge, Justice Ginsburg

wrote, “Public accountability through the disclosure of votes and opinion authors puts

the judge’s conscience on the line.”28 She further noted, “Judges generally do not la-

bor over unpublished judgments and memoranda, or even per curiam opinions, with

the same intensity they devote to signed opinions.”29 Approvingly quoting another

commentator, Justice Ginsburg wrote, “[W]hen anonymity of pronouncement is com-

bined with security in office, it is all too easy, for the politically insulated officials to

lapse into arrogant ipse dixits.”30 Judge Richard Posner agreed, asserting that signed

opinions elicit the greatest effort from judges and make “the threat of searing pro-

fessional criticism an effective check on irresponsible judicial actions.”31 Discussing

the Court’s decision in Bush v. Gore, one commentator noted that per curiams are

convenient tools in controversial cases because “[w]ith no Justice signing the opinion,

there [is] no individual to be blamed for evading the tough questions.”32

These accountability criticisms have even more force when the judges and justices

are elected officials serving terms of office rather than appointed judges and justices

serving for life or good behavior. Thirty-nine states (78%) require judges to run

for election or win periodic retention votes.33 The electorates in these states need

recorded votes and opinions to evaluate their respective judges and justices, but

25Id. (quoting Letter from Thomas Jefferson to Thomas Ritchie (Dec. 25, 1820)).
26John P. Kelsh, The Opinion Practices of the United States Supreme Court 1790-1945, 77 Wash.

U. L.Q. 137, 145-46 (1999) (citing Letter from Thomas Jefferson to William Johnson).
27Id.
28Ruth Bader Ginsburg, Remarks on Writing Separately, 65 WASH. L. REV. 133, 140 (1990).
29Id. at 139.
30Id.
31Richard A. Posner, The Federal Courts: Challenge and Reform 349 (1999).
32Laura Krugman Ray, The Road to Bush v. Gore: The History of the Supreme Court’s Use of

the Per Curiam Opinion, 79 NEB. L. REV. 517, 521-22 (2000).
33Robbins, supra note 11, at 1221.

38

unsigned opinions reduce access to this vital information.

For example, Texas is one state in which judges are elected by and accountable

to voters. During the 2006-2007 term, an astounding 57% of the opinions issued by

the Supreme Court of Texas were unsigned per curiams.34 Over a ten-year period,

per curiam opinions constituted 40% of the opinions issued by the Supreme Court of

Texas.35 One commentator puts the problem nicely:

When a judge signs his name to an opinion he has written, he accepts

responsibility for the decision and the logic used in reaching it. Whether

the opinion is a stellar example of judicial wisdom or a blatant abuse of

judicial authority, the author is accountable because his identity is known.

Any judge who disagrees with an authored opinion must write or join a

dissent, and thus that judge’s position is known as well, and he is equally

accountable.

When a court releases a per curiam opinion, however, no judge accepts

responsibility for the opinion, and no judge can be held accountable for it.

The public does not know if all judges agreed with the holding. Judges

who can hide behind this anonymity may not have an incentive to reach

the legally correct conclusion or to justify the conclusion they do reach.36

This same commentator goes on to list controversial per curiam opinions in the

Texas Supreme Court and analyzes campaign contributions from parties who ap-

peared before the court in such cases.37 This example highlights one of the most

extreme consequences of judicial unaccountability.

2.2.3 Solving Attributional Questions the Old-Fashioned Way

Scholars and historians have long been skeptical of unsigned opinions and have sounded

numerous calls for research identifying the authors of unsigned opinions. Until now,
34In the Shadows, supra note 20.
35Id.
36Id.
37See generally id.

39

the methodologies recommended and employed have been decidedly “old school.”

A 2012 article charting the use of per curiam decisions of the Supreme Court

suggested some methods for determining authorship.38 First, the article recommends

narrowing the possibilities by ruling out authors of separately signed opinions.39 How-

ever, this method will frequently yield incomplete results. At best, it narrows the

possibilities to the handful of justices who did not write a separate opinion. However,

this approach does not rule out the possibility that one of the justices authored both

a signed opinion and the unsigned per curiam. Moreover, this step is useless when

there is no separately written opinion.

The article also recommends culling the files of retired Justices like Blackmun and

White, which are available in the Manuscript Division of the Library of Congress.40

Apart from practical access difficulties, the files are incomplete records of communica-

tions between the justices and other confidants. Some useful narratives may be pieced

together with effort, but these records are still likely to prove incomplete and unsatis-

factory. Furthermore, this information only becomes available after a justice retires,

which will significantly delay authorship investigations in the vast majority of cases.

Even after those files become available, there is no guarantee that the information

found therein will be of any use.

Investigations into unsigned opinions from federal appellate and state courts will

experience additional problems.41 Unlike the Supreme Court, these courts are less

likely to maintain robust records of any behind-the-scenes happenings. Moreover,

such opinions have less practical significance relative to U.S. Supreme Court opinions.

In turn, this consideration may imply that historians and other parties have less

motivation to investigate how these courts arrived at their decisions and to publish

such findings for the benefit of further research.

38See Gizzi & Wasby, supra note 13, at 116.
39Id.
40Id. at 116-17.
41Id. at 118.

40

2.2.4 Solving Attributional Questions Algorithmically

Our approach, involving algorithmic natural language analysis, presents several ad-

vantages over the aforementioned approaches to determining authorship. First, access

is practically a non-issue. Using only public domain opinions of known authorship,

we can create a dataset from which we can analyze the natural language of any given

opinion. A sufficient quantity of opinions for the dataset is often freely available

through resources like the Cornell Legal Information Institute (LII).42

We need not access the Library of Congress or put together an incomplete puzzle

from the files of retired justices. For our system, we need only an unsigned opinion

and a sufficiently large bank of signed opinions from the potential authors. Part V lays

out the results from applying our algorithm to every unsigned opinion of the Roberts

Court. But for illustrative purposes, the next few sections describe our approach

when used on a high-profile test case with an opinion whose authorship was hotly

contested.

2.3 Test Case: Obamacare

In June 2012, the Supreme Court issued its ruling in National Federation of Indepen-

dent Business v. Sebelius,43 which largely upheld the 2010 Patient Protection and

Affordable Care Act (PPACA). This highly controversial decision contained what was

originally an unsigned dissenting opinion, the authorship of which was a popularly

debated issue.

The Sebelius decision was surprising because Chief Justice John Roberts gave the

deciding vote, siding with the more liberal justices.44 The Chief Justice rejected the

government’s argument that Congress was authorized to enact PPACA’s individual

insurance coverage mandate under the Commerce Clause, but accepted the govern-

42Supreme Court Collection, LEGAL INFORMATION INSTITUTE, http://www.law.cornell.
edu/supct/ (last visited Feb. 11, 2013)

43132 S. Ct. 2566 (2011).
44See, e.g., John T. Bennett, “Law of the Land: Supreme Court Upholds ‘Obamacare,” ’

US NEWS (June 28, 2012), available at http://www.usnews.com/news/articles/2012/06/28/
law-of-the-land-supreme-court-upholds-obamacare.

41

http://www.law.cornell.edu/supct/
http://www.law.cornell.edu/supct/
http://www.usnews.com/news/articles/2012/06/28/law-of-the-land-supreme-court-upholds-obamacare
http://www.usnews.com/news/articles/2012/06/28/law-of-the-land-supreme-court-upholds-obamacare

ment’s alternative position that the mandate was authorized by Congress’s power

to enact taxes.45 Together with the liberal justices, who would have accepted both

government arguments, the Chief Justice provided the necessary fifth vote to uphold

the law.46

Many experts had predicted that (1) the Court would overturn PPACA47 and (2)

the pivotal vote would come from Justice Anthony Kennedy.48 After the decision,

there was speculation that the Chief Justice had switched sides between the time that

the case was heard and the time the decision was announced.49 There was further

speculation that the formerly unsigned dissent (later attributed to Justices Kennedy,

Scalia, Thomas, and Alito)50 had originally been a majority opinion authored by

Chief Justice Roberts.51

The following pieces of evidence have been offered to support this hypothesis.

First, the opening section of the joint dissent authored by Kennedy et al. (the “joint

dissent”) never mentions the Court’s majority opinion to uphold the PPACA, writ-

ten by Chief Justice Roberts.52 Typically, dissenting and concurring opinions will

highlight in the first few paragraphs the reason for authoring a separate opinion, as

indeed Justice Ginsburg’s opinion53 and Justice Thomas’s opinion54 do. Instead, the

joint dissent only contains arguments against points made by the government attor-

45132 S. Ct. at 2587.
46Id. at 2594.
47See, e.g., Peter Ferrara, “Why the Supreme Court Will Strike Down All of Obamacare,”

FORBES (April 5, 20120), available at http://www.forbes.com/sites/peterferrara/2012/04/
05/why-the-supreme-court-will-strike-down-all-of-obamacare/.

48See, e.g., Peter J. Boyer, “Reading Justice Anthony Kennedy’s Leanings on Obamacare,”
THE DAILY BEAST (Apr. 2, 2012), http://www.thedailybeast.com/newsweek/2012/04/01/
reading-justice-anthony-kennedy-s-leanings-on-obamacare.html.

49See, e.g., Sabrina Siddiqui, “John Roberts’ Switch on Obamacare Sparks Fascina-
tion with Supreme Court, Possible Leaks,” HUFFINGTON POST (July 3, 2012), http:
//www.huffingtonpost.com/2012/07/02/justice-roberts-obamacare-supreme-court-leaks_
n_1644864.html; Paul Campos, “Did John Roberts switch his vote?,” SALON.COM (June 28,
2012), http://www.salon.com/2012/06/28/did_john_roberts_switch_his_vote/.

50132 S. Ct. 2642.
51See, e.g., Avik Roy, “The Inside Story on How Roberts Changed His Supreme Court Vote on

Obamacare,” FORBES (July 1, 2012), available at http://www.forbes.com/sites/aroy/2012/
07/01/the-supreme-courts-john-roberts-changed-his-obamacare-vote-in-may/.

52See 132 S. Ct. 2642-44.
53Id. at 2602 (Ginsburg, J. concurring in part and dissenting in part).
54Id. at 2677 (Thomas, J. dissenting).

42

http://www.forbes.com/sites/peterferrara/2012/04/05/why-the-supreme-court-will-strike-down-all-of-obamacare/
http://www.forbes.com/sites/peterferrara/2012/04/05/why-the-supreme-court-will-strike-down-all-of-obamacare/
http://www.thedailybeast.com/newsweek/2012/04/01/reading-justice-anthony-kennedy-s-leanings-on-obamacare.html.
http://www.thedailybeast.com/newsweek/2012/04/01/reading-justice-anthony-kennedy-s-leanings-on-obamacare.html.
http://www.huffingtonpost.com/2012/07/02/justice-roberts-obamacare-supreme-court-leaks_n_1644864.html
http://www.huffingtonpost.com/2012/07/02/justice-roberts-obamacare-supreme-court-leaks_n_1644864.html
http://www.huffingtonpost.com/2012/07/02/justice-roberts-obamacare-supreme-court-leaks_n_1644864.html
http://www.salon.com/2012/06/28/did_john_roberts_switch_his_vote/.
http://www.forbes.com/sites/aroy/2012/07/01/the-supreme-courts-john-roberts-changed-his-obamacare-vote-in-may/.
http://www.forbes.com/sites/aroy/2012/07/01/the-supreme-courts-john-roberts-changed-his-obamacare-vote-in-may/.

neys defending PPACA and Justice Ginsburg’s opinion. In this respect, the joint

dissent reads more like a majority opinion (with a corresponding dissent by Justice

Ginsburg), rather than a dissent arguing against Chief Justice Robert’s opinion.

Second, whereas a typical majority opinion will refer to the decision-maker as the

Court and describe the majority justices using the collective pronoun “we,” indicating

solidarity, dissents and concurrences typically refer to themselves individually using

less inclusive pronouns like “I.” True to form, Chief Justice Roberts’ majority opinion

follows this pattern, as does Justice Ginsburg’s opinion (which is joined by Justice

Sotomayor),55 and Justice Thomas’s opinion.56 The joint dissent, however, does not

follow the pattern.57

Third, although there are two dissenting opinions in this case — the joint dissent

and another authored by Justice Thomas alone — the joint dissent refers to Justice

Ginsburg’s opinion concurring in part and dissenting in part in the following way:

“The dissent claims that we ‘fai[l] to explain why the individual mandate threatens

our constitutional order.’ Ante, at 2627. But we have done so.”58 It is peculiar that

this joint dissent does not acknowledge itself as one of the two opinions dissenting in

full. It is even more peculiar that the joint dissent calls Justice Ginsburg’s opinion

“the dissent” when her opinion is, in fact, only partially dissenting. As a practical

matter, it would appear that either the joint dissent or Justice Thomas’ dissent is

more deserving of being dubbed “the dissent.” This sentence would make more sense

as a majority opinion critiquing a sole dissenting opinion (on the assumption that,

in this counterfactual scenario, Justice Thomas would have joined the counterfactual

majority or at least changed his dissent to a concurrence).

Fourth, Justice Ginsburg provided the following criticism of Chief Justice Roberts’s

55Id. at 2609 (Ginsburg, J. concurring in part and dissenting in part) (“I agree with... I therefore
join... [H]owever, I would hold... (emphasis added)). Note also that Justice Ginsburg uses first
person singular pronouns despite the fact that Justices Sotomayor, Breyer, and Kagan joined in all
or part of the Justice Ginsburg’s opinion.

56Id. at 2677 (Thomas, J. dissenting) (“I dissent... I write separately to... I adhere to my view”
(emphasis added)).

57Id. at 2432 (Scalia, Kennedy, Thomas, Alito, Js. dissenting) (emphasis added) (“We conclude...
.”).

58Id. at 2659 (Scalia, Kennedy, Thomas, Alito, Js. dissenting).

43

reasoning in the majority opinion:

In failing to explain why the individual mandate threatens our constitu-

tional order, THE CHIEF JUSTICE disserves future courts. How is a

judge to decide, when ruling on the constitutionality of a federal statute,

whether Congress employed an independent power, ante, at 2591, or

merely a derivative one, ante, at 2592. Whether the power used is sub-

stantive, ante, at 2592, or just incidental, ante, at 2592? The instruction

THE CHIEF JUSTICE, in effect, provides lower courts: You will know it

when you see it.59

There is a direct response to this argument, but it appears in the joint dissent,

not Chief Justice Roberts’ majority opinion.60

An alternate hypothesis is that the joint dissent was actually written mostly by

Justices Kennedy and Scalia, as argued by a detailed news article with sources al-

legedly close to the Supreme Court.61 This article also gives an explanation as to why

the joint dissent does not engage Justice Roberts’ majority opinion:

The majority decisions were due on June 1, and the dissenters set about

writing a response, due on June 15. The sources say they divided up parts

of the opinion, with Kennedy and Scalia doing the bulk of the writing.

The two sources say suggestions that parts of the dissent were originally

Roberts’ actual majority decision for the court are inaccurate, and that

the dissent was a true joint effort.

The fact that the joint dissent doesn’t mention Roberts’ majority was

not a sign of sloppiness, the sources said, but instead was a signal the

conservatives no longer wished to engage in debate with him.62

59Id. at 2627-28 (Ginsburg, J. concurring in part and dissenting in part).
60Id. at 2649 (Scalia, Kennedy, Thomas, Alito, Js. dissenting).
61Jan Crawford, “Roberts switched views to uphold health care law,” CBS NEWS,

(July 1, 2012) available at http://www.cbsnews.com/8301-3460_162-57464549/
roberts-switched-views-to-uphold-health-care-law/.

62Id.

44

http://www.cbsnews.com/8301-3460_162-57464549/roberts-switched-views-to-uphold-health-care-law/
http://www.cbsnews.com/8301-3460_162-57464549/roberts-switched-views-to-uphold-health-care-law/

A further interview with Justice Ginsburg suggests that she wrote her own dissent

early on, believing that the Chief Justice would strike down the individual mandate:

Ginsburg quickly began drafting the dissenting statement on that issue,

portions of which she read from the bench on the day the ruling was

announced. “I had a draft of the dissent before the chief circulated his

opinion because I knew it would be impossible to do” as the term went

into the final month of June and several cases culminated.63

Ultimately, the evidence is mixed as to whether both the majority opinion and

the joint dissent were authored by the Chief Justice. Applying authorship attribution

techniques, we aspire to determine quantitatively which of these hypotheses is more

plausible. Our model assigns the highest probability to Justices Scalia and Kennedy,

not Chief Justice Roberts, as the author of the dissenting opinion, which supports

the “Crawford” theory of authorship.64

2.4 Experimental Setup

2.4.1 Experimental Questions

To solve this attribution question, we focused on whether features of each justice’s

writing styles could be used to predict which justice authored which opinion. The

specific questions that we sought to answer through our experiments were the follow-

ing:

1. Can statistical authorship attribution methods accurately predict which of the

Supreme Court justices authored a given opinion?

2. What are the words and stylistic features that most distinguish different Supreme

Court justices, and what do they reveal about the writing styles of different jus-

tices?
63Joan Biskupic, “Exclusive: Justice Ginsburg shrugs off rib injury,” REUTERS

(Aug. 8, 2012) available at http://www.reuters.com/article/2012/08/09/
us-usa-court-ginsburg-idUSBRE87801920120809.

64See Crawford, supra note 62.

45

http://www.reuters.com/article/2012/08/09/ us-usa-court-ginsburg-idUSBRE87801920120809.
http://www.reuters.com/article/2012/08/09/ us-usa-court-ginsburg-idUSBRE87801920120809.

3. Which author(s) does the model predict for the majority and dissenting opinions

written in Sebelius?

Our work is part of the growing literature on applying algorithmic natural lan-

guage processing tools to legal opinions. Recent work has explored the evolution of

language in Supreme Court texts over time,65 the conversational dynamics of Supreme

Court oral arguments,66 and the role of law clerks in the opinion-writing process.67

Our work applies an analogous quantitative approach to investigate the authorship

of unsigned opinions and opinions of controversial attribution, leveraging advances in

computational power and machine learning algorithms to infer authorship with high

accuracy.

2.4.2 Data Preparation

We obtained texts of Supreme Court opinions from the Cornell Legal Information In-

stitute (LII).68 From this source, we downloaded all Supreme Court decisions written

by the nine justices currently sitting on the Court who have served during the tenure

of Chief Justice John Roberts, i.e., from 2005 to 2011. For each case, we extracted

the majority and minority opinions if they existed, keeping track of their respective

authors. We masked the surnames of the justices themselves and years, to avoid

simply using name or year information to identify the author. Concurrences to either

the majority or minority opinion were not included in our corpus of possible cases, as

our focus was on predicting authorship of majority and dissenting opinions.

Using these criteria, our dataset consists of 568 opinions. In addition to these 568

opinions, we obtained the majority (signed by Chief Justice Roberts) and minority

(signed by Justices Scalia, Kennedy, Thomas, and Alito) opinions of the Sebelius
65Daniel M. Katz et al., Legal n-grams? a simple approach to track the evolution of legal language,

in PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON LEGAL KNOWL-
EDGE AND INFORMATION (2011).

66Timothy Hawes et al., Elements of a computational model for multi-party discourse: The turn-
taking behavior of Supreme Court justices, 60(8) J. AM. SOC’Y INFO. SCIENCE & TECH. 1607
(2009).

67Jeffrey S. Rosenthal & Albert H. Yoon, Detecting multiple authorship of united states supreme
court legal decisions using function words, 5(1) ANNALS OF APPLIED STATISTICS 283 (2011).

68See supra note 42.

46

decision and 65 per curiam decisions by the Roberts court (until November 2012).

We obtained these 67 opinions using the same download protocol. Our objective is

to make meaningful authorship predictions for these 67 opinions.

2.4.3 Machine Learning System Overview

Our machine learning approach follows the paradigm of “supervised learning”: our

algorithms identify characteristics (called “features”) of each justice’s writing style

from opinions known to be authored by him or her. These characteristics are encoded

in a statistical prediction model that describes the writing styles of the justices under

consideration. Given a new opinion with an unknown author, the model predicts

which justice wrote the opinion. It is worth noting that “supervised learning-based

authorship attribution” has been applied to a wide range of literary, historical, and

contemporary domains,69 including studies on the Federalist Papers,70 Shakespeare’s

plays,71 and more recently, on large numbers of authors in online blogs or forums.72

Our system builds upon some early work in judicial authorship, but with a greater

focus on predicting who authored a particular opinion. In the aforementioned studies

on the role of clerks in opinion-writing, researchers found that they could differentiate

between pairs of Supreme Court justices using just 63 function words.73 Our work

leverages a much larger number of words and word phrases (about 100 times as

many) culled from the opinions themselves, a process that is feasible and inexpensive

on today’s computers. In doing so, we are able to handle the problem of accurately

69For a detailed review of classification techniques, useful features, and application areas, see
Moshe Koppel et al., Computational methods in authorship attribution, 60(1) J. AM. SOC’Y INFO.
SCIENCE & TECH. 9 (2009), available at http://dx.doi.org/10.1002/asi.v60:1; Efstathios
Stamatatos, A survey of modern authorship attribution methods, 60(3) J. AM. SOC’Y INFO. SCI-
ENCE & TECH. 538 (2009), available at http://dx.doi.org/10.1002/asi.21001.

70Frederick Mosteller & David Wallace, INFERENCE AND DISPUTED AUTHORSHIP: THE
FEDERALIST (1964).

71Thomas V.N. Merriam & Robert A.J. Matthews, Neural computation in stylometry ii: An appli-
cation to the works of Shakespeare and Marlowe, 9(1) LITERARY & LINGUISTIC COMPUTING
1 (1994).

72Moshe Koppel et al., Authorship attribution with thousands of candidate authors, in PROCEED-
INGS OF THE 29TH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH
AND DEVELOPMENT IN INFORMATION RETRIEVAL 659 (2006).

73See Rosenthal & Yoon, supra note 68.

47

http://dx.doi.org/10.1002/asi.v60:1
http://dx.doi.org/10.1002/asi.21001

predicting which of the nine justices wrote an unsigned or controversial opinion.

Within this framework, our corpus of opinions is divided into three datasets:

1. “Training set”: Of the 568 signed opinions, we take 451 of them (80%) to “train”

the authorship attribution system. The machine learning algorithms, described

further below, are given both the text and the author of each of these opinions

and learn the parameters of this system from this training data.

2. “Validation set”: The remaining 117 (20%) signed opinions are deliberately ex-

cluded from the training process, and the authorship attribution system is used

to “predict” the authors of these cases. The trained system is given only the

text of these opinions and asked to provide an authorship prediction. Given

that the author is known in these cases, the prediction has little scholarly value

in itself; however, the performance of the system on these 117 cases, which can

be measured by comparing the prediction to the actual author, provides some

indication of the system’s predictive capabilities.

3. “Test set”: The opinions of the Sebelius decision and the 65 per curiam opinions

of the Roberts Court form the final test set. Similar to the validation set, these

cases are excluded from the training process. The results of this analysis are

shown in Parts IV and V.

For our Supreme Court authorship attribution task, there are nine justices and

thus the model must accurately choose among nine choices for each opinion. Along

with high classification accuracy, we identified the following desiderata (in consulta-

tion with a practicing attorney familiar with Supreme Court cases and customs) for

our classification scheme: (1) the features should be intuitive and easy to understand;

(2) the prediction should have a confidence score for the correctness of the predicted

justice; (3) the prediction should produce a meaningful probability distribution over

the nine justices; and (4) the predicted author should be the justice with the highest

probability.

48

2.4.4 Design of Authorship Attribution System

Building a statistical authorship attribution model requires three main design de-

cisions: (1) how to represent each judicial opinion, (2) which statistical machine

learning model to use, and (3) how to select features. This section describes how we

made these decisions, guided by established practices in constructing authorship at-

tribution systems, quantitative experiments (detailed in the next section) to validate

our choices, and the specific questions we sought to answer with this model.

Document Representation. To build the statistical authorship attribution

model, the opinions must be characterized in terms of numerical features. Human ex-

perts might examine each justice’s vocabulary richness, grammatical patterns, opinion

length, or other writing style characteristics to try to distinguish between them. In

our method, we use straightforward features that serve as a proxy for these intuitions:

the presence of one-, two-, and three-word sequences (known in natural language pro-

cessing as unigrams, bigrams, and trigrams, respectively; “n-grams” is the term for

any sequence of n words) in a document. Table 2.1 illustrates how a single sentence

from the majority opinion of the Sebelius decision can be described by these word

sequences. Applied over an entire written opinion, such features encode information

about vocabulary, syntax (such as the use of “however” in the middle of sentence),

and subject matter. We do not eliminate capitalization or punctuation marks, which

may also be indicative of writing style; for example, “Namely” is a different feature

than “namely.”. In addition, we did not discard punctuation immediately following

words because these characteristics might differentiate the justices’ writing styles.

These n-gram features have been effective in a wide range of authorship attribution

efforts.74

Experimental Evaluation: We evaluated the authorship attribution model using

four different sets of features: (1) unigrams only; (2) bigrams only; (3) trigrams only;

and (4) the combination of unigrams, bigrams, and trigrams. A comparison of model

performance across these sets of features allows us to measure the incremental value

of longer sequences of words. The results are presented in Table 3 in the next section.
74See Koppel et al., supra note 70.

49

Table 2.1: Example of sentence decomposed into unigrams, bigrams, and trigrams

Full sentence It does not, however, control whether an exaction is
within Congress’s power to tax.

Unigrams “It”; “does”; “not,”; “however,”; “control”; “whether”; “an”,
“exaction”, “is”, “within”; “Congress’s”; “power”; “to”
“tax.”

Bigrams “It does”; “does not,”; “not, however,”; “however, control”;
“control whether”; “whether an”; “an exaction”; “exaction
is”; “is within”; “within Congress’s”; “Congress’s power”;
“power to”, “to tax.”

Trigrams “It does not”; “does not, however”; “not, however,
control”; “however, control whether”; “control whether
an”; “whether an exaction”; “an exaction is”; “exaction
is within”; “is within Congress’s”; “within Congress’s
power”; “Congress’s power to”; “power to tax.”

Model Selection. Given our goal of producing a meaningful probability dis-

tribution of authorship, we trained a maximum entropy (MaxEnt) statistical model

— which enjoys widespread use in text classification tasks — for our authorship at-

tribution system.75 Specifically, we designed our model to compute the following

probability:

𝑃 (𝑦|𝑥𝑖) =
exp(𝜃 · 𝜑(𝑥, 𝑦𝑖))
9∑︀

𝑘=1

exp 𝜃 · 𝜑(𝑥, 𝑦𝑘)
(2.1)

where:

∙ 𝑥: Input text opinion

∙ 𝑦𝑖: Dependent variable representing justice 𝑖, where 𝑖 ranges from 1 to 9 (cor-

responding to the nine serving justices)

∙ 𝑃 (𝑦𝑖 | 𝑥): Probability of justice 𝑦𝑖 as author, given input opinion 𝑥

∙ 𝜑(𝑦𝑖 | 𝑥): Feature vector with entries corresponding to each of the n-gram
75Adam L. Berger et. al, A maximum entropy approach to natural language processing, 22(1)

COMPUTATIONAL LINGUISTICS 39 (1996).

50

features for each justice.

∙ 𝜃: Weight vector (the set of coefficients on each feature)

For a given document, the MaxEnt model computes a score for each justice, i,

that is a weighted sum of the n-gram features. Using the training data, the machine

learning algorithms automatically learn the parameters of the weight vector to max-

imize the likelihood of the training data; that is, the algorithm adjusts the weights

to best “explain” the data. The form of the MaxEnt model ensures that 𝑃 (𝑦𝑖|𝑥) is

between 0 and 1 and that these probability values sum to 1, meaning that the output

of the model can be interpreted as a probability distribution. This relatively simple

approach has been used successfully in other text classification problems.76 We used

Apache OpenNLP77 for the MaxEnt model and WEKA78 , two open-source machine

learning software packages, for the baseline methods outlined below.

In summary, the authorship attribution system computes a probability distribu-

tion over the nine justices for a given written opinion. The justice with the highest

probability is used as the predicted author, as discussed in the next section.

Experimental Evaluation. To validate our choice of the MaxEnt authorship attri-

bution model, we compared it to other common machine learning algorithms using

the same set of features. These other common machine learning algorithms are:

1. Decision trees (DT)79: Instead of taking a weighted sum of features, decision

tree models learn deterministic rules directly from the feature set. For example,

the decision tree may use the presence or absence of a particular n-gram to

predict one justice as opposed to another. These conceptually simple models

may suffer in performance because certain features might be indicative, but not

determinative, of certain authors. In probabilistic models, negative evidence
76Adwait Ratnaparkhi, Maximum entropy models for natural language ambiguity resolution, Ph.D.

thesis, University of Pennsylvania (1998).
77“The OpenNLP library is a machine learning based toolkit for the processing of natural language

text.” OpenNLP is available at http://opennlp.apache.org/.
78“[WEKA] is a collection of machine learning algorithms for data mining tasks,” and is available

under a GNU General Public License at http://www.cs.waikato.ac.nz/ml/weka/.
79See CHRISTOPHER M. BISHOP, PATTERN RECOGNITION AND MACHINE LEARNING,

Section 16.4 (2006).

51

http://opennlp.apache.org/
http://www.cs.waikato.ac.nz/ml/weka/

against a particular author can be outweighed by positive evidence in favor of

the author.

2. Naive Bayes (NB) classification80: By assuming that features are statistically

independent, the Naive Bayes model calculates a probability that a justice wrote

an opinion by multiplying the conditional probabilities of each feature given the

justice. In other words, each feature’s “contribution” to the model is computed

separately because it assumes that all of the features are statistically indepen-

dent. As a result, the NB model is substantially simpler and faster to train than

the MaxEnt model, the latter of which involves learning the weights for all of

the features. However, the NB model may not perform as well because it does

not attempt to search through all possible weights to maximize performance.

3. Pairwise-coupled support vector machines (SVM)81: Some authorship attribu-

tion applications have reported state-of-the-art results with support vector ma-

chines, which also learn weights on features using a different mathematical for-

mulation.82 We used pairwise-coupled SVMs, in which the opinions of each

possible pair of justices are trained. The output of each classifier is a “vote”

for one justice over another, and the justice with the most overall “votes” is the

predicted author. One challenge related to our desiderata is that the votes may

be difficult to interpret as meaningful probabilities.

Table 3 in the next section compares the results of each of these three models with

the MaxEnt model.

Feature Selection. We also decided to selectively limit which n-gram features

were used in the authorship attribution model. Given the length and quantity of

opinions, there are hundreds of thousands of possible n-grams in the set of Supreme

80See DANIEL JURAFSKY & JAMES H. MARTIN, SPEECH AND LANGUAGE PROCESS-
ING: AN INTRODUCTION TO NATURAL LANGUAGE PROCESSING, COMPUTATIONAL
LINGUISTICS, AND SPEECH RECOGNITION, Section 20.2.2 (2009).

81BISHOP, supra note 80, at ch.7.
82For a description of the SVM implementation we used, see John C. Platt, Fast Training of

Support Vector Machines Using Sequential Minimal Optimization, in ADVANCES IN KERNEL
METHODS: SUPPORT VECTOR LEARNING, (Bernhard Schoelkopf et al., eds., 1998).

52

Court opinions, but not all of them are likely to be useful. For instance, an n-gram

could reflect vocabulary specific to a single case; associating it with a particular author

would not be useful for predicting authorship in the validation set or in cases where

the author is unknown. In addition, having too many features in our model could

make it prone to “over-fitting” — the results would not generalize to opinions in our

validation set.83

First, we considered only features that appear in a minimum of 20 opinions in

our training set, thereby eliminating very case-specific or rare language. Then, we

considered two feature selection methods that are commonly used for text processing:

document frequency and information gain.84 In both cases, we computed a score for

each eligible n-gram feature and then took the highest-ranked features:

1. Document Frequency (DF) computes the frequency score of the n-gram simply

by counting the number of documents that include the n-gram. We selected

the 3000 most frequent unigrams, 1000 most frequent bigrams, and 1000 most

frequent trigrams in the training set for our DF-based model. While DF-based

feature selection is simple, it has been shown empirically to be as effective as

more sophisticated methods in text classification tasks.85 Choosing frequent

n-grams could be a reasonable feature selection method because n-grams that

reflect common writing styles or patterns are likely to appear in the opinions in

our validation set.

2. Instead of scoring each n-gram feature by its frequency of appearance, Informa-

tion Gain (IG) measures the contribution of a particular feature to differentiat-

ing among the justices, which is the ultimate goal of our authorship attribution

model. Specifically, we compute the weighted average entropy of each feature,

f :

83BISHOP, supra note 80, at ch. 1.
84Yiming Yang and Jan O. Pedersen, A Comparative Study on Feature Selection in Text Catego-

rization, in PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON MACHINE
LEARNING (1997).

85Id.

53

𝐼𝐺(𝑓) = 𝑃 (𝑓present)
9∑︁

𝑘=1

𝑃 (𝑗𝑘 | 𝑓present) log𝑃 (𝑗𝑘 | 𝑓present)+

𝑃 (𝑓absent)
9∑︁

𝑘=1

𝑃 (𝑗𝑘 | 𝑓absent) log𝑃 (𝑗𝑘 | 𝑓absent) (2.2)

where:

∙ 𝑃 (𝑓present): The fraction of documents that contain the n-gram feature.

∙ 𝑃 (𝑓absent): The fraction of documents that do not contain the n-gram

feature.

∙ log𝑃 (𝑗𝑘 | 𝑓present): A measure of the non-uniformity of the probability dis-

tribution of opinions authored by different justices, conditioned on the

presence of the feature f. This definition is precisely the negative of the

entropy of the probability distribution86 — the more non-uniform the prob-

ability distribution, the higher the score.

∙ log𝑃 (𝑗𝑘 | 𝑓absent): A measure of the non-uniformity of the probability dis-

tribution of opinions by justice, conditioned on the absence of feature f.

Once we computed these scores for every eligible n-gram, we chose the n-grams

with the highest scores. For the IG model, we chose 3002 unigrams (similar to the

number of unigrams in the DF model). We included bigrams and trigrams that had

an IG score at least as high as one of the included unigrams. As a result, we selected

2714 bigrams and 746 trigrams into our model.

Table 2.2 shows examples of n-gram features that were selected using DF, IG,

or both feature selection methods. Some of the features selected using DF, such

as “the” or “at”, had low IG scores because they appear in almost every document;

consequently, they were not chosen as features when evaluated for information gain.

Despite substantial differences in the two feature sets, it is worth noting that many
86See Claude Shannon, Prediction and entropy of printed English, 30(1) BELL SYSTEMS TECH-

NICAL JOURNAL 50 (1951).

54

Table 2.2: Examples of n-gram features selected by Document Frequency (DF) and
Information Gain (IG) methods

Features only in DF
model (3154 features)

Features in DF and
IG models (1846 fea-
tures)

Features only in IG
model (4616 features)

“the”, “at”, “exclude”,
“conceded”, “refers to”,
“entitled to”, “exception
to the”, “see no reason”

“stated,”, “consequently”,
“declared”, “assumption”,
“Even if”, “consideration
of”, “and the case”, “fact
that the”

“Furthermore,”, “trou-
bling”, “undisturbed”,
“evidently”, “That
would”, “assert that”,
“the premise that”, “is
apparent that”

of the types of n-grams are quite similar — they seem to encode characteristics of

justices’ writing styles. A reasonable hypothesis is that a model with features selected

under our information gain method is more likely to yield better results, but this must

be validated experimentally.

Experimental Evaluation. Given that both feature selection methods are com-

monly used in algorithmic text analysis, we present results using both DF and IG

for the Sebelius decision. Showing the findings from both models could give greater

insight into authorship in this decision.

2.5 Empirical Results and Discussion

2.5.1 Feature Sets and Classification Methods

Table 3 summarizes the performance of feature types and classification models men-

tioned in the previous section. For consistency in this set of experiments, the DF

method of selecting features was used for all of these models, meaning that the fea-

ture set is the same. These results were obtained by ten-fold cross-validation, in

which a model is trained on 90% of the training data, the results are computed for

the remaining 10%, and the 90/10 split is repeated a total of ten times to judge the

performance on the entire, 451-opinion training set. The steps of cross validation

55

Table 2.3: Authorship prediction accuracy by feature set and classifier

Features DT NB SVM MaxEnt
Unigrams 0.322 0.514 0.734 0.736
Bigrams 0.266 0.443 0.559 0.588
Trigrams 0.244 0.459 0.501 0.548

Uni/Bi/Trigrams 0.301 0.527 0.747 0.752

were as follows:

1. We randomly divided the set of documents into ten equal partitions.

2. .We “held out” one partition and trained the authorship attribution model on

the remaining nine partitions. Then, we tested the trained model on the “held

out” partition.

3. We repeated step 2 once for each of the ten partitions, then combined the

results. Given that there were ten partitions, this process is called ten-fold

cross-validation.

It appears that the scores for correctly and incorrectly classified opinions are drawn

from different, albeit overlapping, distributions for the MaxEnt-DF and MaxEnt-

IG models. In general, for both models, higher output scores correspond to higher

likelihood that the prediction is correct.

As seen in Table 2.3, the unigram features provide good prediction accuracy on

their own, with some improvement when bigrams and trigrams are added as features.

The maximum entropy (MaxEnt) and support vector machine (SVM) classifiers out-

perform the Naive Bayes (NB) and decision tree (DT) models. Additionally, the

MaxEnt model performs slightly better than the SVM and has the added property

of probability distributions over the justices. Overall, these findings help justify the

use of unigrams, bigrams, and trigrams as features in a MaxEnt framework in our au-

thorship attribution model. The remaining results and analysis in this section focus

on variants of the MaxEnt model exclusively.

56

Table 2.4: Performance of MaxEnt models with Document Frequency (DF) and
Information Gain (IG) feature selection

MaxEnt-DF MaxEnt-IG
Accuracy on test set 0.761 (89/117) 0.812 (95/117)

2.5.2 Comparison of Feature Selection Models

Given the strong performance and desirable properties of the MaxEnt classification

model, we evaluated the model on our 117-opinion validation set using the docu-

ment frequency (MaxEnt-DF) and information gain (MaxEnt-IG) feature selection

methods. We obtained the features and model weights from the 451-opinion training

set. Table 2.4 compares the performance of the MaxEnt model using the document

frequency (MaxEnt-DF) and information gain (MaxEnt-IG) methods of feature se-

lection. IG results in a performance of 81.2% (95 out of 117 cases correct), while DF

has a lower accuracy at 76.1% (89 out of 117). The somewhat lower performance of

MaxEnt-DF is likely because some features do not help to differentiate the justices

and may merely add noise to the model.

2.5.3 Interpreting Authorship Attribution Model Scores

In addition to predicting a justice, the MaxEnt models also provide an output score for

each justice that can be interpreted as a probability. Figure 2-1 shows the distribution

of maximum scores for correctly and incorrectly classified opinions in the training set.

In order to characterize the behavior of the model scores on our entire set of opinions,

we obtained these results through the machine learning technique of ten-fold cross-

validation, similar to the approach used to compare the different learning models.

Instead of simply taking the justice with the highest probability as the predic-

tion, a more refined prediction system that “abstains” (makes no prediction) below a

certain output probability can be constructed. The ratio of correctly predicted cases

to incorrectly predicted cases increases as this threshold increases at the expense of

a larger number of abstentions. This result is visualized in Figure 2-2 and provides

57

Figure 2-1: Histograms of probabilities of most probable justice for MaxEnt-DF
(left) and MaxEnt-IG (right) models.

another illustration of the differences between the MaxEnt-DF and MaxEnt-IG mod-

els. For example, in the MaxEnt-IG model, a threshold probability of 0.43 results

in 90% prediction accuracy, with abstentions on just 19.3% of all cases. In contrast,

to achieve 90% prediction accuracy, the MaxEnt-DF model must set a threshold of

0.52, abstaining on 35.1% of all cases. Overall, these plots illustrate the probabilis-

tic nature of our authorship attribution model. Based on the desired application of

the model, one could set different abstaining thresholds, depending on the level of

confidence desired.

2.5.4 Insights on Writing Styles

To provide some insight into how our authorship attribution system predicts which

justice wrote an opinion, Table 2.5 shows some of the most predictive unigrams,

bigrams, and trigrams for each justice from the MaxEnt-IG model. This table was

computed by determining n-grams that appear disproportionately more often for each

justice. Some noteworthy insights include:

1. The highly predictive n-grams are largely topic-invariant function terms; that is,

the informative features more frequently reflect the writing style of the justice

as opposed to specific subjects. For example, the term “consequently” appears

58

Figure 2-2: Effect of abstaining threshold on size of correct, incorrect, and
abstaining classes of opinions for MaxEnt-DF (left) and MaxEnt-IG models (right).

in 99 different opinions in our training dataset; Justice Breyer wrote 79 of these

opinions.

2. Some predictive n-grams begin with capitalized words, including “For one thing”

(Breyer), “Notably,” (Ginsburg), and “The question is” (Kennedy). These cor-

respond to words at the beginning of sentences, indicating that how different

justices start sentences provides clues about authorship.

3. Some predictive n-grams include punctuation like commas and periods, includ-

ing “reason stated, the” (Ginsburg), “the first place.” (Roberts)”, and “foregoing

reasons,” (Thomas). By not eliminating punctuation from the text, the author-

ship attribution model is able to leverage these stylistic features.

2.5.5 Controlling for Clerks

The training/test split in the experiments above was random with respect to the year

in which the opinion was written, meaning that, at least to some extent, a justice’s

writing style in a given year can be predicted from his or her writings in other years.

Our model does not explicitly consider the role of law clerks, who typically serve year-

long terms, in the writing process; rather, it assumes that the features of a justice’s

writing are similar from year to year.

59

Table 2.5: Informative features by justice

Justice Unigrams Bigrams Trigrams

Alito
“fundamentally”,

“widely”,
“regarded”

“set out”, “noted
above”, “is
generally”

“set out in”,
“and we have”,

“the decision of”

Breyer “consequently”,
“Hence”, “thing,”

“can find”,
“wrote that”,

“For one”

“in respect to”,
“For one thing”,

“That is
because”

Ginsburg
“Notably,”,
“observed,”,
“stated,”

“reasons
stated,”, “stated,

the”, “case
concerns”

“stated, the
judgment”,

“reasons stated,
the”

Kagan
“enables”,
“earlier,”
“matters.”

“result is”, “after
all,”, “the
theory”

“do not think”,
“Court has

never”, “even
when the”

Kennedy
“however.”, “re-
sponsibilities”,

“Though”

“It held”, “so
the”, “or she”

“The question
is”, “as a

general”, “he or
she”

Roberts
“pertinent”,

“accordingly”,
“Here”

“first place.”,
“only be”, “given

that”

“the first place.”,
“without regard
to”, “a general

matter,”

Scalia
“utterly”,
“thinks”,
“finally”

“Of course”,
“since it”, “is

entirely”

“That is not”,
“the present

case”, “is hard
to”

Sotomayor
“observes”,
“lawsuits”,

“heightened”

“Committee on”,
“federal and”,
“correct that”

“circumstances
in which”, “see
also, Brief”,
“federal and

state”

Thomas
“Therefore,”
“However,”,
“explaining”

“address
whether”,
“foregoing

reasons,” “Court
holds”

“hold that it”,
“For the

foregoing”, “the
foregoing
reasons”

60

Table 2.6: Prediction accuracy of models trained on opinions from different years

Partition Accuracy
Year-based 74.8%
Random 78.9%

To test this assumption, we once again applied the cross-validation technique (sim-

ilar to how we studied the model confidence scores) and divided the set of documents

in two different ways. Specifically, we took signed opinions from the Roberts Court in

the 2005-2006, 2006-2007, 2007-2008, 2008-2009, 2009-2010, and 2010-2011 sessions

and compared the performance of our model in two ways:

1. For each of the six annual sessions, we trained the MaxEnt-IG model on the

other five sessions and validated on cases from the omitted session.

2. The signed opinions were randomly divided into six partitions, irrespective of

the year. For each partition, we trained the MaxEnt-IG model on the other five

partitions and validated on opinions from the omitted partition.

In both cases, we aggregated the results from each of the six runs, as shown in

Table 6. Evidently, training on other years has only a slight adverse impact on the

accuracy of the model. This may suggest that a different set of clerks have some

impact on a justice’s writing style, although other factors, such as a justice’s own

drift in writing style, may contribute to this result. Overall, though, the higher

performance of the randomized model suggests that the combination of training data

from other years and the same year works well for predicting authorship.

2.5.6 Authorship Prediction for Sebelius

To infer authorship in the Sebelius decision, we trained the MaxEnt-DF and MaxEnt-

IG models on the 568 cases in our dataset and ran them on the majority opinion

signed by Chief Justice Roberts and the joint dissent. Figure 2-3 and Figure 2-4

61

illustrate the resulting probability distributions of the two models. Both MaxEnt-

DF and MaxEnt-IG strongly predict Chief Justice Roberts for the majority opinion.

For the minority opinion, the MaxEnt-DF model states that Justice Kennedy is the

predicted author, but the probability distribution is not as peaked — Justice Scalia

has the second-highest probability. Meanwhile, the MaxEnt-IG model is much more

confident in Justice Scalia as the author of the joint dissent. Overall, these findings

are sensible: Chief Justice Roberts signed the majority opinion, while Kennedy and

Scalia are listed as authors of the joint dissent. Both models support the hypothesis

that Kennedy and Scalia were authors and prime actors in writing the dissent, and

refute the hypothesis that Roberts authored both opinions. The output of the model

in the Sebelius decision is an example of the non-partisan, quantitative analysis that

the authorship attribution system can provide.

2.5.7 Comparison to Predictions by Domain Experts

To gauge the performance of our authorship attribution system to expert human

judgment, we received input from 11 individuals close to the Supreme Court (as

past law clerks or lawyers who have argued at least one case before the Supreme

Court).87 We asked each of the respondents to provide their best, informed guess of

the authorship of the joint dissent, annotated, if possible, by section. Out of the 11

responses, there were nine who concluded that Kennedy participated in some way,

nine for Roberts, six for Scalia, and three for Alito; no other justices were mentioned.

The predictions of our model on this case generally seem to be in agreement with

these domain experts, although it is worth noting that the MaxEnt-IG model is more

confident in Scalia than the domain experts. A summary of the responses from each

of the respondents is listed in Table 3.

87All of the respondents asked to remain anonymous.

62

Figure 2-3: Authorship attribution model prediction for Sebelius majority opinion
by MaxEnt-DF (left) and MaxEnt-IG (right).

Figure 2-4: Authorship attribution model prediction for Sebelius joint dissent by
MaxEnt-DF (left) and MaxEnt-IG (right).

63

Table 2.7: Predictions of authorship of minority opinion by domain experts

Respondent Predicted authors (ranked in order of level of contribution)
1 Kennedy, Roberts
2 Scalia, Roberts
3 Roberts, Kennedy
4 Roberts, Scalia, Kennedy, and Alito
5 Kennedy, Alito
6 Scalia, Kennedy, Roberts
7 Scalia, working loosely from a draft by Roberts
8 Kennedy, working loosely from a draft by Roberts
9 Roberts, Kennedy, Scalia
10 Kennedy, Alito, Roberts
11 Scalia, Kennedy

2.5.8 Section-by-Section Analysis

Given that some respondents provided predictions by section, we tested our MaxEnt

models on the joint dissent divided into nine sections. We emphasize that the models

were not trained on portions of opinions; however, understanding the contributions of

different justices to the constituent parts of an opinion could be useful. Sections are

frequently delineated according to a precise legal issue and, theoretically, one justice

could contribute his or her treatment of a specific legal issue to be incorporated into

an opinion written by another justice.

The top predictions and predictions for the MaxEnt-DF and MaxEnt-IG models

for each of Sebelius’s sections are shown in Table 2.8. The results are somewhat

noisy — our respondents did not predict Breyer or Thomas as authors of the joint

dissent, and the two models did not agree on every section. However, consistent with

its prediction for the entire opinion, the MaxEnt-IG model predicted Scalia for most

of the sections. Additionally, none of the predictions suggest that Roberts is the top

author, which may lend further evidence against the theory that Roberts authored

the minority opinion.

64

Table 2.8: Prediction of authorship of minority opinion by section

Predicted author
Section MaxEnt-DF MaxEnt-IG
Introduction Scalia (0.841) Scalia (0.544)
Sec. 1 Introduction Scalia (0.365) Scalia (0.235)
Sec. 1A Breyer (0.406) Scalia (0.284)
Sec. 1B Scalia (0.730) Scalia (0.613)
Sec. 1C Kennedy (0.904) Scalia (0.590)
Sec. 2 Scalia (0.552) Scalia (0.891)
Sec. 3 Thomas (0.541) Scalia (0.344)
Sec. 4 Scalia (0.770) Alito (0.283)
Sec. 5 Alito (0.385) Kennedy (0.738)

2.6 Authorship Predictions for Per Curiam Opinions

of the Roberts Court

Finally, we tested the MaxEnt-IG model on 65 per curiam opinions of the Roberts

Court since 2005, with the goal of inferring the authorship of these unsigned opinions.

For each opinion, we trained a MaxEnt model using data from the nine sitting justices

at the time; for example, in 2006, the training set consists of opinions from Justices

Stevens, Scalia, Kennedy, Souter, Thomas, Ginsburg, Breyer, and Alito, along with

Chief Justice Roberts. It is worth noting that the model’s output probabilities for the

most probable justice is often fairly low; for example, if we supplied a cutoff threshold

of 0.43 to have 90% confidence in our prediction (as per Figure 2), the model would

choose to “abstain” on predicting a justice in many of these cases.

Table 2.9: Predicted authorship of Roberts Court per curiam decisions

Date of

Decision

Case Highest

probability

justice

Second-

highest

probability

justice

Third-

highest

probability

justice

Continued on next page

65

Table 2.9 – continued from previous page

Date of

Decision

Case Highest

probability

justice

Second-

highest

probability

justice

Third-

highest

probability

justice

10/05/05 Dye v. Hofbauer Kennedy

(0.466)

Scalia

(0.165)

Ginsburg

(0.093)

10/17/05 Schiro v. Smith O’Connor

(0.207)

Thomas

(0.192)

Scalia

(0.152)

10/31/05 Eberhart v. United

States

Thomas

(0.268)

Scalia

(0.189)

Ginsburg

(0.165)

10/31/05 Kane v. Garcia Espi-

tia

Scalia

(0.190)

Thomas

(0.174)

O’Connor

(0.145)

11/28/05 Bradshaw v. Richey O’Connor

(0.325)

Scalia

(0.294)

Thomas

(0.115)

01/23/06 Wisconsin Right to

Life, Inc. v. Federal

Election Commission

Roberts

(0.210)

O’Connor

(0.151)

Stevens

(0.129)

02/21/06 Ash v. Tyson Foods,

Inc.

Kennedy

(0.326)

Scalia

(0.304)

Thomas

(0.149)

02/21/06 Lance v. Dennis Scalia

(0.351)

Ginsburg

(0.146)

Thomas

(0.122)

02/21/06 Ministry of Defense

and Support v. Elahi

Breyer

(0.397)

Scalia

(0.209)

Thomas

(0.179)

04/17/06 Gonzales v. Thomas Breyer

(0.715)

Thomas

(0.081)

Scalia

(0.076)

04/24/06 Salinas v. United

States

Roberts

(0.171)

Breyer

(0.152)

Scalia

(0.151)

Continued on next page

66

Table 2.9 – continued from previous page

Date of

Decision

Case Highest

probability

justice

Second-

highest

probability

justice

Third-

highest

probability

justice

06/05/06 Whitman v. Depart-

ment of Transporta-

tion

Kennedy

(0.248)

Scalia

(0.180)

Souter

(0.135)

06/19/06 Youngblood v. West

Virginia

Scalia

(0.193)

Ginsburg

(0.182)

Thomas

(0.126)

10/20/06 Purcell v. Gonzalez Kennedy

(0.574)

Ginsburg

(0.142)

Stevens

(0.058)

01/09/07 Burton v. Stewart Thomas

(0.452)

Roberts

(0.229)

Scalia

(0.182)

03/05/07 Lance v. Coffman Scalia

(0.306)

Roberts

(0.300)

Alito

(0.081)

05/21/07 Los Angeles County

v. Rettele

Scalia

(0.301)

Kennedy

(0.189)

Stevens

(0.111)

05/21/07 Roper v. Weaver Thomas

(0.330)

Kennedy

(0.127)

Ginsburg

(0.117)

06/04/07 Erickson v. Pardus Ginsburg

(0.335)

Scalia

(0.214)

Thomas

(0.146)

11/05/07 Allen v. Siebert Thomas

(0.292)

Scalia

(0.261)

Roberts

(0.153)

01/07/08 Arave v. Hoffman Ginsburg

(0.212)

Thomas

(0.154)

Kennedy

(0.152)

01/07/08 Wright v. Van Patten Thomas

(0.517)

Scalia

(0.135)

Ginsburg

(0.068)

Continued on next page

67

Table 2.9 – continued from previous page

Date of

Decision

Case Highest

probability

justice

Second-

highest

probability

justice

Third-

highest

probability

justice

08/05/08 Medellin v. Texas Kennedy

(0.186)

Breyer

(0.164)

Scalia

(0.140)

10/14/08 Moore v. United

States

Thomas

(0.203)

Scalia

(0.167)

Breyer

(0.132)

12/02/08 Brunner v. Ohio Re-

publican Party

Ginsburg

(0.153)

Kennedy

(0.139)

Scalia

(0.126)

12/02/08 Hedgpeth v. Pulido Thomas

(0.256)

Roberts

(0.211)

Breyer

(0.140)

01/21/09 Spears v. United

States

Scalia

(0.531)

Roberts

(0.201)

Thomas

(0.121)

01/26/09 Nelson v. United

States

Thomas

(0.209)

Scalia

(0.193)

Roberts

(0.138)

06/01/09 CSX Transportation,

Inc. v. Hensley

Roberts

(0.179)

Kennedy

(0.157)

Scalia

(0.143)

06/09/09 Indiana State Po-

lice Pension Trust v.

Chrysler LLC

Roberts

(0.186)

Ginsburg

(0.163)

Alito

(0.121)

10/20/09 Concoran v. Leven-

hagen

Scalia

(0.210)

Breyer

(0.148)

Kennedy

(0.140)

11/09/09 Bobby v. Van Hook Breyer

(0.206)

Kennedy

(0.203)

Ginsburg

(0.197)

11/16/09 Wong v. Belmontes Kennedy

(0.428)

Scalia

(0.229)

Roberts

(0.137)

Continued on next page

68

Table 2.9 – continued from previous page

Date of

Decision

Case Highest

probability

justice

Second-

highest

probability

justice

Third-

highest

probability

justice

11/30/09 Porter v. McCollum Thomas

(0.229)

Scalia

(0.191)

Kennedy

(0.169)

12/07/09 Michigan v. Fisher Roberts

(0.244)

Scalia

(0.178)

Alito

(0.122)

01/11/10 McDaniel v. Brown Thomas

(0.768)

Kennedy

(0.074)

Scalia

(0.038)

01/13/10 Hollingsworth v.

Perry

Kennedy

(0.787)

Scalia

(0.066)

Stevens

(0.040)

01/19/10 Presley v. Georgia Kennedy

(0.619)

Stevens

(0.089)

Scalia

(0.068)

01/19/10 Wellons v. Hall Scalia

(0.440)

Thomas

(0.276)

Ginsburg

(0.064)

02/22/10 Thaler v. Haynes Alito

(0.248)

Thomas

(0.238)

Ginsburg

(0.179)

02/22/10 Wilkins v. Gaddy Scalia

(0.243)

Ginsburg

(0.233)

Thomas

(0.212)

03/01/10 Kiyemba v. Obama Roberts

(0.181)

Scalia

(0.161)

Ginsburg

(0.154)

05/24/10 Jefferson v. Upton Scalia

(0.330)

Breyer

(0.239)

Thomas

(0.231)

06/07/10 United States v. Ju-

venile Male

Thomas

(0.249)

Roberts

(0.194)

Scalia

(0.141)

Continued on next page

69

Table 2.9 – continued from previous page

Date of

Decision

Case Highest

probability

justice

Second-

highest

probability

justice

Third-

highest

probability

justice

06/29/10 Sears v. Upton Thomas

(0.223)

Breyer

(0.159)

Scalia

(0.157)

11/08/10 Wilson v. Corcoran Scalia

(0.324)

Thomas

(0.201)

Ginsburg

(0.186)

01/10/11 Madison County v.

Oneida Indian Nation

Thomas

(0.190)

Kennedy

(0.139)

Ginsburg

(0.139)

01/24/11 Swarthout v. Cooke Scalia

(0.254)

Roberts

(0.190)

Thomas

(0.184)

03/21/11 Felkner v. Jackson Thomas

(0.359)

Roberts

(0.211)

Kennedy

(0.177)

05/02/11 Bobby v. Mitts Thomas

(0.528)

Scalia

(0.124)

Roberts

(0.123)

07/07/11 Leal Garcia v. Tecas Scalia

(0.240)

Roberts

(0.234)

Breyer

(0.138)

10/31/11 Cavazos v. Smith Kennedy

(0.334)

Ginsburg

(0.195)

Scalia

(0.183)

11/07/11 Bobby v. Dixon Scalia

(0.373)

Kennedy

(0.213)

Ginsburg

(0.139)

11/07/11 KPMG LLP v. Coc-

chi

Thomas

(0.285)

Kennedy

(0.254)

Scalia

(0.111)

12/12/11 Hardy v. Cross Thomas

(0.247)

Alito

(0.223)

Ginsburg

(0.186)

Continued on next page

70

Table 2.9 – continued from previous page

Date of

Decision

Case Highest

probability

justice

Second-

highest

probability

justice

Third-

highest

probability

justice

01/20/12 Perry v. Perez Kennedy

(0.344)

Roberts

(0.230)

Scalia

(0.184)

01/23/12 Ryburn v. Huff Alito

(0.212)

Ginsburg

(0.185)

Scalia

(0.176)

02/21/12 Wetzel v. Lambert Roberts

(0.239)

Thomas

(0.190)

Kennedy

(0.177)

05/29/12 Coleman v. Johnson Thomas

(0.225)

Kennedy

(0.203)

Breyer

(0.164)

05/29/12 Marmet Health

Care Center, Inc. v.

Brown

Thomas

(0.324)

Kennedy

(0.195)

Alito

(0.139)

05/29/12 Parker v. Matthews Kennedy

(0.265)

Ginsburg

(0.181)

Scalia

(0.134)

06/25/12 American Tradition

Partnership, Inc. v.

Bullock

Thomas

(0.232)

Roberts

(0.161)

Kennedy

(0.147)

09/25/12 Tennant v. Jefferson

County

Roberts

(0.603)

Kennedy

(0.119)

Ginsburg

(0.076)

11/05/12 Lefemine v. Wide-

man

Ginsburg

(0.267)

Roberts

(0.188)

Thomas

(0.182)

11/26/12 Nitro-Lift Technolo-

gies, LLC v. Howard

Thomas

(0.472)

Scalia

(0.248)

Kennedy

(0.080)

71

Assuming these predictions are accurate, they are provocative. Justices commonly

described as “conservative” are predicted authors of 45 out of the 65 per curiam

opinions (69.2%). Justices commonly described as “conservative-swing” are predicted

authors of 13 of the remaining 20 opinions — 11 for Justice Kennedy and 2 for Justice

O’ Connor. Thus, conservative or conservative-swing justices are predicted authors of

58 out of the 65 per curiam opinions (89.2%). Justices commonly described as liberal

are predicted authors of only 7 of the opinions (10.8%). Table 2.10 provides a yearly

break down of the predicted authors by their ideology.

Table 2.10: Predicted author ideology of per curiam opinions by year

Year Total Conservative Conservative-swing Liberal
2012 2 1 (50%) 0 1 (50%)
2011 12 9 (75%) 3 (25%) 0
2010 14 10 (71.4%) 3 (21.4%) 1 (7.1%)
2009 14 10 (71.4%) 3 (21.4%) 1 (7.1%)
2008 7 6 (85.7%) 0 1 (14.3%)
2007 4 2 (50%) 1 (25%) 1 (25%)
2006 5 3 (60%) 1 (20%) 1 (20%)
2005 14 7 (50%) 5 (35.7%) 2 (14.3%)

Excluding 2012, in which there were only two per curiam opinions, conservative

and conservative-swing justices in the Roberts Court are predicted authors of between

75% and 100% of the per curiam decisions per year.

2.7 Conclusion

Machine learning techniques can be used to attribute authorship of judicial opin-

ions. We have demonstrated that word-level features can distinguish authorship with

substantial accuracy. The inferred authorship for the opinions in Sebelius provides

unambiguous quantitative support for one theory of authorship offered in the media.

Applying these methods to the unsigned per curiam opinions of the Roberts Court

yields provocative results. The performance of the model on test opinions, along with

the stylistic features that it uses to determine performance, suggests that it could be

useful for other courts. Overall, our work underscores the broad applicability of nat-

72

ural language processing tools to yield quantitative insights into issues traditionally

studied only qualitatively and manually.

73

74

Chapter 3

Law Is Code: A Software Engineering

Approach to Analyzing the United

States Code

Preamble

This chapter is largely adapted from the following paper:

Li, W., Azar, P., Larochelle, D., Hill, P., Lo, A.W. Law Is Code: A Software

Engineering Approach to Analyzing the United States Code. Journal of Business and

Technology Law, 10, 297, 2015 [29].

3.1 Context

This chapter introduces a vocabulary for analyzing legal code like software code:

Inspired by the common usage of the word “code” in the domains of law and computer

science, we present a set of metrics and techniques inspired from the study of software

engineering quality that attempt to measure the quality and complexity of laws. These

metrics include simply counting words, network analyses of the cross-references in the

United States Code, and measurements of the number the conditional statements in

the law. For the overall goal of this thesis, the most relevant part of this chapter is

75

the work in measuring how much of the text of the U.S. Code persists or changes

time, as measured by the amount of text reuse across versions. The techniques used

to measure text reuse have significant conceptual and technical overlap with the work

in the next two chapters.

3.2 Abstract

The agglomeration of rules and regulations over time has produced a body of legal

code that no single individual can fully comprehend. This complexity produces inef-

ficiencies, makes the processes of understanding and changing the law difficult, and

frustrates the fundamental principle that the law should provide fair notice to the

governed. In this article, we take a quantitative, unbiased, and software-engineering

approach to analyze the evolution of the United States Code from 1926 to today.

Software engineers frequently face the challenge of understanding and managing large,

structured collections of instructions, directives, and conditional statements, and we

adapt and apply their techniques to the U.S. Code over time. Our work produces in-

sights into the structure of the U.S. Code as a whole, its strengths and vulnerabilities,

and new ways of thinking about individual laws. For example, we identify the first

appearance and spread of important terms in the U.S. Code like “whistleblower” and

“privacy.” We also analyze and visualize the network structure of certain substantial

reforms, including the Patient Protection and Affordable Care Act (“PPACA”) and

the Dodd-Frank Wall Street Reform and Consumer Protection Act, and show how

the interconnections of references can increase complexity and create the potential

for unintended consequences. Our work is a timely illustration of computational ap-

proaches to law as the legal profession embraces technology for scholarship, to increase

efficiency, and to improve access to justice.

76

3.3 Introduction

Laws and regulations are the rules by which societies operate. Beginning with the

Code of Ur-Nammu more than 4,000 years ago,1 societies have often formalized laws

and regulations by recording them in written form.2 Over time, this simple custom

evolved, producing some of the most significant innovations in the history of civiliza-

tion, including replacing the rule of monarchs with the rule of law.3

With the rule of law flourishing in modern societies, subtler challenges have

emerged as the unintended consequences of an unwieldy system of laws. The ag-

glomeration of rules and regulations over time and across the many facets of social,

political, and economic interactions has produced a body of legal code that no single

individual can fully comprehend. Despite the fact that laws now apply to virtually

every aspect of daily life, the sheer volume of code requires citizens to have a certain

degree of faith in the experts with whom we have entrusted the responsibilities of

creating, managing, analyzing, and ultimately applying that code.

The increasing complexity of the legal system has several important implications.

First, it produces inefficiencies.4 The time, money, and other human resources asso-

ciated with the rule of law in modern society are substantial and growing.5 Second,

as the legal code expands in size, interactions between provisions will quickly outstrip

humans’ ability to manage them using traditional methods.6 Third, if one purpose

of a legal code is to provide notice to the governed, then that purpose is frustrated

1See, e.g., J.J. Finkelstein, The Laws of Ur-Nammu , 22 J. of Cuneiform Stud. 66 (1968-
69), available at http://www.jstor.org/discover/10.2307/1359121?uid=3739696&uid=2&uid=
4&uid=3739256&sid=21104628208137 (reprinting Ur-Nammu’s legal code).

2See LEGAL TRADITIONS OF THE WORLD: SUSTAINABLE DIVERSITY IN LAW 100-01,
135 (4th ed. 2010).

3See, e.g., Russell Fowler, The 800th Anniversary of Magna Carta: A Time for Lawyers to
Remember , 50 TENN. B.J. 23 (2014) (commemorating the Magna Carta, which limited the British
monarch’s power).

4Susan Hayes Stephan, Blowing the Whistle on Justice as Sport: 100 Years of Playing a Non-Zero
Sum Game , 30 HAMLINE L. REV. 587, 588 (2007) (analogizing litigation to an inefficient “game”).

5See LAWYERS FOR CIVIL JUSTICE ET AL., LITIGATION COST SURVEY OF MAJOR
COMPANIES 2-6 (2010), available at http://perma.cc/4NCU-W766

6See Dru Stevenson, Costs of Codification, 2014 U. ILL. L. REV. 1129, 1129 (2014) (identifying
downsides to codification, including “legislative borrowing,” overcriminalization, unmanageable legal-
information costs, and judicial overemphasis on statutory text rather than policy).

77

http://www.jstor.org/discover/10.2307/1359121?uid=3739696&uid=2&uid=4&uid=3739256&sid=21104628208137
http://www.jstor.org/discover/10.2307/1359121?uid=3739696&uid=2&uid=4&uid=3739256&sid=21104628208137
http://perma.cc/4NCU-W766

when the code becomes increasingly opaque to the vast majority of citizens.7

In this Article, we propose new quantitative methods for understanding and man-

aging the system that comprises the entire legal code. We start from the well-trodden

premise that legal code is in many respects similar to computer source code.8 In this

Article, we conclude that “law is code.” While Lessig likens software code to the laws

of nature, this Article analogizes source code to legal code and then proposes legal

reforms. We take a computational approach to studying the full text of the United

States Code from its first edition in 1926 to the present day. Our approach adopts

techniques that software engineers use to analyze the evolution and structure of large

software codebases, which are often millions of lines in length.9 In particular, we

examine the rise and fall in usage of specific words and phrases in the U.S. Code,

quantify the amount of change over time, and present metrics and visualizations of

its cross-reference structure. Our work leads to novel and provocative analyses of the

U.S. Code’s systemic structure, insights into its strengths and weaknesses, and new

ways of thinking about the nature of individual laws. For example, we identify the

first appearance and spread of important terms like “whistleblower” and “privacy.”10

Also, we visually represent laws’ network structures, to show how certain laws that

introduce substantial reform, including the Patient Protection and Affordable Care

Act (“PPACA”) and the Dodd-Frank Wall Street Reform and Consumer Protection

Act,11 differ from other long pieces of legislation, such as appropriations bills.12

We structure this chapter as follows: Section 3.4 summarizes past and current

7See BRADFORD J. WHITE & PAUL W. EDMONDSON, PROCEDURAL DUE PROCESS
IN PLAIN ENGLISH: A GUIDE FOR PRESERVATION COMMISSIONS (3d ed. 2008) (lamenting
that lay persons must rely on lawyers to understand the law); see also Mathews v. Eldridge, 424
U.S. 319, 348-49 (1976) (delineating procedural due process requirements, including notice).

8See LAWRENCE LESSIG, CODE AND OTHER LAWS OF CYBERSPACE 6 (1999). Lines
of software code are to cyberspace what the laws of physics are to the non-virtual world; they
determine what is possible and, in turn, what can be regulated. Dan Orr, Book Review: Code
and Other Laws of Cyberspace, RES. CENTER FOR CYBERCULTURE STUD. (Aug. 2000),
http://rccs.usfca.edu/bookinfo.asp?BookID=79&ReviewID=79

9See infra Sections 3.6 and 3.7
10See infra Section 3.6
11Patient Protection and Affordable Care Act, Pub. L. No. 111-148, 124 Stat. 119 (2010); Dodd-

Frank Wall Street Reform and Consumer Protection Act, Pub. L. No. 111-203, 124 Stat. 1376
(2010).

12See infra Section 3.8

78

http://rccs.usfca.edu/bookinfo.asp?BookID=79&ReviewID=79

codification efforts in the United States.13 Section 3.5 describes our U.S. Code dataset,

provides an overview of key software engineering principles that we adopt, and outlines

the analytics and algorithms that we use.14 Part IV applies these tools to explore the

U.S. Code’s evolution ; for example, we quantify the rise and fall of key terms and

the percentage change in selected titles’ content.15 In Part V, we focus on recently

passed laws’ impact on the U.S. Code.16 Finally, Part VI applies software engineering

metrics to specific titles of the current U.S. Code, focusing on Title 12 (Banks and

Banking) and Title 26 (Internal Revenue Service) as examples.17 In the appendices,

we define our network-analysis metrics and visually represent different kinds of laws’

network structures.

3.4 The United States Code

Given the frequency with which legal practitioners and scholars cite the U.S. Code,

many facts about the U.S. Code may seem shocking. For example, Congress did

not authorize the official collection of federal statutes until 1926,18 meaning that as

of 2012, around 5 million living U.S. citizens were born before the U.S. Code was

first published.19 Until 1947, the U.S. Code was merely prima facie evidence of the

statutes reproduced within the U.S. Code;20 only after 1947 did Congress begin the

slow, piecemeal process of converting the U.S. Code into controlling law (known as

“positive law codification”).21 Further, the U.S. Code is still only prima facie evidence

13See infra Section 3.4.
14See infra Section 3.5.
15See infra Part IV.
16See infra Part V.
17See infra Part VI.
18CODE OF LAWS OF THE UNITED STATES OF AMERICA OF A GENERAL AND PER-

MANENT NATURE IN FORCE DECEMBER 7, 1925; see Will Tress, Lost Laws: What We Can’t
Find in the United States Code , 40 GOLDEN GATE U. L. REV. 129, 136 (2010).

19See U.S. CENSUS BUREAU, CURRENT POPULATION SURVEY, ANNUAL SOCIAL AND
ECONOMIC SUPPLEMENT, 2012 (2013), available at http://www.census.gov/population/
age/data/files/2012/2012gender_table1.xlsx.

20See Tress, supra note 18, at 137-38.
21Act of July 30, 1947, ch. 388, 61 Stat. 633, 638; Positive Law Codification , OFFICE

OF THE LAW REVISION COUNSEL: U.S. CODE, http://uscode.house.gov/codification/
legislation.shtml (last visited Jan. 27, 2015); see Tress, supra note 18, at 137

79

http://www.census.gov/population/age/data/files/2012/2012gender_table1.xlsx.
http://www.census.gov/population/age/data/files/2012/2012gender_table1.xlsx.
http://uscode.house.gov/codification/legislation.shtml
http://uscode.house.gov/codification/legislation.shtml

of the law for 26 of the U.S. Code’s 52 titles.22

The goal of the U.S. Code is simple enough: to provide “the laws of the United

States, general and permanent in their nature.”23 The project of codification, however,

has been wrought with difficulty from the beginning.24 This Part outlines the goals

that lawmakers have aspired to address with codification and the troubles they have

encountered along the way. The techniques proposed in this Article use modern

computer scientific methods to analyze and remedy issues that have plagued U.S.

lawmakers for centuries.

3.4.1 Early Federal Codification Problems

In 1795, Congress authorized the first compilation of federal statutes, which included

all public laws and treaties to date.25 But until 1845, the annual session laws were not

published on a regular basis; rather, federal statutes were published in newspapers.26

In the early 1820s, individual states began to debate the idea of codification, with

the New York Revised Code of 1829 leading the way, followed by newly admitted

western states.27 Recognizing the value of codification, private publishers produced

chronological, bound volumes of U.S. public laws.28

The first federal solution came when Little, Brown & Co., a Boston-based private

publisher, proposed the creation of the Statutes at Large in 1845.29 This collection

of laws, as updated, remains the authoritative collection for half the U.S. Code titles

today.30 The Statutes at Large contain a chronological set of laws which Congress

22See Positive Law Codification , supra note 21.
231 U.S.C. §204(a) (2012).
24See Tress, supra note 18, at 133-38.
25Act of Mar. 3, 1795, ch. 50, 1 Stat. 443.
26See Ralph H. Dwan & Ernest R. Feidler, The Federal Statutes-Their History & Use , 22 MINN.

L. REV. 1008, 1010 (1938); Tress, supra note 18, at 133.
27See CHARLES COOK, AMERICAN CODIFICATION MOVEMENT 158-59 (1981); EDWIN

C. SURRENCY, A HISTORY OF AMERICAN LAW PUBLISHING 90-91 (1990).
28Richard J. McKinney, Basic Overview on How Federal Laws Are Published, Organized and Cited

, LAW LIBRARIANS’ SOC’Y WASH. D.C. 2 (Jan. 12, 2006), http://www.llsdc.org/assets/
sourcebook/federal-laws.pdf .

29Id.
30See Positive Law Codification , supra note 21.

80

http://www.llsdc.org/assets/sourcebook/federal-laws.pdf
http://www.llsdc.org/assets/sourcebook/federal-laws.pdf

passed and the President signed into law.31 Each volume of the Statutes at Large

covered one congressional session.32 The Government Printing Office—created in

1861—replaced Little, Brown & Co. as the entity responsible for publishing the

Statutes at Large until 1950, when the Office of the Federal Register in the National

Archives took over.33

While the Statutes at Large improved matters by providing a definitive collection

of laws, the chronological, session-based presentation, among other sundry conven-

tions, made it difficult for lawmakers to determine what was current U.S. law in any

given subject area.34 In 1848, the chairman of the House Judiciary Committee pro-

posed a bill to revise the session laws.35 The accompanying House Report outlined

a litany of issues, including that the session laws may have been “enacted under the

pressure of momentary emergency; if not inconsistent, they are obscure; sometimes

involved in statutes dissimilar in title and object, and always scattered over different

parts of a broad surface, in the numerous hiding places of which they are concealed.”36

The report admonished, with some prescience, that “enactments defining the duties of

a particular office should naturally be so united as to furnish all needful information

in one comprehensive body. That which seems to be complete in its enumeration

should be so in reality.”37

In 1866, Congress created a commission tasked “to revise, simplify, arrange, and

consolidate all statutes of the United States, general and permanent in their nature.”38

Two years into their task, the commission reported several insurmountable difficulties,

noting “[w] here several statutes relating to the same subject modify each other, it has

been impossible to state their united effect without writing a new statute.”39 In 1872,

31See McKinney, supra note 28, at 2.
32Id. at 3.
33Id.
34Id.
35See H.R. 535, 30th Cong. (1st Sess. 1848). No record of the bill remains. Tress, supra note 18,

at 133.
36H.R. REP. NO. 30-671, at 1 (1848).
37Id. at 2.
38Act of June 27, 1866, ch. 140, 14 Stat. 74.
39WILLIAM JOHNSTON & CHARLES P. JAMES, REPORT OF THE COMMISSIONERS AP-

POINTED UNDER ACT OF JUNE 27, 1866, S. Misc. Doc. 101, 40th Cong. (2d Sess. 1868).

81

the commission presented its proposed revisions, which Congress deemed too extreme

a departure from the language of existing laws, and delegated the draft to a special

reviser charged with reversing much of the commission’s proposals.40 Ultimately, this

process yielded the Revised Statutes of the United States, containing 70 titles, which

revised, reorganized, and consolidated all permanent and general U.S. laws, and was

enacted in 1874 and published in 1875.41

The Revised Statutes repealed all general acts “embraced in any section” of the

revisions, replacing them as controlling authority.42 Shortly after publication, how-

ever, numerous mistakes and omissions were identified.43 Congress addressed these

errors in an amended and updated 1878 revision.44 Sensitive to the debacle that

these errors and omissions produced, the 1878 Revision provided that it would not

“preclude reference to, nor control, in case of discrepancy, the effect of any original

act passed by Congress since” December 1, 1873.45

Problems arising from the Revised Statutes dealt a blow to the codification move-

ment. The ensuing 50 years saw several proposals to update or replace the Revised

Statutes, but Congress did not issue another code until 1926.46 In the interim, private

publishers again shouldered the collection and organization of laws passed since the

1878 Revisions.47

3.4.2 Early Problems with the U.S. Code

Perhaps still stinging from prior codification efforts, Congress undertook several mea-

sures to forestall similar issues. First, Congress enlisted the professional expertise of

two private code publishers, West and Edward Thompson, to oversee the new edition

40Dwan & Feidler, supra note 26, at 1013.
41REVISED STATUTES OF THE UNITED STATES PASSED AT THE FIRST SESSION OF

THE FORTY-THIRD CONGRESS 1873-74 (2d ed. 1878); see McKinney, supra note 28, at 3.
42Sec. 559, 1 Rev. Stat. 1091 (1873); see Tress, supra note 18, at 135.
43INACCURACIES AND OMISSIONS IN REVISED STATUTES, H. Exec. Doc. 36, 44th Cong.

(1st Sess. 1876).
44Revised Statutes (1878).
45Id. at iii (preface).
46CODE OF LAWS OF THE UNITED STATES OF AMERICA OF A GENERAL AND PER-

MANENT NATURE IN FORCE DECEMBER 7, 1925.
47SURRENCY, supra note 27, at 107-10; Dwan & Feidler, supra note 26, at 1016-21.

82

of the Code.48 Second, Congress was careful to note that the 1926 Revisions were

an “official restatement in convenient form” of U.S. law, but “[n] o new law is en-

acted and no law repealed. It is prima facie the law. It is presumed to be the law.

The presumption is rebuttable by production of prior unrepealed Acts of Congress at

variance with the Code.”49

Third, this overly cautious, mostly redundant preface was the product of legislative

compromise. The original bill, as passed by the House,50 provided that the U.S.

Code would remain prima facie evidence until June 30, 1927, at which time it would

become controlling law.51 Lawmakers hoped that window would allow sufficient time

to correct any new errors.52 Fearing the prospect of errors, however, the Senate

amended the bill to prevent the U.S. Code from becoming the controlling statement

of the law.53 True enough, 537 errors were later found and corrected, 88 of which

were substantive errors.54

Identifying those errors also presented difficulty. The aforementioned preface cau-

tiously limited the U.S. Code to prima facie evidence of U.S. law, but it failed to

identify which published laws could be cited to rebut the presumption.55 Ultimately,

the 1878 Revision controlled for statutes enacted before December 1, 1873, and al-

though the 1878 Revision also contained statements of the law from 1874 to 1878,

the Statutes at Large were the authoritative text for all statutes from 1873 to date.56

48Tress, supra note 18, at 136.
49Preface, U.S.C. (1926).
50H.R. 10000, 69th Cong. (1926).
51See Richard J. McKinney, Unraveling the Mysteries of the U.S. Code , LAW LIBRAR-

IANS’ SOC’Y WASH. D.C. 1 (Aug. 2009), http://www.llsdc.org/assets/sourcebook/
usc-mysteries.pdf .

52Id.
53See Act of June 30, 1926, ch. 712, 44 Stat. 777.
54See McKinney, supra note 51, at 1.
55Tress, supra note 18, at 137. Private publishers like West and Lexis filled the gap by providing

annual updates, and today Congress annually archives electronic versions. Id. at 137 n.42.
56Id. at 137.

83

http://www.llsdc.org/assets/sourcebook/usc-mysteries.pdf
http://www.llsdc.org/assets/sourcebook/usc-mysteries.pdf

3.4.3 The U.S. Code, 1926 to Today

After its first publication in 1926, the U.S. Code was replaced by a new edition in

1934, followed by new editions every six years.57 The U.S. Code remained only prima

facie evidence of the law until 1947, when Congress began the process of converting

the U.S. Code to the controlling statement of the law.58 That year, U.S. Code Title 1

(General Provisions) was positively codified, along with Title 4 (Flag & Seal, Seat of

Government, and the States), Title 6 (Official & Penal Bonds), Title 9 (Arbitration),

and Title 17 (Copyrights).59 Interestingly, one congressman noted the intent to begin

with “the more important titles and those urgently needing codification,” including,

for example, Title 28 on the Judiciary.60 Despite that lofty initial goal, the first

few positively codified titles were “low-hanging fruit” that required little editing to

prepare61 —a volte-face that was likely motivated by Congress’s prior track record

with positive law codification.62

The original version of the U.S. Code organized then-existing federal laws into 50

titles within a single bound volume; today, the U.S. Code contains over 47,000 pages,

51 titles, and spans several volumes.63 In 1974, Congress created the Office of the

Law Revision Counsel of the U.S. House of Representatives (“OLRC”) to prepare and

publish the U.S. Code.64 Among other things, the OLRC (1) periodically reviews

enacted laws and makes recommendations for repealing obsolete, superfluous, and

superseded provisions; (2) determines whether and how new laws should be incor-

porated into the code; (3) classifies the newly enacted provisions so that they may

57Id. ; see 1 U.S.C. §202(c) (2012).
58Tress, supra note 18, at 137; see Act of July 30, 1947, ch. 388, 61 Stat. 633, 638.
59Tress, supra note 18, at 137-38 (citing William Chamberlain, Enactment of Parts of the United

States Code into Positive Law , 36 GEO. L.J. 217 (1947)).
6093 CONG. REC. 8384 (1947) (remarks of Rep. John M. Robison).
61Tress, supra note 18, at 138.
622 U.S.C. §285b (2012); About the Office; Contact Information , OFFICE OF THE LAW REVI-

SION COUNSEL: U.S. CODE, http://uscode.house.gov/about_office.xhtml (last visited Jan.
22, 2015).

63Peter LeFevre, Positive Law Codification Will Modernize U.S. Code , THE HILL
(Sept. 28, 2010, 5:33 PM), http://thehill.com/blogs/congress-blog/judicial/
121375-positive-law-codification-will-modernise-us-code.

64Act of Dec. 27, 1974, ch. 3, Pub. L. No. 93-554, 88 Stat. 1771, 1777 (codified as amended at 2
U.S.C. §285 (2012)).

84

http://uscode.house.gov/about_office.xhtml
http://thehill.com/blogs/congress-blog/judicial/121375-positive-law-codification-will-modernise-us-code.
http://thehill.com/blogs/congress-blog/judicial/121375-positive-law-codification-will-modernise-us-code.

be incorporated into the relevant titles of the U.S. Code; (4) makes the necessary

revisions to each title within the U.S. Code; and (5) recommends certain titles for

positive law codification.

While the OLRC’s task of incorporating new law into the U.S. Code can be simple

when the laws are small and narrow in subject-matter (though not necessarily so),

the task is more complicated when the laws are large, cover a multitude of subjects,

and/or contain a complicated mixture of amendatory and freestanding provisions,

general specific provisions, and permanent and temporary provisions.65 The OLRC

often must make impressionistic determinations about how to incorporate a new piece

of legislation into the U.S. Code.66 Moreover, while the OLRC can editorially add new

sections, chapters, and statutory notes to 23 non -positive law titles, only Congress

can add new sections and chapters to the 27 positive law titles, and only by amend-

ment.67

3.4.4 Criticisms and Aspirations for the U.S. Code

Commentators cite numerous problems with the U.S. Code, including: (1) many of the

new laws passed since 1926 are often shoehorned awkwardly into pre-existing titles;

(2) Congress often pays little or no attention to existing laws when enacting new

legislation, which makes it difficult for U.S. Code editors to keep statutes that relate

to similar subjects together; and (3) the increasingly voluminous body of legislation

since 1926 has produced many obscure, obsolete, and redundant provisions, archaic

and inconsistent language, and statutory errors.68

In touting the benefits of positive law codification, the OLRC has identified and,

in some cases, reaffirmed the U.S. Code’s deficiencies. For example:

65About Classification of Laws to the United States Code , OFFICE OF THE LAW REVISION
COUNSEL: U.S. CODE, http://uscode.house.gov/about_classification.xhtml (last visited
Feb. 2, 2015).

66Id.
67Id.
68See LeFevre, supra note 62; see also Positive Law Codification, supra note 21 (noting that

revisers seek to reorganize existing provisions, conform style and terminology, modernize obsolete
language, and correct drafting errors); About Classification of Laws to the United States Code , supra
note 65.

85

http://uscode.house.gov/about_classification.xhtml

Improved organization. Provisions that are closely related by subject may be

scattered in different places in the Code. Such provisions may have been enacted many

years apart and incorporated at different times. Positive law codification affords an

opportunity to revisit the organizational structure of statutory material. Thoughtful

regrouping of provisions often yields a statutory product that is easier to use and that

fosters a more comprehensive understanding of the law.

Elimination of obsolete provisions . Obsolete provisions are frequently iden-

tified in the course of preparing a positive law codification bill [and] are eliminated

from the law after appropriate vetting of proposed changes. Although such changes

seem small and innocuous when viewed individually, the cumulative effect of remov-

ing all obsolete provisions can be profound, resulting in a much more compact and

comprehensible text.

Precise statutory text. The process of positive law codification promotes public

access to the precise text of Federal statutory law. Provisions set out in non-positive

law titles . . . may vary slightly from the precise language enacted into law; cross refer-

ences are adapted and stylistic changes are made in order to facilitate the integration

of Federal Statutory provisions.

Cleaner amendments. Positive law codification promotes accuracy and effi-

ciency in the preparation of amendment specifying words to be struck or the place

where new words are to be inserted or simplified; understanding the impact of pro-

posed amendments is easier; drafting errors are reduced. In addition, compliance

with congressional rules requiring comparative prints (showing proposed omissions

and insertions) is facilitated.69

With the foregoing in mind, this Article’s remaining parts describe the develop-

ment and application of computer scientific techniques to assess and remedy problems

that have plagued, and often continue to plague, the U.S. Code.

69See Positive Law Codification in the United States Code , OFFICE OF THE LAW RE-
VISION COUNSEL: U.S. CODE 5, http://uscode.house.gov/codification/positive_law_
codification.pdf (last visited Jan. 27, 2015).

86

http://uscode.house.gov/codification/positive_law_codification.pdf
http://uscode.house.gov/codification/positive_law_codification.pdf

3.5 Software Engineering Approaches to Analyzing

the Law

3.5.1 Analogizing Legal Code to Software Code

Many analogies between software code and legal code apply at both general and spe-

cific levels. At a general level, both forms of code consist of a collection of rules that

govern certain operations: human transactions in the case of legal code, and com-

puter transactions in the case of computer code. The main difference—that humans

interpret and implement laws whereas machines interpret and implement software—is

more a matter of degree than kind. Because humans are more flexible and intelligent,

laws need not be as explicit and precise as software. This lack of precision, how-

ever, is not without cost, as evidenced by the fundamental debate over “rules versus

standards.”70 At a functional level, software and legal code share common features,

functions, and frailties, irrespective of whether they are meant for or interpreted

by humans or machines; hence, methods that have been developed in one domain

should be relevant in the other. For example, based on concerns raised about the

understandability of the law, we adopt four approaches from good software design

practices—conciseness,71 change,72 coupling,73 and complexity74 —that should also

have implications for good legal coding practices.

Software engineers apply a range of techniques to analyze computer code that may

70See Louis Kaplow, Rules Versus Standards: An Economic Analysis , 42 DUKE L.J. 557, 559-63
(1992).

71Harry H. Porter III, Designing Programming Languages for Reliability 2 (Oct. 16, 2001) (un-
published paper) (on file with the Journal of Business & Technology Law), available at http:
//web.cecs.pdx.edu/~harry/musings/RelLang.pdf (“Most programming languages tend to em-
phasize conciseness.”).

72The Importance of Writing Good Code , GNOME DEVELOPER, https://developer.gnome.
org/programming-guidelines/stable/writing-good-code.html.en (last visited Jan. 21, 2015)
(“General-purpose code is easier to reuse and modify than very specific code with lots of hardcoded
assumptions.”).

73Kailash Patidar et al., Coupling and Cohesion Measures in Object Oriented Programming ,
3 INT’L J. ADVANCED RES. IN COMPUTER SCI. & SOFTWARE ENG’G 517, 517 (2013)
(“[C]oupling is an important aspect in the evaluation of reusability and maintainability of components
or services.”).

74Neil D. Jones, COMPUTABILITY & COMPLEXITY: FROM A PROGRAMMING PERSPEC-
TIVE, at vii (1997).

87

http://web.cecs.pdx.edu/~harry/musings/RelLang.pdf
http://web.cecs.pdx.edu/~harry/musings/RelLang.pdf
https://developer.gnome.org/programming-guidelines/stable/writing-good-code.html.en
https://developer.gnome.org/programming-guidelines/stable/writing-good-code.html.en

be relevant to analyzing the U.S. Code. First, conceptually, the similarity between

software code and the U.S. Code in terms of function is the first important parallel

that exists between computer programming and lawmaking. For example, software

code often is written to compute some kind of output upon receiving certain inputs,

e.g. , a computation module receives numerical values to perform arithmetic, and

a search engine—like Google—receives a search query and returns a list of results.

Similarly, the U.S. Code is a collection of laws that describes the inputs that determine

when the authority of the federal government is to be applied and the outcomes that

result; e.g. , how the salaries of members of Congress are determined (contained in

Title 2) and the role of the U.S. Patent and Trademark Office (contained in Title

35).75

Second, the internal structure and composition of both software code and legal

code also matter. Laws should be easy to read and comprehend so that individual cit-

izens can understand their rights and obligations, and lawyers, legislators, judges, and

jurors can more efficiently perform their jobs. Consonant with this concern, the U.S.

Senate’s Legislative Drafting Manual emphasizes readability.76 Section 107, entitled

“Focus on Reader,” states: “A draft must be understandable to the reader. The rules

in this manual should be applied in a manner that makes the draft clearer and easier

to understand.”77 Similarly, the manual for the U.S. House of Representatives states,

“Draft should be clear and understandable – In almost all cases, the message has a

better chance of accomplishing your client’s goal if it is readable and understandable.

It should be written in English for real people.”78 Unnecessarily complicated laws can

interfere with commerce, economic growth, and access to justice.79

752 U.S.C. §31 (2012); 35 U.S.C. §2 (2012) (delineating the U.S. Patent and Trademark Office’s
powers and duties).

76OFFICE OF THE LEGISLATIVE COUNSEL, U.S. SENATE, LEGISLATIVE DRAFT-
ING MANUAL (1997), available at http://www.law.yale.edu/documents/pdf/Faculty/
SenateOfficeoftheLegislativeCounsel_LegislativeDraftingManual(1997).pdf [hereinafter
SENATE DRAFTING MANUAL].

77Id. at 7.
78THE OFFICE OF THE LEGISLATIVE COUNSEL, U.S. HOUSE OF REPRESENTATIVES,

HOUSE LEGISLATIVE COUNSEL’S MANUAL ON DRAFTING STYLE 5 (1995), available at
http://legcounsel.house.gov/pdf/draftstyle.pdf [hereinafter House Drafting Manual]

79See Over-Regulated America , ECONOMIST MAG., Feb. 18, 2012, available at http:
//www.economist.com/node/21547789 (contending that the Dodd-Frank Act’s complicated provi-

88

http://www.law.yale.edu/documents/pdf/Faculty/SenateOfficeoftheLegislativeCounsel_LegislativeDraftingManual(1997).pdf
http://www.law.yale.edu/documents/pdf/Faculty/SenateOfficeoftheLegislativeCounsel_LegislativeDraftingManual(1997).pdf
http://legcounsel.house.gov/pdf/draftstyle.pdf
http://www.economist.com/node/21547789
http://www.economist.com/node/21547789

Because the form—not just the function—of the legal code is important, a software

engineering approach can yield several new insights when applied to the law. In

particular, software developers are deeply invested in making their code readable and

easy to understand. Software engineering teams often need to integrate new team

members, fix bugs, and refactor existing code, which are all tasks that require a

deep understanding of code written by others who are often no longer available to

provide support or clarification.80 These requirements suggest that the tools used by

software engineers to track progress, monitor potential vulnerabilities, or simply gain

an understanding of an existing software codebase may be useful for serving the same

functions when applied to legal code.

3.5.2 U.S. Code Datasets for Analysis

We use two datasets for our analyses:

1. We obtained complete text versions of the U.S. Code from 1926 to 2006 under

license from William S. Hein & Co.81 This dataset includes the editions of the

U.S. Code from 1926, 1934, 1940, 1946, 1952, 1958, 1964, 1970, 1976, 1982,

1988, 1994, 2000, and 2006. The text in these U.S. Code editions is split up

only per title, meaning that most of our analyses and visualizations are done

on a title level. Collectively, we refer to the U.S. Code editions from Hein as

our “historical dataset.”

2. The official current U.S. Code is available for free download from the Office

of the Law Revision Counsel (OLRC).82 This version is in Extensible Markup

sions constrict economic growth); Michael Burgess, Death Is Much Less Complicated Than the U.S.
Tax Code , Forbes (Apr. 15, 2013, 8:00 AM), http://www.forbes.com/sites/realspin/2013/04/
15/death-is-much-less-complicated-than-the-u-s-tax-code/ (arguing that the federal tax
code confuses taxpayers and unfairly advantages certain groups).

80Robert Sedgewick & Kevin Wayne, INTRODUCTION TO PROGRAMMING IN JAVA 8 (2008)
(Bugs “are the bane of a programmer’s existence: the error messages can be confusing or misleading,
and the source of the error can be very hard to find”).

81See U.S. Code , HEINONLINE, http://heinonline.org/HOL/Index?collection=uscode
(last visited Feb. 2, 2015).

82 Current Release Point , Office of the Law Revision Counsel: U.S. Code, http:
//uscode.house.gov/download/releasepoints/us/pl/113/290not235not287/xml_uscAll@
113-290not235not287.zip (last visited Jan. 21, 2015).

89

http://www.forbes.com/sites/realspin/2013/04/15/death-is-much-less-complicated-than-the-u-s-tax-code/
http://www.forbes.com/sites/realspin/2013/04/15/death-is-much-less-complicated-than-the-u-s-tax-code/
http://heinonline.org/HOL/Index?collection=uscode
http://uscode.house.gov/download/releasepoints/us/pl/113/290not235not287/xml_uscAll@113-290not235not287.zip
http://uscode.house.gov/download/releasepoints/us/pl/113/290not235not287/xml_uscAll@113-290not235not287.zip
http://uscode.house.gov/download/releasepoints/us/pl/113/290not235not287/xml_uscAll@113-290not235not287.zip

Language (XML) format, which means that headings, sub-headings, and cross-

references are annotated within the document.83 As a result, in addition to

analyzing the text of the U.S. Code on a per-title basis, we can also use algo-

rithmic approaches on a per-section basis. We also used data from the Cornell

Legal Information Institute (LII), which is similarly structured, for data mining

the cross-references from the U.S. Code.84 We refer to the current U.S. Code

edition from the OLRC as our “current dataset.”

3.5.3 Choosing Software Engineering Approaches and Metrics

The software engineering industry uses a wide range of frameworks, principles, and

metrics in its work.85 Some materials focus on “design patterns,” which describe

solutions to common programming tasks;86 others emphasize project-management

techniques to monitor a software engineering project’s progress;87 and still others

educate coder-readers with examples of poorly written code.88 There are entire trea-

tises on subtypes of software engineering, such as refactoring, in which a codebase is

re-organized so that it is cleaner and easier to understand.89 For the purposes of this

chapter, we focus on four categories of issues that affect the understandability of the

legal code: conciseness, change, coupling, and complexity.

Conciseness. According to the U.S. Senate Legislative Drafting Manual, brevity

is desirable: “Use short, simple sentences rather than complex or compound sentences.

83 United States Legislative Markup: User Guide for the USLM Schema , OFFICE OF THE
LAW REVISION COUNSEL: U.S. CODE, http://uscode.house.gov/download/resources/
USLM-User-Guide.pdf (last visited Feb. 2, 2015) [hereinafter USLM User Guide] .

84U.S. Code: Table of Contents , CORNELL LEGAL INFO. INST., http://www.law.cornell.
edu/uscode/text (last visited Feb. 22, 2015).

85See Steve McConnell, CODE COMPLETE: A PRACTICAL HANDBOOK FOR SOFTWARE
CONSTRUCTION (2d ed. 2004).

86See, e.g. , Erich Gamma et al., DESIGN PATTERNS: ELEMENTS OF REUSABLE OBJECT-
ORIENTED SOFTWARE 2–4 (1995) (defining a design pattern as a solution to a common problem
that one can use “a million times over, without ever using it the same way twice”).

87 See, e.g. Barbara Kitchenham, SOFTWARE METRICS: MEASUREMENT FOR SOFTWARE
PROCESS IMPROVEMENT 5 (1996).

88See, e.g. Robert C. Martin, CLEAN CODE: A HANDBOOK OF AGILE SOFTWARE
CRAFTSMANSHIP 285–314 (2009) (listing common coding problems).

89See, e.g., Martin Fowler, REFACTORING: IMPROVING THE DESIGN OF EXISTING
CODE, at xvii (1999) (explaining how to refactor without “introduc[ing] bugs into the code”).

90

http://uscode.house.gov/download/resources/USLM-User-Guide.pdf
http://uscode.house.gov/download/resources/USLM-User-Guide.pdf
http://www.law.cornell.edu/uscode/text
http://www.law.cornell.edu/uscode/text

If a shorter term is as good as a longer term, use the shorter term.”90 Laws that are

long and verbose require more time to read, interpret, and revise. Despite being a

simple and limited metric, length is a reasonable starting point for quantifying legal

code.

In software engineering, the size of a software codebase, usually measured by lines

of code (“LOC”), is a common metric for evaluating the effort required to develop and

maintain it.91 Each line of code has the potential to contain errors or unnecessary

complexity. Large amounts of code, therefore, correspond to larger, more complicated

software, which might have a greater number of bugs. In practice, while imperfect,

counting lines of code is a simple, reasonable starting point to start characterizing a

codebase’s complexity and potential problems.92

In software code, the number of LOCs is typically used as the rough approxima-

tion of complexity; since most programming languages generally require line breaks,

this provides a rough indication of the number of “instructions” in the program.93

Turning to the U.S. Code, to measure conciseness, we use the number of words as our

measurement unit because each clause or sentence is not necessarily a new line in the

document.

We count words in two ways for different datasets. First, for our historical dataset,

we visualize the length of different titles of the U.S. Code at different snapshots,

namely every six years when a new complete edition of the U.S. Code is released. For

the most current edition of the U.S. Code, we compare the lengths of different bills

and titles.

Change. Revisions to the law require interested parties to understand what has

changed and what has remained the same. Changes may also introduce unexpected or

90SENATE DRAFTING MANUAL, supra note 76, at 4.
91McConnell, supra note 85, at 725–26.
92See Jarrett Rosenberg, Some Misconceptions About Lines of Code , in PROCEEDINGS

FOURTH INTERNATIONAL SOFTWARE METRICS SYMPOSIUM 137 (1997), available at
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=637174. .

93Graylin Jay et al., Cyclomatic Complexity and Lines of Code: Empirical Evidence of a Stable
Linear Relationship , 2 J. SOFTWARE ENG’G & APPLICATIONS 137, 137 (2009), available at
http://www.scirp.org/Journal/PaperDownload.aspx?paperID=779 (finding a “practically per-
fect linear relationship” between lines of code and cyclomatic complexity).

91

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=637174.
http://www.scirp.org/Journal/PaperDownload.aspx?paperID=779

unintended effects. Over the span of many decades, the U.S. Code has become more

difficult to read and understand due to the changes made by many Congresses.94

Quantifying what has actually changed with each new edition could be useful for

understanding how the law has evolved and as a first step for understanding how the

law might be designed better. For example, measuring changes reveals what sections

have been modified by Congress frequently and what sections have withstood the test

of time.

For large software codebases, because many programmers are working on the code

at the same time, mechanisms that ensure that changes do not break functional code

or create conflicts are needed. The practice of software engineering has adopted

“version control systems” to handle these problems.95 Given that the U.S. Code is

the product of many individual members of Congress over time, similar mechanisms

are needed. Thus, a software engineering-inspired version control approach to the law

could be a reasonable future method of managing legislative changes.

For this metric, we focus on the goal of developing software engineering-inspired

tools for visualizing and communicating changes to the Code. We quantify two types

of changes: (1) the aggregate number of words added or deleted, and (2) the appear-

ance and spread of words over time and to different titles of the U.S. Code:

1. Addition-and-Deletion Metrics. When working on a codebase, software engi-

neers routinely add, delete, revise, reorder, or restructure LOCs. For the pur-

pose of analyzing the existing U.S. Code, a key insight from software engineers
94See Daniel Katz & Michael James Bommarito II, Measuring the Complexity of the Law: The

United States Code 5 (Aug. 1, 2013) (unpublished working paper) (on file with the Journal of
Business & Technology Law), available at http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2307352 (The U.S. Code “contains hundreds of thousands of provisions and tens of millions of
words”).

95Christopher Menegay, Using Source Code Control in Team Foundation , Microsoft Devel-
oper Network (Sept. 2005), http://msdn.microsoft.com/en-us/library/ms364074%28v=vs.
80%29.aspx (Version control systems can “manage files through the development lifecycle, keep-
ing track of which changes were made, who made them, when they were made, and why”).
Popular version control systems include: Concurrent Versions System (“CVS”), Apache Subver-
sion (“SVN”), Mercurial, and Git. See Concurrent Versions System , NONGNU.ORG, http:
//www.nongnu.org/cvs/ (last visited Feb. 10, 2015); Apache Subversion , APACHE SOFT-
WARE FOUND., https://subversion.apache.org/ (last visited Feb. 10, 2015); Mercurial SCM,
http://mercurial.selenic.com/ (last visited Feb. 10, 2015); GIT-SCM.com, http://git-scm.com/ (last
visited Feb. 10, 2015).

92

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2307352
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2307352
http://msdn.microsoft.com/en-us/library/ms364074%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/ms364074%28v=vs.80%29.aspx
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
https://subversion.apache.org/

is how they communicate and visualize changes to a document. Specifically,

although editing software code can involve many high-level thought processes,

they can be communicated through two operations: the addition and deletion

of LOCs. In software, such a comparison of two versions of the same docu-

ment is called a “diff” operation.96 Revising an existing lie of code is simply

the deletion of the existing line and the addition of a new line. When a team

member makes changes, the rest of the team can easily identify where changes

were made to a document and what those changes were, essentially by view-

ing redline comparisons. Further, the number of lines changed may suggest

whether the revision was large or small. The act of comparing two versions of

a document is a fundamental operation that programmers use regularly.97

Each historical edition of the U.S. Code is a snapshot of the laws at one instance

in time. Using text-matching techniques, we can also apply the “diff” concept to

two versions of a legal document; the only difference is that, instead of computer

instructions, the law is written in English. Text matching is simply the task

of detecting whether a sequence of words in one version of a document exists

in a previous version. When applied to an entire document, it is possible to

calculate what percentage of a document is new and what percentage previously

existed.

2. Word-based metrics. Software engineers also use a number of other text-based

tools in their daily work routines. Similar to how Internet search engines help

users find relevant documents online or “find files” programs help computer users

locate documents on their own computer, software engineers might search for

specific terms in a codebase or their frequency to help them do their work.98

Looking for the existence of terms throughout a codebase might, for example,

help the software engineer determine whether a feature has already been imple-
96GNU Tools, UNIXhelp for Users (Sept. 22, 1993), http://unixhelp.ed.ac.uk/CGI/man-cgi?

diff.
97Id.
98See How to: Programmatically Search for and Replace Text in Documents , Microsoft Devel-

oper Network, http://msdn.microsoft.com/en-us/library/f1f367bx.aspx (last visited Jan. 31,
2015) (explaining how to use Microsoft Word’s “find” function).

93

http://unixhelp.ed.ac.uk/CGI/man-cgi?diff
http://unixhelp.ed.ac.uk/CGI/man-cgi?diff
http://msdn.microsoft.com/en-us/library/f1f367bx.aspx

mented or assess the design conventions that the team has used. In principle,

these search techniques could also be applied to snapshots of the codebase over

time to identify changes.

Understanding changes in the law, of course, requires going beyond simple

length measurements. It is interesting, for example, to detect the first appear-

ance of particular words in the U.S. Code; given our historical dataset, doing

so is quite straightforward. In addition, we count the number of times that

each word appears in each edition of the U.S. Code. Similar efforts have been

employed by Google to count the appearance of terms in all English literature,99

the New York Times for its news coverage,100 and by other researchers for U.S.

Supreme Court opinions.101 In our case, these measurements are useful because

they reflect the extent to which the U.S. Code covers different concepts.

Coupling. The U.S. Code is not simply a long passage of text; the legislative

drafting manuals of both houses of Congress state that individual sections of legis-

lation should be organized into titles, sections, sub-sections, sub-clauses, and other

subdivisions.102 Moreover, these subdivisions often reference each other.103 For in-

stance, one part of the U.S. Code might refer to definitions in another part, creating

dependencies between them. The coupling of various parts of the U.S. Code creates

nonlinearities that can make the code more challenging to parse and revise. In partic-

ular, a reader must now explore different “pathways” of references to fully understand

a certain domain of law. Furthermore, revisions to any part of a chain of references

could contribute to unknown, unintended downstream effects. Mapping the large-
99See Ben Zimmer, Google’s Ngram Viewer Goes Wild , Atlantic (Oct. 17, 2013, 9:17 AM), http:

//www.theatlantic.com/technology/archive/2013/10/googles-ngram-viewer-goes-wild/
280601/ .

100Alexis Lloyd, Chronicle: Tracking New York Times Language Usage over
Time, N.Y. Times (July 23, 2014), http://blog.nytlabs.com/2014/07/23/
chronicle-tracking-new-york-times-language-use-over-time/.

101Daniel Martin Katz et al., Legal N-Grams?: A Simple Approach to Track the “Evolution” of Legal
Language (Dec. 13, 2011) (unpublished paper) (on file with the Journal of Business & Technology
Law), available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1971953 .

102See House Drafting Manual, supra note 78, at 23–24; Senate Drafting Manual, supra note 76,
at 8–10.

103See Katz & Bommarito, supra note 94 (citing 11 U.S.C. §101 as an example of a statute that
contains both “within-Title” references and “cross-Title” references).

94

http://www.theatlantic.com/technology/archive/2013/10/googles-ngram-viewer-goes-wild/280601/
http://www.theatlantic.com/technology/archive/2013/10/googles-ngram-viewer-goes-wild/280601/
http://www.theatlantic.com/technology/archive/2013/10/googles-ngram-viewer-goes-wild/280601/
http://blog.nytlabs.com/2014/07/23/chronicle-tracking-new-york-times-language-use-over-time/
http://blog.nytlabs.com/2014/07/23/chronicle-tracking-new-york-times-language-use-over-time/
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1971953

scale structure of cross-references in the U.S. Code, therefore, may reveal potential

vulnerabilities in the law.

1. Modularity in Software. In the software context, good software systems are

easy to separate into different modules, with the interface between modules

being kept relatively sparse and simple.104 The notion of “modularity” is the

central idea behind “object-oriented programming,” which is a fundamental de-

sign pattern in programming large software systems today and the focus of

many seminal computer science papers and textbooks.105

Object-oriented programming has become a dominant paradigm in software be-

cause it leverages the power of abstraction and modularity.106 For example, a

powerful word processor application like Microsoft Word has many functions,

including formatting, citation management, checking spelling and grammar,

and document printing options.107 To manage this complexity, large software

systems are split into modular subsystems. Smaller, more agile teams of soft-

ware engineers are responsible for each of these modules, and each team only

needs to understand the input-output behavior of other modules with which its

module interacts.108 Object-oriented design, therefore, leads to clearer lines of

responsibility, both from a software standpoint and a human team management

standpoint. This modularity results in more efficient coding, debugging, and,

ultimately, more robust software.

One way to study modularity is to interpret the system as a network (also known

104McConnell, supra note 85, at 38.
105Ola Berge et al., Learning Object-Oriented Programming (Nov. 23, 2007) (unpublished pa-

per) (on file with the Journal of Business & Technology Law), available at https://telearn.
archives-ouvertes.fr/file/index/docid/190184/filename/Berge_2003.pdf .

106See, e.g. , Leslie Kaelbling et al., Introduction to Electrical Engi-
neering and Computer Science I: Syllabus , MIT OpenCourseWare, http:
//ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/
Syllabus/ (last visited Jan. 21, 2015) (setting a goal to teach “the fundamental design principles
of modularity and abstraction in a variety of contexts from electrical engineering and computer
science”).

107See Word Object Model Overview , Microsoft Developer Network, http://msdn.microsoft.
com/en-us/library/kw65a0we.aspx (last visited Feb. 10, 2015).

108McConnell, supra note 85, at 21–22.

95

https://telearn.archives-ouvertes.fr/file/index/docid/190184/filename/Berge_2003.pdf
https://telearn.archives-ouvertes.fr/file/index/docid/190184/filename/Berge_2003.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/Syllabus/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/Syllabus/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/Syllabus/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/Syllabus/
http://msdn.microsoft.com/en-us/library/kw65a0we.aspx
http://msdn.microsoft.com/en-us/library/kw65a0we.aspx

as a graph), where each function or variable corresponds to a node in the net-

work, and there is an “edge” (a connection) from component A to component B

if component B references component A.109 A rich body of algorithms and tech-

niques have been developed to characterize the properties of these networks.110

Continuing with the Microsoft Word example, when a user decides to print a

document, the “user interface” module connects to the “print” module.111 Any

major software system involves multiple references among its component mod-

ules; good object-oriented design suggests that cross-references should be used

only when they are necessary, to avoid needless dependencies and complexity.

For any given software codebase, it is possible to construct and analyze its nodes

and edges in aggregate. The resulting network structure can provide insights

into the nature of the software system, such as how robust it is and where

its vulnerabilities likely reside. The network map can also provide a sense of

the different categories of modules that exist in a software system. Previous

work, for example, has examined the core-periphery architecture common to

many large software systems.112 The portion of the network to which a certain

module belongs can provide information about how the module relates to the

rest of the system.113

2. Modularity in the U.S. Code. The same modularity principles can be applied

to the law. We can interpret each section of the U.S. Code as a node of the

network, with citations to sections as the network’s edges. We can then analyze

the graph structure for novel insights into the structure of the U.S. Code.

As a concrete example, 37 U.S.C. §329, which describes an incentive bonus for

109Uday P. Khedker et al., Data Flow Analysis 234 (2009).
110See, e.g. , Thomas H. Cormen et al., Introduction to Algorithms 587 (3d ed. 2009) (describ-

ing how computer scientists can use algorithms and graphing techniques to solve computational
problems).

111See Beth Melton, Organizing Your Macros , Microsoft Word MVP (Nov. 1, 2002, 9:52 PM),
http://word.mvps.org/faqs/macrosvba/OrganizeMacros.pdf .

112Alan MacCormack et al., The Architecture of Complex Systems: Do Core-Periphery Structures
Dominate? 1 (Jan. 19, 2010) (unpublished paper) (on file with author), available at http://
papers.ssrn.com/sol3/papers.cfm?abstract_id=1539115 .

113Id. at 7.

96

http://word.mvps.org/faqs/macrosvba/OrganizeMacros.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1539115
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1539115

Figure 3-1: Network representation of references to and from 37 U.S.C. §329

retired or former members of the military, cites exactly two other sections, 37

U.S.C. §303a(e) (general provisions of special pay in the military), and 10 U.S.C.

§ 101(a)(16) (a definition of “congressional defense committees”).114 Meanwhile,

37 U.S.C. § 329 is cited by one other section, 10 U.S.C. §641, which notes that

other laws in Title 10 of the U.S. Code do not apply to the officers to whom the

bonus in 37 U.S.C. §329 applies.115 Locally, the network is shown in Figure 3-

1 (with dashed arrows representing links to and from other parts of the U.S.

Code).

This simple representation immediately shows a chain of citations in which

modifying 37 U.S.C. §303a(e) could have ramifications for 10 U.S.C. §641.116

Now, imagine a longer chain with multiple branches, some of which could refer

back to the section being modified. These chains can be used to identify complex

sequences of legal implications that even the most knowledgeable and intelligent

human cannot fully comprehend without technological assistance.

The entire U.S. Code comprises a large network with many references. This

network can be analyzed in many ways; previous work, for instance, has sought

to identify important U.S. Code sections by following references and determining

which sections are encountered most often.117 In our work, we examine the U.S.

114See 37 U.S.C. §§303(a), 329 (2012); 10 U.S.C. §101 (2012).
115See 37 U.S.C. §329; 10 U.S.C. §641 (2012).
116See supra Figure 3-1.
117See, e.g., Katz & Bommarito, supra note 94, at 1, 6.

97

Code network in the following three ways.

First, for the historical dataset, we examine how sections from bills passed by

Congress map to sections in the U.S. Code.118 This data is available from the

OLRC for every bill ever passed by Congress (including, interestingly, public

laws before the U.S. Code came into being in 1926).119 Specifically, for selected

recent legislation, we find previously enacted laws that have the most overlap-

ping number affected U.S. Code sections. This method allows us to find groups

of similar laws by domain. For instance, the laws most similar to the Dodd-

Frank Wall Street Reform and Consumer Protection Act tend to be finance and

banking laws.120

Second, for the current law, we apply concepts from recent work on the network

architecture of software codebases to describe the structure of U.S. Code titles

and selected bills passed by Congress.121 This analysis is based on finding the

network’s “core,” which is the largest interconnected collection of nodes in the

network.122 More precisely, we define the core as the largest “strongly connected”

component of the network.123

Third, we identify important sections by using the structure of the network of

cross-references in the current U.S. Code.124 Specifically, we use a link analysis

118About the Table III Tool , Office of the Law Revision Counsel: U.S. Code, http://uscode.
house.gov/table3/table3explanation.htm (last visited Jan. 22, 2015). The Office of the Law
Revision Counsel provides tables that “show where recently enacted laws will appear in the United
States Code and which sections of the Code have been amended by those laws.” See United States
Code Classification Tables , Office of the Law Revision Counsel: U.S. Code, http://uscode.house.
gov/classification/tables.shtml (last visited Jan. 22, 2015).

119Table III Tool , Office of the Law Revision Counsel: U.S. Code, http://uscode.house.gov/
table3/table3years.htm (last visited Jan. 22, 2015).

120See infra Part IV.C and notes 168–69.
121See, e.g. , Carliss Baldwin et al., Hidden Structure: Using Network Methods to Map Sys-

tem Architecture (Harv. Bus. Sch. Working Paper, No. 13-093, May 2013), available at http:
//dash.harvard.edu/handle/1/10646422 (describing an operational methodology to characterize
complex technical system architecture); Alan Grosskurth & Michael W. Godfrey, Architecture and
Evolution of the Modern Web Browser 1–2, 5, 18 (June 20, 2006) (unpublished paper) (on file with
author), available at http://plg.uwaterloo.ca/~migod/papers/2006/jss-browserRefArch.pdf
(presenting a reference architecture for web browsers).

122See Baldwin et al., supra note 121, at 2, 8.
123See infra App. A (defining mathematical terms that appear in this Article’s network analysis,

including “core” and “strong connectedness”).
124See USLM User Guide , supra note 83; U.S. Code , supra note 84.

98

http://uscode.house.gov/table3/table3explanation.htm
http://uscode.house.gov/table3/table3explanation.htm
http://uscode.house.gov/classification/tables.shtml
http://uscode.house.gov/classification/tables.shtml
http://uscode.house.gov/table3/table3years.htm
http://uscode.house.gov/table3/table3years.htm
http://dash.harvard.edu/handle/1/10646422
http://dash.harvard.edu/handle/1/10646422
http://plg.uwaterloo.ca/~migod/papers/2006/jss-browserRefArch.pdf

algorithm very similar to PageRank, popularized by Google as their method of

ranking the importance of individual webpages.125 The idea of PageRank is that

each section in the U.S. Code has references to and from other sections, and a

section that has many references to it is likely more important.126 Further, if an

important section refers to other sections, those sections may also be important.

Using this intuition, the relative importance of all sections in the U.S. Code can

be calculated. Previous work has applied this approach to academic literature127

and, in the domain of law, the social network of the U.S. law professoriate.128

Complexity. The law is riddled with conditional statements, exceptions, and

special cases.129 Applying different rules to different situations is not inherently bad;

however, such “balancing tests” make it more challenging to fully appreciate the conse-

quences of a given piece of legislation.130 Further, an excessive number of conditional

statements might suggest that the underlying rule is faulty, requiring many special

cases and exceptions. For these reasons, methods to count the number of statements

that exist in the law might be useful for analyzing the U.S. Code.

Analogously, software code often contains conditional statements of the form in

Figure 3-2 . If a condition is met, then some subroutine A is executed, and if the

condition is not met, some other subroutine B is executed.131 Each time a conditional

statement appears, the possible execution of the software forks into two paths. Fur-

125See Sergey Brin & Lawrence Page, The Anatomy of a Large-Scale Hypertextual Web Search
Engine , 30 J. Computer Networks & ISDN Sys. 107, 109–10 (1998).

126See id. at 109–10, 117; see also Lawrence Page et al, The PageRank Citation Ranking: Bringing
Order to the Web (1998), available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.31.1768 .

127Carl T. Bergstrom et al., The Eigenfactor Metrics , 28 J. Neuroscience 11433 (2008).
128Daniel M. Katz et al., Reproduction of Hierarchy? A Social Network Analysis of the American

Law Professoriate , 61 J. Legal Educ. 76 (2011).
129See, e.g. , Restatement (Second) of Torts §§314, 314A (1965) (providing that a person has

no duty to act when another person requires the first person’s aid or protection, unless a special
relationship exists between them); U.C.C. §2-207 (2002) (prescribing that a “definite and seasonable
expression of acceptance” forms a contract even if the offeree’s terms differ from the offeror’s, unless
the offeree expressly conditions acceptance on the offeror’s assent to the different terms).

130Patrick M. McFadden, The Balancing Test , 29 B.C. L. Rev. 585, 636–42 (1988), available at
http://lawdigitalcommons.bc.edu/bclr/vol29/iss3/2/ .

131See McConnell, supra note 85, at 355–56, 358–59; see also Conditional (Computer Programming)
, Wikipedia, http://en.wikipedia.org/wiki/Conditional_(computer_programming) (last vis-
ited Jan. 22, 2015).

99

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://lawdigitalcommons.bc.edu/bclr/vol29/iss3/2/
http://en.wikipedia.org/wiki/Conditional_(computer_programming)

IF (condition)
(execute subroutine A)

ELSE
(execute subroutine B)

Figure 3-2: if-else statement common in software code

ther, conditional statements can be nested (there can be conditional statements inside

subroutines), which can lead into exponentially many possible execution paths for a

given input.132 The complexity that conditional statements introduce is formalized

in software engineering as “cyclomatic complexity” (sometimes known as “McCabe’s

complexity”), which is the number of times a piece of code has to make a decision,

i.e. , the number of paths in software.133 It can be computed by assigning a score to

each conditional statement that a piece of software encounters.134

To create an analogous metric for the U.S. Code, we count the number of condi-

tional terms in a passage of text. We count the occurrences of the following conditional

terms in a law or a section of the U.S. Code: “if,” “except,” “but,” “provided,” “when,”

“where,” “whenever,” “unless,” “notwithstanding,” “in no event,” and “in the event.”135

This list is not exhaustive, and we do not expand these root words, but it provides

an indication of the exceptions and special cases that are found throughout the U.S.

Code. Section 308 of the Senate Legislative Drafting Manual, entitled “Conditional

Provisions and Provisos,” offers guidelines on what words to use: it recommends “if”

instead of “when” or “where” to indicate a condition, and “except that,” “but,” or

“if” instead of phrases involving the word “provided.”136 We include both the recom-

mended and non-recommended terms because laws are not obligated to follow these

guidelines—an online search of the current U.S. Code shows that all of these terms

still exist in the U.S. Code to describe a conditional statement.137

132McConnell, supra note 85, at 499–500.
133Thomas J. McCabe, A Complexity Measure , 2 IEEE Transactions on Software Eng’g 308,

308–20 (1976).
134Id. at 308–10, 318–19.
135See infra Part IV.D.
136Senate Drafting Manual, supra note 76, at 69.
137See Search the United States Code , Office of the Law Revision Counsel: U.S. Code, http:

//uscode.house.gov/search.xhtml (last visited Jan. 22, 2015).

100

http://uscode.house.gov/search.xhtml
http://uscode.house.gov/search.xhtml

Table 3.1: Description of Principles and Metrics for U.S. Code

Principle
Proposed Metrics
(Evolution of U.S.

Code)

Proposed Metrics
(Current Laws and

Titles)
Conciseness: Good code
should be as long as it

needs to be, but no
longer.

Change in total number
of words Total number of words

Change: Code that
exhibits large or frequent

changes may suggest
defects. Large, untested

changes can also
produce new defects.

Number of words added
or deleted; counts of

specific words and terms
versus time; first

appearance of words in
U.S. Code by title

N/A

Coupling: Modular code
is more robust and

easier to maintain than
code with unnecessary

cross-dependencies.

Bills affecting similar
sections

Size of cross-reference
“network core” versus
“network periphery”;

Google
PageRank-inspired

methods
Complexity: Code with

a large number of
conditions, cases, and

exceptions is difficult to
understand and prone to

error.

Change in number of
condition statements in

code (cyclomatic
complexity)

Total number of
condition statements by

section (cyclomatic
complexity)

Summary. Table 3.1 summarizes the previous four sections. The first column

provides brief definitions of these four principles, and the second and third columns

identify metrics borrowed from the software engineering community for the historical

and current datasets, respectively. In the remainder of this Article, we apply our

metrics and show the results of our analyses and visualizations.

3.6 Evolution of the U.S. Code

To understand the evolution of the U.S. Code, we used the following datasets:

101

1. Historical U.S. Code texts under license from William S. Hein & Co., Inc.138

2. For certain comparisons, a more recent version of the U.S. Code from the

OLRC.139

3. A document called “Table III,” published by the OLRC, which shows, on a

section-by-section basis, how an enrolled bill maps to the U.S. Code.140

Using our historical dataset, we analyzed and visualized changes to the U.S. Code

since 1926. For each of the four software engineering principles listed in the previous

section, we comment on insights that emerge from studying the U.S. Code through

these metrics.

3.6.1 Conciseness: Evolution of the Size of the U.S. Code

Figure 3-3 is a stacked area graph of the size of the U.S. Code, organized by title and

measured in the number of words. Consistent with the popular conception of federal

laws, the size of the U.S. Code has grown continuously since 1926.141 Moreover, the

rate of growth is increasing.142

This simple length-based analysis also illustrates that different titles of the U.S.

Code are different sizes. For example, Title 42 (Public Health and Welfare) is the

longest.143

138See U.S. Code , supra note 84.
139See Current Release Point , supra note 82; USLM User Guide , supra note 83.
140Table III Tool , supra note 119. The authors have written software that parses data from the

Table III Tool into machine-readable form for network-based analyses. See uscode/table 3 , GitHub,
https://github.com/unitedstates/uscode/tree/master/table3 (last visited Jan. 22, 2015).
This free software is available as part of the @unitedstates project. See id. An “enrolled bill” is “the fi-
nal copy of a bill or joint resolution which has passed both chambers in identical form.” See Glossary ,
U.S. Senate, https://www.senate.gov/reference/glossary_term/enrolled_bill.htm (last vis-
ited Jan. 22, 2015).

141See Figure 3-3
142See Figure 3-3
143See Figure 3-3

102

https://github.com/unitedstates/uscode/tree/master/table3
https://www.senate.gov/reference/glossary_term/enrolled_bill.htm

Figure 3-3: Number of words in the U.S. Code by title.

103

Figure 3-4: Title 12 (Banks and Banking) comparisons between 1934 and 1940
editions (left) and 1934 and 1970 editions (right).

3.6.2 Change: Evolution of Content in the U.S. Code

The inadequacy of assessing the U.S. Code by length alone is apparent when analyzing

changes over time. For example, despite the increasing size of the U.S. Code over time,

the length is actually the net result of numerous laws enacted and repealed. Thus,

the “diff” function allows us to more accurately assess the quality and quantity of

change. Moreover, the first appearance and frequency of terms in the U.S. Code are

also informative for studying its evolution.

Addition and Deletion of Words. As described supra in Section 3.5, the U.S.

Code is not neatly organized into individual lines like software, so we treat each title

as a sequence of words to find matches between sequences. Figure 3-4 shows the

output of the document comparison process. We chose Title 12 (Banks and Banking)

to illustrate our approach. When there is a matching sequence of words, a black dot is

drawn on the plot; when there is a mismatch, no dot is drawn. The following insights

can be gained by examining the two plots:

The dark diagonal line from the bottom-left to the top-right of the left plot in

Figure 3-4 indicates that the 1934 and 1940 versions of the Title 12 are largely the

same. The relatively small breaks in this dark-blue diagonal line indicate there were

relatively few changes between 1934 and 1940. In contrast, the diagonal line is much

less intact in the comparison between the 1934 and 1970 versions of the U.S. Code.

104

Figure 3-5: Words conserved and added to Title 12 between 1934 and 1976

This pattern indicates that there are large differences between the two documents;

that is, there were far more changes between 1934 and 1970 than there were between

1934 and 1940. In particular, large amounts of text were added to the end of Title

12 sometime prior to 1970.

Using the text comparison technique shown above, we can go beyond simply count-

ing the number of words and determine how many words were added and deleted with

each subsequent edition of the U.S. Code. Figure 3-5 summarizes these changes be-

tween 1934 and 1976 for Title 12. For graphing purposes, instead of showing “words

deleted,” we show “words conserved” in order for the stacked bar graph to show the

total number of words in each edition of Title 12. This graph illustrates that the

length changes in Title 12 are the product of both the addition of new passages of

text and the deletion of passages of text that existed in 1934, though the vast majority

of the length comes from words added.

Term Frequency Counts. As a first step toward understanding the content

of the U.S. Code, we built a U.S. Code “term-count viewer.” Figure 3-6 presents

some screenshots of our tool to count the frequency of terms by year. In this figure,

a) illustrates the rise of legislation related to the telephone, and the slow decline of

the telegraph;144 b) shows how “homeland security” entered the discourse between

144See Derek Thompson, The 100-Year March of Technology in 1 Graph , Atlantic
(Apr. 7, 2012, 1:08 PM), http://www.theatlantic.com/technology/archive/2012/04/
the-100-year-march-of-technology-in-1-graph/255573/ (graphing telephone penetration

105

http://www.theatlantic.com/technology/archive/2012/04/the-100-year-march-of-technology-in-1-graph/255573/
http://www.theatlantic.com/technology/archive/2012/04/the-100-year-march-of-technology-in-1-graph/255573/

2000 and 2006, after 9/11;145 and c) corresponds to the invention of the credit card

and laws related to consumer protection in the 1960s and beyond.146 These term

frequency plots illustrate the attention that legislators and society devoted to new

domains of law in different decades.

First Appearance of Words. Along with examples of term frequency patterns,

we can also examine when words first appeared in the U.S. Code. Table 3.2 shows new

terms that appeared in each edition of the U.S. Code between 1952 and 2006. The top

10 words in terms of their total count in the 2006 edition of the U.S. Code is shown,

in order to show words that first appeared in a given year and have now become

commonplace in the U.S. Code. For example, in our dataset, the term “television”

first appears in the 1952 edition of the U.S. Code and can be found 1297 times.147

Some terms (such as “Palau” and “Mariana”) reflect routine bookkeeping changes

to the U.S. Code, such as changes corresponding to entities that signed Compacts of

Free Association with the United States.148 The timing of other words, such as “tele-

vision,” “telecommunications,” “pesticide,” or “privacy,” reflects when these concepts

and entities first received the attention of federal law. Meanwhile, other terms reflect

a change in language usage: the appearance of the term “servicemember(s)” indicates

a move away from gender-specific terms.149

from 1900–2005).
145The word “homeland” appears less than twenty times in U.S.C. (2000), but more than 1,700

times in U.S.C. (2006). Search the United States Code , supra note 137.
146Although revolving debt credit cards first appeared in the 1950s, significant regula-

tion did not occur until the 1960s. See John T. Finley, Consumer (Bankcard) Debt and
Regulation—Are Things Working? , 17 Proc. Acad. Legal, Ethical & Reg. Issues 7
(2013), available at http://www.alliedacademies.org/public/proceedings/Proceedings32/
ALERI%20Proceedings%20Spring%202013.pdf .

147See U.S.C. (1952); e.g. 18 U.S.C. §1343 (“Whoever, having devised or intending to devise any
scheme or artifice to defraud, . . . transmits or causes to be transmitted by means of interstate
wire, radio, or television communication” (emphasis added)); 26 U.S.C. §3403(c) (“Parts or
accessories (other than tires and inner tubes and other than radio and television receiving sets) for
any of the articles enumerated in subsection (a) or (b), 8 per centum, except that on and after April
1, 1954, the rate shall be 5 per centum.” (emphasis added)).

148Compact of Free Association, U.S.-Marshall Islands, Apr. 30, 2003. T.I.A.S. No. 04-501.
149See, e.g. , National Defense Authorization Act for Fiscal Year 2012, Pub. L. No. 112-81, §631(a),

125 Stat. 1298, 1452 (2011) (“Recognizing the complexities and the changing nature of travel, the
amendments made by this section provide the Secretary of Defense and the other administering
Secretaries with the authority to prescribe and implement travel and transportation policy that
is simple, clear, efficient, and flexible, and that meets mission and servicemember needs. . . .”
(emphasis added)); Servicemembers Civil Relief Act, Pub. L. No. 108-189, 117 Stat. 2835 (2003).

106

http://www.alliedacademies.org/public/proceedings/Proceedings32/ALERI%20Proceedings%20Spring%202013.pdf
http://www.alliedacademies.org/public/proceedings/Proceedings32/ALERI%20Proceedings%20Spring%202013.pdf

Figure 3-6: Term frequency plots over time for selected phrases: a) “telegraph” vs.
telephone”; b) “terrorism vs. homeland security”; c) “credit card vs. consumer

protection”

107

Table 3.2: First Appearance of Terms in the U.S. Code

1952 1958 1964 1970 1976

television (1297)
operational (1210)

pipeline (1199)
terrorism (1193)
workforce (1159)

telecommunications
(1068)

victim (1013)
reconciliation (975)

satellite (912)
significantly (823)

infrastructure
(1341)

rulemaking
(1062)

pesticide (918)
enhancement

(915)
micronesia

(830)
inpatient (829)
elderly (791)
confidentiality

(716)
statewide (700)

global (685)

environmental
(5811)

guidelines
(3477)

technologies
(2111)

providers (1859)
computer

(1341)
mariana (1318)
environ (1150)
monitor (1099)

evaluations
(907)

privacy (788)

medicare (2553)
subclause

(1598)
expertise (1149)
strategies (964)
outreach (889)
ensuring (781)

innovative (741)
oceanic (722)

affordable (719)

initiatives (684)
chairperson

(1112)
terrorist (865)
medicaid (683)
update (615)
digital (528)
methodology
(524) software
(459) amtrak

(455) syndrome
(432)

underserved
(377)

1982 1988 1994 2000 2006

palau (566)150
targeted (454)
saharan (415)

assistive (330)151
swap (316)

hospice (300)
competitiveness

(289)
nonattainment

(272)
fueled (267)

nonproliferation
(266)

database (397)
affordability

(206)
remic (194)152

kg (188)
privatization

(177)
servicemembers

(163)
alzheimer’s

(154)
mammography

(148)
forensic (142)
noncustodial

(135)

internet (754)
nafta (504)

stalking (370)
geospatial (232)
mentoring (210)
biodiesel (160)
nonoriginating

(151)
databases (148)
empowerment

(148)
countervailable

(145)

tricare (331)153
website (199)

y2k (127)
biobased (126)

hubzone
(112)154

bliley (108)155
vento (103) 156

telehealth (100)
hass (93)

cbtpa (83)157

servicemember
(161)

pdp (153)158
cafta (137)159
darfur (100)
restyling (94)

nanotechnology
(77)

safetea (75)160
katrina (67)

pandemic (63)
atpdea (61)161

108

Figure 3-7: Appearance of “whistleblower” in U.S. Code titles by year and title

Trajectories of Terms in U.S. Code Titles. Finally, instead of merely listing

the appearance of new terms in the U.S. Code, we can also examine the contexts in

which they are used. In particular, our historical dataset makes it possible to track

terms of interest across different titles of the U.S. Code. In Figure 3-7 , we show

that the term “whistleblower” first appeared in Titles 5 (Government Organization

and Employees), 42 (Public Health and Welfare), 31 (Money and Finance), and 10

(Armed Forces) in 1994.162 It now is mentioned in a total of 11 U.S. Code titles.

Meanwhile, as shown in Figure 3-8 , “privacy” is mentioned throughout the U.S.

Code. Interestingly, its first appearance was in 1964 in Title 39 (Postal Service).163

This visualization reveals when discourse framed around whistleblowers or privacy

entered different titles of the U.S. Code.

3.6.3 Coupling: Evolution of Structure of U.S. Code

When Congress passes a bill and the President signs it into law, the OLRC incorpo-

rates the new law into the U.S. Code.164 The OLRC keeps an online record of the

mapping of every bill section to its corresponding section in the U.S. Code.165 This

mapping of bill sections to U.S. Code sections forms a network connection map (a

162See Search the United States Code , supra note 137.
163Privacy of Accounts, 39 U.S.C. §5212 (1964).
164About Classification of Laws to the United States Code , supra note 65.
165See Table III Tool ,supra note 119.

109

Figure 3-8: Appearance of “privacy” in U.S. Code titles by year and title

110

“graph” in computer science terms).

One application of this graph is to determine similar bills in terms of the overlap of

the U.S. Code sections that they affect. If newly enacted laws are like new additions

to software, then we can determine quantitatively which existing laws were changed or

impacted most. We use the Jaccard similarity,166 a mathematical measure of overlap

of sets of entities, to calculate how similar two laws are in terms of sections affected:

two bills that affect the exact same U.S. Code sections would have a Jaccard similarity

of 1.0, while two bills that affect completely different sets of sections would have a

Jaccard similarity of 0.0.167

As an illustration of this method, Table 3.3 shows the most similar bills to the

Dodd-Frank Wall Street Reform and Consumer Protection Act (“Dodd-Frank”) while

Table 3.4 shows similar bills to the Patient Protection and Affordable Care Act

(PPACA).168 Notably, the bill ranked most similar to Dodd-Frank is Public Law

101-73 (the Financial Institutions Reform, Recovery, and Enforcement Act of 1989),

which was the legislative response to the Savings and Loan Crisis in the late 1980s.169

The list also contains other landmark pieces of legislation related to the financial

sector at different points in the 20th century.

We can also visualize this similarity. Figure 3-9 shows show the sections of the

U.S. Code affected by Dodd-Frank and similar laws, while Figure 9 shows laws similar

to PPACA. For each of the bills, each dot represents a section of the U.S. Code. These

dots are ordered by U.S. Code section number. Because these bills have a very large

number of sections, they need to be shown in multiple rows. Only sections affected

by at least one of the bills are represented, and the notations on the side indicate

the sections corresponding to the first and last dots on each row. Stacked dots in the

166See Sheetal A. Takale & Sushma S. Nandgaonkar, Measuring Semantic Similarity Between
Words Using Web Documents , Int’l J. Advanced Computer Sci. & Applications, Oct. 2010, at 78,
82; R. Real, Tables of Significant Values of Jaccard’s Index of Similarity , 22 Miscellania Zoologica
29, 30 (1999).

167See Takale & Sushma, supra note 166, at 82; Real, supra note 166, at 30.
168See Dodd-Frank Wall Street Reform and Consumer Protection Act, Pub. L. No. 111-203, 124

Stat. 1376 (2010); Patient Protection and Affordable Care Act, Pub. L. No. 111-148, 124 Stat. 119
(2010).

169See Paul T. Clark et al., Regulation of Savings Associations Under the Financial Institutions
Reform, Recovery, and Enforcement Act of 1989 , 45 Bus. Law. 1013, 1013 (1990).

111

Table 3.3: Bills with Highest Similarity to Dodd-Frank Wall Street Reform and
Consumer Protection Act

Rank (by
Jaccard
Similar-

ity)

Public
Law No. Bill Name

Number of
Sections in

Bill

Jaccard
Similar-

ity

1 101-73
Financial Institutions
Reform, Recovery, and

Enforcement Act of 1989
284 0.113

2 90-321 Consumer Credit Protection
Act 188 0.112

3 73-291 Securities Exchange Act of
1934 87 0.071

4 102-242
Federal Deposit Insurance
Corporation Improvement

Act of 1991
173 0.071

5 103-325
Riegle Community

Development and Regulatory
Improvement Act of 1994

245 0.051

6 95-630
Financial Institutions

Regulatory and Interest Rate
Control Act of 1978

166 0.051

7 96-221
Depository Institutions

Deregulation and Monetary
Control Act of 1980

125 0.050

8 106-102 Gramm-Leach-Bliley Act 155 0.049

9 102-550 Housing and Community
Development Act of 1992 558 0.049

10 100-181
Securities and Exchange

Commission Authorization
Act of 1987

63 0.049

112

Table 3.4: Bills with Highest Similarity to Patient Protection and Affordable Care
Act

Rank (by
Jaccard
Similar-

ity)

Public
Law No. Bill Name

Number of
Sections in

Bill

Jaccard
Similar-

ity

1 74-271 Social Security Act of 1935 538 0.129

2 108-173
Medicare Prescription Drug,

Improvement, and
Modernization Act of 2003

234 0.122

3 94-437 Indian Health Care
Improvement Act 156 0.120

4 78-410 Public Health Service Act of
1944 1227 0.103

5 105-33 Balanced Budget Act of 1997 424 0.086

6 102-573 Indian Health Amendments
of 1992 141 0.081

7 111-152 Health Care and Education
Reconciliation Act of 2010 116 0.074

8 110-275
Medicare Improvements for
Patients and Providers Act

of 2008
84 0.071

9 101-239 Omnibus Budget
Reconciliation Act of 1989 706 0.062

10 101-508 Omnibus Budget
Reconciliation Act of 1990 938 0.060

113

Figure 3-9: Comparisons of Sections of the U.S. Code affected by Dodd-Frank Wall
Street Reform and Consumer Protection Act, Financial Institutions Reform,

Recovery, and Enforcement Act of 1989 (FIRREA), and Gramm-Leach-Bliley Act
(GLB)

same row indicate multiple bills affected those sections. For example, in Figure 9, as

shown by the annotations, all three bills affected 42 U.S.C §1395yy, but only PPACA

affected sections in 42 U.S.C. §280.170 In the case of both PPACA and Dodd-Frank,

it is worth noting that these laws, in addition to amending many existing sections

related to other key bills, also created entirely new sections in the U.S. Code, which

may explain why they did not overlap more with previous bills.171

17042 U.S.C. §§280, 1395yy (2012).
171E.g. , Dodd-Frank Wall Street Reform and Consumer Protection Act §748 (codified at 7

U.S.C. §26 (2012)) (setting rewards for whistleblowers); Patient Protection and Affordable Care
Act §3021(a) (codified at 42 U.S.C. §300jj–351 (2012)) (establishing the Center for Medicare and
Medicaid Innovation).

114

Figure 3-10: Comparison of sections of the U.S. Code affected by Patient Protection
and Affordable Care Act (PPACA), Social Security Act of 1935, and Medicare

Prescription Drug, Improvement, and Modernization Act of 2003 (MMA).

3.6.4 Complexity: Complexity: Evolution of Conditional State-

ments in the U.S. Code

Similar to measuring length, we can count the number of conditional statements

by title in the U.S. Code over time. The results are shown in Figure 3-11. As

with the length measurement, the number of conditional statements has also grown

substantially over time. In the next two sections of this Article, we identify and

explore titles and specific laws with particularly high cyclomatic complexity, which

may be parts of the U.S. Code that are particularly difficult to understand.

3.7 Structure of Current Laws: 111th Congress

This section examines laws passed by the 111th Congress to determine whether our

software engineering approaches can help identify the most complex laws that may

be, consequently, prone to unintended consequences. The 111th Congress spanned

115

Figure 3-11: Cyclomatic complexity (number of conditional statements) in U.S.
Code

116

the period from January 3, 2009 to January 3, 2011.172 Some notable laws that it

passed included Public Law 111-5, the American Recovery and Reinvestment Act of

2009 (“ARRA,” or, informally, the “stimulus” bill);173 Public Law 111-148, the Patient

Protection and Affordable Care Act (“PPACA,” or, informally, “Obamacare”);174 and

Public Law 111-203, the Dodd-Frank Wall Street Reform and Consumer Protection

Act (informally, “Dodd-Frank”).175 Our goal in this section and the next is to measure

quantitatively the complexity of these laws, and use these measures to identify the

effect that these laws had on the overall complexity of the U.S. Code.176

Our main results lead to three conclusions. First, laws that would be classified

as “complex” or “important” by a human reader, such as PPACA or Dodd-Frank, are

also very complex according to our software metrics.177 Second, the average law is

not very complex according to our measures.178 Combined with our first point, this

implies that there is a level of agreement between our techniques to identify complex

laws and our findings with PPACA or Dodd-Frank. Third, our coupling metric helps

identify two categories of “lengthy laws.” The first type is appropriations acts, which

are very long but do not have a high degree of coupling with the U.S. Code.179 The

second type includes laws such as PPACA, ARRA, or the extension of the Bush-era

tax cuts in 2010, which show a high degree of coupling with the U.S. Code.180 This

172Past Days in Session of the U.S. Congress, Congress.gov, https://congress.gov/past-days-in-
session (last visited Jan. 22, 2015).

173American Reinvestment and Recovery Act of 2009, Pub. L. No. 111-5, 123 Stat. 115 (2009).
174Patient Protection and Affordable Care Act, Pub. L. No. 111-148, 124 Stat. 119 (2010).
175Dodd-Frank Wall Street Reform and Consumer Protection Act, Pub. L. No. 111-203, 124 Stat.

1376 (2010).
176Later in this chapter, we study the years 1995–2012 and show that, while the laws passed

by the 111th Congress are complex, they are not uniquely so. See infra Part VI. No corre-
lation exists between complexity and the party that controls Congress or the Presidency, and
no pattern associates complexity to the presence or absence of a gridlocked government. See
infra Apps. B, C. To the contrary, most complex laws seem to correspond to the 104th
Congress (1995–97), which is well known for its disagreements between the executive and legisla-
tive branches, including a government shutdown. See 1995–96 Government Shutdown , Bancroft
Libr., http://bancroft.berkeley.edu/ROHO/projects/debt/governmentshutdown.html (last updated
Oct. 2, 2013);infra Apps. B, C.

177Patient Protection and Affordable Care Act; Dodd-Frank Wall Street Reform and Consumer
Protection Act.

178See discussion infra Part VI.C. and in the appendix of this chapter.
179See discussion infra Part VII.
180See infra Tables 3.5 and 3.7

117

Table 3.5: Laws from the 111th Congress Ranked by Length

Public
Law

Number
Popular Name

Length
(number of

words)

111-11 Omnibus Public Land
Management Act 191,864

111-8 Omnibus Appropriations
Act 216,534

111-84 National Defense
Authorization Act 274,329

111-203 Dodd-Frank 364,844
111-148 PPACA 384,324

coupling suggests that the content of these laws are more embedded in the “core” of

the U.S. Code. Thus, our coupling measure can help quantify the extent to which

laws have a more fundamental, structural effect on the U.S. Code.

While we focus on laws enacted by Congress, it is important to highlight that

our techniques can be used in the future to analyze proposed laws. Our measure of

coupling can give insights on how a proposed law will affect the rest of the U.S. Code.

Our other measures can be used to compare two versions of a bill, and identify which

sections of a bill can or should be simplified.

We show the top five laws passed by the 111th Congress according to length

(Table 3.5 , coupling (Table 3.6), and complexity (Table 3.7). The results confirm,

in a quantitative way, the intuition that laws such as Omnibus Appropriations Act,

PPACA, and Dodd-Frank are complex.

It is reasonable to ask whether such complexity is significant. How much of an out-

lier are these particular laws from an average law enacted during the 111th Congress?

This question is answered by examining the distributions of length (Figure 3-12),

coupling (Figure 3-13), and complexity (Figure 3-14), which show the distributions

of our metrics. These distributions are very thin-tailed, implying that the occurrence

of these highly ranked laws is very low. Indeed, most laws have much lower values of

these metrics.

One interesting observation is that the Omnibus Appropriations Act appears

118

Table 3.6: Laws from the 111th Congress Ranked by Coupling. The coupling metric
used is the number of sections in the law that also belong to the core of the U.S.

Code.

Public
Law

Number
Popular Name

Number of
Sections in

Core of
U.S. Code

111-84 National Defense
Authorization Act 143

111-312
Tax Relief, Unemployment
Insurance Reauthorization

and Job Creation Act
199

111-203 Dodd-Frank 232
111-148 PPACA 251
111-5 Stimulus Act 293

Table 3.7: Laws from the 111th Congress Ranked by Cyclomatic Complexity

Public
Law

Number
Popular Name

Cyclo-
matic

Complex-
ity

111-5 Stimulus Act 805

111-117 Consolidated
Appropriations Act 1130

111-148 PPACA 1225
111-203 Dodd-Frank 1384

111-8 Omnibus Appropriations
Act 1414

119

Figure 3-12: Distribution of lengths of laws passed by 111th Congress

Figure 3-13: Distribution of coupling metric for laws passed by 111th Congress

120

Figure 3-14: Distribution of cyclomatic complexity for laws passed by the 111th
Congress

highly ranked with respect to all measures of complexity except coupling. For in-

stance, it has the highest cyclomatic complexity, which is unsurprising since the Om-

nibus Appropriations Act contains multiple miscellaneous funding authorizations that

should not permanently affect other areas of the U.S. Code of Law.181 In contrast,

a law such as PPACA is not only complex with respect to length and cyclomatic

complexity, but also has a high degree of coupling with the rest of the U.S. Code, and

has a large intersection with the largest strongly connected component (the core) of

the U.S. Code.182 In this respect, we can say that the Patient Protection Act has a

higher impact on the U.S. Code than the Omnibus Appropriations Act.

We can explore this argument further by analyzing the network structure of these

laws. Each piece of legislation affects a subset of the U.S. Code. While the overall

U.S. Code is too large to visualize easily, the subsets of the U.S. Code modified by

individual bills are small enough that visualization is helpful. As examples, Figure 3-

15 shows PPACA, while Figure 3-16 shows the Omnibus Appropriations Bill from the

111th Congress.

181Omnibus Appropriations Act, 2009, Pub. L. No. 111-8, 123 Stat. 524.
182See Patient Protection and Affordable Care Act, Pub. L. No. 111-148, 124 Stat. 119 (2010).

The U.S. Code’s core contains the most interconnected sections. See infra App. D. Appendix A
formally defines “core.” See infra App. A.

121

Figure 3-15: Sections of the U.S. Code modified by PPACA. Nodes in red belong to
the largest connected component in this graph, which can be interpreted as the core

of PPACA.

Figure 3-16: Sections of the U.S. Code modified by the Omnibus Appropriations
Act of 2009. Nodes in red belong to the largest connected component in this graph,

which can be interpreted as the core of the bill.

122

We highlight nodes in these networks with two colors. Nodes in red represent the

core of the law ,183 while nodes in blue represent the remaining sections of the law.

That is, the nodes in red in Figure 3-15 represent the largest connected component

of PPACA, while the nodes in red in Figure 3-16 represent the largest connected

component of the Omnibus Appropriations Bill. Our graph layout algorithm places

nodes in a circular fashion, with nodes with high levels of connectivity drawn more

toward the center of the graph. As the figures indicate, the PPACA has many more

interconnections between its sections. On the other hand, there are almost no cross-

citations behind sections of the Omnibus Appropriations Bill. As Figure 3-16 shows,

there are six sections that cite each other and form the core of the bill.184 Thus, the

Omnibus Appropriations Bill has a much lower degree of coupling than PPACA.

Appendices B and C show that these properties are not a fluke. Appendix B ex-

amines all appropriations bills passed since the 104th Congress. Each law corresponds

to a figure in the appendix, which shows only the core of the law . As Appendix B

shows, appropriations bills generally have very small cores. Appendix C, in contrast,

shows the bills passed since the 104th Congress that have cores larger than 50.

One important conclusion from these results is that, even though appropriations

bills are large, an expert reader can understand one section of it without needing to

understand many other sections. In this respect, appropriations bills are simple. On

the other hand, many of the sections of PPACA are coupled with other sections. To

understand the impact of one section, an expert needs to understand the law as a

whole, and may need to follow many levels of citations in the act. In this respect, the

PPACA requires nonlinear, careful reading, making it very complex and challenging

to understand. This insight emerges from examining the network structure of the

law.

183See infra Appendix A
184See Omnibus Appropriations Act, 2009; supra Figure 3-16.

123

3.8 Structure of the Current U.S. Code: Titles 12

(Banks and Banking) and 26 (Internal Revenue

Service)

In this section, we use our techniques to perform case studies of two very complex U.S.

Code titles: Title 12 (Banks and Banking) and Title 26 (Internal Revenue Code).185

Using our techniques, we can identify the sections with:

1. the highest complexity, according to the cyclomatic measure of conditional

statement counts;

2. the highest degree of coupling, according to our core-periphery analysis.

Cyclomatic complexity will give us sections that have a high level of branching, and

are therefore difficult to interpret without considering multiple conditional scenarios.

The PageRank metric will show sections that, when modified, have a large probability

of affecting other sections in their respective titles.186

3.8.1 Case Study of Title 12

Title 12 contains laws related to banks and banking institutions.187 The banking sec-

tor in the United States has, as a result of consolidation and innovation, become more

complex—today’s financial institutions are involved in a wide array of transactions

and activities that simply did not exist a generation ago.188

Along with multiple waves of financial crises and regulatory activity throughout

the 20th and 21st centuries,189 we argue that Title 12 can be challenging for the

non-specialist to understand.190 Our goal is to analyze and visualize the structure of
185See 12 U.S.C (2012); 26 U.S.C. (2012).
186See supra notes 125–26 and accompanying text; discussion infra Part VI.A.
187Banks and Banking, 12 U.S.C. (2012).
188See Lisa M. DeFerrari & David E. Palmer, Supervision of Large Complex Banking Organizations

Fed. Res. Bull., Feb. 2001, at 47.
189See Laureen Snider, The Conundrum of Financial Regulation: Origins, Controversies, and

Prospects , 7 Ann. Rev. L. & Soc. Sci. 121, 123–28 (2011).
190See 12 U.S.C (2012).

124

Table 3.8: Sections of Title 12 with Highest Cyclomatic Complexity

Section Number Name Number of
Conditional Terms

§5390 Power and duties of the
corporation 187

§1821 Insurance Funds 183
§1464 Federal savings associations 138

§1715l
Housing for moderate
income and displaced

families
130

§1467a Regulation of holding
companies 128

Title 12, as well as to pinpoint areas that are especially complicated. We do this by

computing the cyclomatic complexity of each section of Title 12, and Table 3.8 reports

the sections with the highest complexity. Any effort to reform banking regulation

should begin with a systematic refactoring and simplification of these sections.

Another tool we can use is the network of citations that is produced by Title 12.

This network can be visualized in Figure 3-17 , which shows a very dense graph. Nodes

highlighted in red correspond to the core of this graph, and make up a significant

fraction of Title 12. Thus, even a slight modification to a section of Title 12 is

likely to have large repercussions across all other sections, and Figure 3-17 provides a

systematic way to gauge such repercussions before any modification is implemented.

While it is helpful to visualize Title 12 as a network in this way, it is hard to specify

the most “influential” sections of the Title just by looking at this network. It would

seem from the metrics so far that all sections in the core of Title 12 would be just

as influential. In order to break this tie, we introduce the PageRank metric, which

is frequently used in network analysis and has been used to rank the importance of

web pages for Internet search engines.

Table 3.9 gives the nodes in Title 12 with the highest PageRank. The one with

the highest PageRank (and therefore the most influential under this metric) is 12

U.S.C. § 1481, which is the Bank Holding Company Act’s definitions section.191 This

19112 U.S.C. 1481 (2012).

125

Figure 3-17: Core-Periphery Network of Title 12 (Banks and Banking)

fact suggests that, if the definitions in this section were to be amended by a financial

reform, then it would have a significant impact on the interpretation of all other

sections of Title 12.

3.8.2 Case Study of Title 26 (Internal Revenue Code)

We apply the same analysis to Title 26 (Internal Revenue Code), which is known to

be a very complex title of the U.S. Code.192 Figure 3-18 shows the network structure

induced by cross-citations in Title 26, with nodes in red again showing nodes that

are in the core of the title. As we can see, Title 26 is even denser and has a larger

core than Title 12.

We can use cyclomatic complexity and PageRank to find significantly complex

sections of Title 26. Table 3.10 shows the Title 26 sections with the highest cyclomatic

complexity. Table 3.11 gives the sections in Title 26 with the highest PageRank. The

one with the highest PageRank (and therefore the most influential under this metric)

is 26 U.S.C. §501, which defines exemptions from taxation. As in our analysis of Title
192The 2012 National Taxpayer Advocate’s Report to Congress declared: “The most se-

rious problem facing taxpayers—and the IRS—is the complexity of the Internal Rev-
enue Code (tax code).” Nat’l Taxpayer Advocate, 2012 Annual Report to Congress
3 (2012),http://www.taxpayeradvocate.irs.gov/2012-Annual-Report/downloads/
Most-Serious-Problems-Tax-Code-Complexity.pdf . The Report estimated that Ameri-
cans spend 6.1 billion hours per year on tax compliance. Id.

126

http://www.taxpayeradvocate.irs.gov/2012-Annual-Report/downloads/Most-Serious-Problems-Tax-Code-Complexity.pdf
http://www.taxpayeradvocate.irs.gov/2012-Annual-Report/downloads/Most-Serious-Problems-Tax-Code-Complexity.pdf

Table 3.9: Title 12 Sections with Highest PageRank

Section
Number

Name Beginning Excerpt

1841
Bank Holding
Company Act

Definitions
Except as provided in paragraph (5) of this subsection,
“bank holding company” means any company which has
control over any bank or over any company that is or be-
comes a bank holding company by virtue of this chapter.

101 Repealed Section 101, acts Mar. 14, 1900, ch. 41, §12, 31 Stat. 49;
Oct. 5, 1917, ch. 74, §2,40 Stat. 342, provided for delivery
of circulating notes in blank to national banking associa-
tions depositing bonds with Treasurer of United States.

1818

Termination of
Status as Insured

Depository
Institution

(a) Termination of insurance
Voluntary termination
Any insured depository institution which is not
(A) a national member bank;
(B) a State member bank;
(C) a Federal branch;
(D) a Federal savings association; or
(E) an insured branch which is required to be insured under
subsection (a) or (b) of section 3104 of this title,
may terminate such depository institution’s status as an in-
sured depository institution if such insured institution pro-
vides written notice to the Corporation of the institution’s
intent to terminate such status not less than 90 days before
the effective date of such termination.

1709 Insurance of
Mortgages (a) Authorization

The Secretary is authorized, upon application by the mort-
gagee, to insure as hereinafter provided any mortgage of-
fered to him which is eligible for insurance as hereinafter
provided, and, upon such terms as the Secretary may pre-
scribe, to make commitments for the insuring of such mort-
gages prior to the date of their execution or disbursement
thereon.

1813
Federal Deposit
Insurance Act

Definitions
(a) Definitions of bank and related terms
(1) Bank
The term “bank” —
(A) means any national bank and State bank, and any Fed-
eral branch and insured branch;
(B) includes any former savings association.

127

Figure 3-18: Core-Periphery Network of Title 26 (Internal Revenue Service)

Table 3.10: Sections of Title 26 with Highest Cyclomatic Complexity

Section Number Name Number of
Conditional Terms

§168 Accelerated cost recovery
system 392

§401
Qualified pension,

profit-sharing, and stock
bonus plan

344

§141 Private activity bond;
qualified bond 213

§3121 Definitions [Subchapter C -
General Provisions] 201

§42 Low-income housing credit 195

12, this fact implies that changing these exemptions would have a wide reaching effect

on the rest of Title 26.

3.8.3 Comparing Titles 12 and 26 to Other Titles

As seen in our visualizations both Title 12 and Title 26 have very large cores, implying

great complexity. A natural question is whether this characteristic is common to all

titles of the U.S. Code. As elaborated more fully in Appendix D, this is not the case.

In fact, Titles 12 and 26 have two of the largest cores in the U.S. Code. The top 5

128

Table 3.11: Title 26 Sections with Highest PageRank

Section Name First Clause
501 Exemption

from tax
on corpora-
tions, certain
trusts, etc.

(a) Exemption from taxation
An organization described in subsection (c) or (d) or section 401
(a) shall be exempt from taxation under this subtitle unless such
exemption is denied under section 502 or 503.

1564 Repealed Section, added Pub. L. 91-172, title IV, §401(b)(1), Dec. 30,
1969, 83 Stat. 600; amended Pub. L. 94-455, title XIX,
§§1901(b)(1)(J)(vi), (21)(A)(ii), 1906(b)(13)(A), Oct. 4, 1976,
90 Stat. 1791, 1797, 1834, related to transitional rules in the case
of certain controlled corporations.

1 Tax Imposed (a) Married individuals filing joint returns and surviving spouses
There is hereby imposed on the taxable income of —
(1) every married individual (as defined in section 7703) who
makes a single return jointly with his spouse under section 6013,
and
(2) every surviving spouse (as defined in section 2 (a)),
a tax determined in accordance with the following table:
If taxable income is: / The tax is:
Not over $36,900 : 15% of taxable income.
Over $36,900 but not over $89,150 : $5,535, plus 28% of the excess
over $36,900.
Over $89,150 but not over $140,000 : $20,165, plus 31% of the
excess over $89,150.
Over $140,000 but not over $250,000 : $35,928.50, plus 36% of
the excess over $140,000.
Over $250,000 : $75,528.50, plus 39.6% of the excess over
$250,000.

170 Charitable,
etc., contri-
butions and
gifts

(a) Allowance of deduction
(1) General rule
There shall be allowed as a deduction any charitable contribution
(as defined in subsection (c)) payment of which is made within
the taxable year. A charitable contribution shall be allowable as
a deduction only if verified under regulations prescribed by the
Secretary.

401 Qualified
pension,
profit-
sharing and
stock bonus
plans

(a) Requirements for qualification
A trust created or organized in the United States and forming part
of a stock bonus, pension, or profit-sharing plan of an employer for
the exclusive benefit of his employees or their beneficiaries shall
constitute a qualified trust under this section —
(1) if contributions are made to the trust by such employer, or em-
ployees, or both, or by another employer who is entitled to deduct
his contributions under section 404 (a)(3)(B) (relating to deduc-
tion for contributions to profit-sharing and stock bonus plans), or
by a charitable remainder trust pursuant to a qualified gratuitous
transfer (as defined in section 664 (g)(1)), for the purpose of dis-
tributing to such employees or their beneficiaries the corpus and
income of the fund accumulated by the trust in accordance with
such plan...

129

Table 3.12: U.S. Code Titles with Largest Cores

Title
Core Size

(Number of
Sections)

26 (Internal Revenue Code) 1037
42 (Public Health and Welfare) 873

12 (Banks and Banking) 279
20 (Education) 234

49 (Transportation) 200

titles with the largest cores are given in Table 3.12 . The average core size of a U.S.

Code title is 89.81, much lower than the size of the cores of Titles 12 and 26. In

Appendix D, we show visualizations of the cores of all U.S. Code titles, illustrating

how rare it is to have a very large and dense core. Thus, our techniques seem to be

useful indicators of complexity for a given title.

3.9 Conclusion

The similarities between software and law is striking—in many respects, law is code.

When viewed from a software engineering perspective, the U.S. Code resembles a

large software system, and the application of software design principles allows us to

quantify the extent to which the law is concise, changing, coupled, and complex. Our

methods reveal the rise, spread, and fall of legal terms used in the U.S. Code, the

structure of the cross-references network, and the types of laws that Congress enacts.

When applied to specific titles, these methods have identified particularly complex

and highly interconnected sections, which should be prime candidates for regulatory

reform and simplification. The sheer size and number of cross references within the

core sections imply that software-engineering methods can play an important role in

leveraging human ability. Therefore, a software engineering approach to measuring

and managing the U.S. Code allows lawmakers to enact better legislation with fewer

vulnerabilities.

Creating less complex laws and simplifying the existing legal code also reduce the

130

number of unintended consequences and ensure more fair and equitable outcomes for

all stakeholders. By developing a more coherent and systematic view of the entirety

of the body of laws governing our society, we create more informed participants in the

legal system, empowering lawyers, judges, and individual citizens in their respective

roles of proposing, enforcing, interpreting, and changing the law. One cannot manage

what one does not measure, and as the U.S. Code becomes larger and more unwieldy,

software-engineering methods can greatly enhance our ability to participate in the

legislative process.

131

132

Chapter 4

Text Reuse and Financial Crisis

Policy Trajectories in Congress

Preamble

This chapter includes content adapted from the following paper:

Li, W., Larochelle, D., Lo, A. W. Estimating Policy Trajectories During the Fi-

nancial Crisis. NLP Unshared Task in PoliInformatics, June 2014 [28].

4.1 Introduction: “Legitimate” Text Reuse in Legal

and Political Texts

Thus far, this thesis has explored features of legal and political texts at multiple

levels: In Chapter 2, common n-grams (up to three words in length) are shown

to be predictive of Supreme Court authorship; in Chapter 3, meanwhile, document

characteristics such as length, cross-references, and conditional statements in the

United States Code provide insights into the structure and evolution of the United

States Code.

A common attribute of both of these previous chapters is that they both use

observations of repeated text (albeit of different lengths) to find interesting patterns

133

and insights. The remaining two chapters of this thesis explore text reuse in further

detail: This chapter focuses on text reuse that occurs in key Congressional bills during

the Financial Crisis, while Chapter 5 introduces a novel probabilistic model for text

reuse and an application to free-form public comments on federal regulations.

In some contexts, text reuse occurs in the form of plagiarism, i.e. misappropriating

someone else’s ideas as one’s own. In legal and political texts, though, such re-

occurring or copied text can occur legitimately in a number of situations:

1. Common legal language: Drafters of new documents may base their writing

on existing documents, or passages may have been approved by lawyers or other

authorities. As a result, large sections of text may occur even in entirely differ-

ent bills, contracts, or other documents. Depending on context, this repeated

text may be considered “boilerplate” or highly material to the subject of the

document.

2. Multiple versions of historical documents: Over time, documents may

be revised, meaning that two different versions may have large amounts of

unchanged, similar text. The structure of text reuse in these contexts, such

as in titles of the U.S. Code from different years in Chapter 3, can reveal the

nature and extent of changes. This chapter explores text reuse within a single

two-year session of Congress, a much shorter period of time.

3. Text reuse as speech: Chapter 5 introduces a novel probabilistic model

for text reuse that, among other applications, can be used to quantify the

occurrence of ideas in a large corpus of text. Measuring the size and viewpoints

of large groups of people who state the same idea identically or similarly is the

focus of the next chapter.

Text reuse has also been the subject of growing academic interest in computa-

tional social science, particularly on historical and political corpora. For example,

the spread of political speech in 19th-century American newspapers, which often

featured reprints of speeches and other articles, has been the subject of study by

134

historians and computer scientists [49]. Other recent work has examined different

mechanisms of text reuse, relating them directly to types of observed overlapping n-

grams: short n-gram overlaps correspond to shared subject matter, moderate n-gram

overlaps are a result of shared rhetorical goals, and longer n-gram overlaps are due

to shared sources [30]. Meanwhile, the work described in this chapter largely stems

from the study of text reuse in different iterations of bills in legislative bodies, partic-

ularly in Congress [49, 56]. Other work in this domain has focused on the influence

of lobbyists and template bills on legislation, particularly at the state level [20, 21].

In addition, beyond academic research, text reuse has begun to make its way into

applications by civil society groups: projects such as Churnalism by the UK Media

Standards Trust [36] and the US Sunlight Foundation seek to find reused text from

corporate press releases in news articles, while groups like Data Science for Social

Good have employed such methods for legislative bills [10].

This expanding body of applications of text reuse suggests that it is a powerful

approach to understanding public speech, and also motivates the development of novel

models that describe text reuse, such as the one described in Chapter 5.

This chapter focuses on text reuse as a historical marker of political document

evolution: We examine the trajectories of policy ideas that eventually become law.

Specifically, we examine the trajectories of ideas contained in four bills related to

the Financial Crisis during the 110th (2007-08) and 111th (2009-10) Congresses. By

identifying the first appearance of bill text, visualizing the results, and constructing

metrics to quantify the congressional “consideration time” of a bill’s ideas, our analysis

reveals that two of the four bills were dominated by ideas that were first introduced

many months before their eventual passage, while the other two bills contained mostly

new text and were truly novel responses to the Crisis. In addition, we also apply the

method to find policy ideas related to the Financial Crisis that were not included in

successful bills. In Chapter 5, we turn our focus to finding text reuse in public speech,

thereby illustrating the wide utility of models of text reuse in legal and political texts.

135

4.2 Text Reuse in Financial Crisis Legislation

The Financial Crisis of 2007–2009 had serious impacts on housing markets, the bank-

ing system, the economy, and society as a whole, compelling the U.S. government to

intervene. In this chapter, we ask questions about the federal policy response: what

policy ideas were invented in response to major events during the crisis, and which

ideas had been under consideration for longer periods of time?

We focus on the United States Congress’s legislative activity between 2007 and

2010. Specifically, we apply text reuse methods to trace the trajectories of policy ideas

contained in four key bills related to the Financial Crisis. Our work, as described

further below, reveals interesting timeline-based patterns of congressional lawmaking

activity for these bills.

4.3 Related Work

Our analysis applies the text-reuse approach to analyzing congressional bills intro-

duced by Wilkerson et al. [56]; we focus on bills related to the Financial Crisis and

compares the patterns of legislative activity that emerge from this analysis. In this

work, we adopt a simpler approach to finding similar bill sections: We do not per-

form local sequence alignment on closely matching sections, and instead use length

and Jaccard coefficient features to classify sections as “matched” and “not matched>.”

We also propose metrics that quantify a bill’s congressional “consideration time” and

extend its application to unsuccessful policy ideas.

4.4 Dataset and Methodology

For this work, we obtained the text of all bills introduced in the 110th and 111th

Congresses from the Congressional Bills Project [4]. The dataset includes bills parti-

tioned by section, along with the bill’s date of issue, chamber of introduction (House

or Senate), and version. Table 1 lists the number of bills introduced and enrolled in

these two congresses.

136

Table 4.1: Summary of Bills in 110th and 111th Congresses

Congress
of Bills

Introduced in
House

of Bills
Introduced in

Senate

Total
Introduced

Total
Enrolled

110th
(2007-08) 10,437 4,755 15,192 439

111th
(2009-10) 8,923 4,795 13,718 367

The following four bills related to the Financial Crisis were analyzed:

∙ Housing and Economic Recovery Act (HERA) of 2008: A law designed

to address the subprime mortgage crisis.

∙ Emergency Economic Stabilization Act of 2008: This law included the

Troubled Asset Relief Program (TARP), a response to the credit crunch and

the risk of failing banks.

∙ American Recovery and Reinvestment Act (ARRA) of 2009: A stim-

ulus bill that made infrastructure investments and aimed to create jobs.

∙ Dodd-Frank Wall Street Reform and Consumer Financial Protection

Act of 2010: A reform bill with substantial changes to American financial

regulations.

Our goal is to find instances of the text of these four final, enacted laws in earlier

bills in the 110th and 111th Congresses. Specifically, given that we have a corpus of

bill sections, we seek to find similar sections from earlier bills.

4.4.1 Finding Similar Sections

To find similar bill sections, we first need a definition of similarity between bill sec-

tions. We adopt an approach in which two sections that share a large number of

common words are considered similar; specifically, we use the Jaccard coefficient, a

widely used similarity metric in natural language processing and other domains [26].

137

For sets of words 𝐴 and 𝐵, the Jaccard coefficient varies between 0.0 (if 𝐴 and 𝐵

have no shared words) and 1.0 (for 𝐴 = 𝐵) and is defined as follows:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴,𝐵) =
|𝐴 ∩𝐵|
|𝐴 ∪𝐵|

(4.1)

Other measures of similarity include the Sørensen-Dice coefficient, which provides

a normalized similarity score and has been used in other text reuse applications [e.g.

49, 56]. These applications also often align two passages of text using local or global

sequence alignment algorithms in order to precisely identify the regions of similarity

within a section. For the purpose of this work, however, we simply use the Jaccard

coefficient as a feature for ease of implementation and because it can be computed

more quickly than the optimal local sequence alignment. More precisely, given two

sequences of words 𝐴 and 𝐵, with 𝑁𝐴 and 𝑁𝐵 numbers of words, respectively, it can

be shown that the Jaccard coefficient can be computed in 𝑂(𝑁𝐴 + 𝑁𝐵) operations,

while sequence alignment requires 𝑂(𝑁𝐴 ·𝑁𝐵) operations.

In addition to the time required to compute the similarity metric between two

passages, a second challenge of text reuse systems is computing the similarity be-

tween a query passage and all of the passages in the database. In the case of the

Congressional Bills dataset of this chapter, there are more than 250,000 bill sections;

the naive, pairwise approach to computing the Jaccard coefficient between even a

single query bill section and all bill sections is impractical; for a dataset of 𝐷 docu-

ments, the time complexity would be 𝑂(𝑁 ·𝐷). To overcome this issue, we built an

inverted index (hash table) that maps words to bill sections for every bill introduced

in the 110th and 111th Congresses. Instead of 𝑂(𝑁 ·𝐷) operations, finding the sets of

documents for each of the 𝑁 query words requires just 𝑂(𝑁) lookups, and sorting the

resulting short list of documents by the number of words that they contain can also

be done quickly. For the four bills of interest in this chapter, we used the following

procedure:

∙ For each bill section (the “target section”), the 100 bill sections (out of 259,418)

with the most matching words were determined using this hash table method.

138

These top 100 sections are the “candidate matched sections.”

∙ For each “candidate matched section” and the target section, we computed the

Jaccard coefficient, which produces a better re-ranking of “candidate matched

sections” than simply the number of matching words.

∙ As described further below, the length, Jaccard coefficient, and other decision

rules were used to determine whether sections were true matches. The true

matches correspond to earlier instances of the text that was part of the final

enrolled bill.

Visualizations of this procedure for the four bills of interest are shown in the next

section.

4.4.2 Classifying Matched Sections

Figure 4-1 shows the distribution of target section word lengths and Jaccard coeffi-

cients for 245 bill sections paired with query sections from the Emergency Economic

Stabilization Act of 2008, which includes TARP. We examined each pair of sections

manually labeled them as “matched” or “non-matched”. In general, shorter sections

required a higher Jaccard coefficient in order to be classified as a true match; for

example, the “Short Title” sections of entirely unrelated bills often contained almost

identical language, except for the short title itself. The length and Jaccard coefficient

are informative features that help separate matches from non-matches.

For our purposes, we also excluded certain “boilerplate” sections that occur in

many bills, such as severability clauses. We used this ground-truth labeling for TARP.

For the other three bills, based on Figure 4-1, we used a Jaccard coefficient threshold

of 0.88 for sections less than 500 words long and a threshold of 0.75 for longer sections.

4.5 Results and Visualization

Figures 4-2, 4-3, 4-4, and 4-5 show when the sections of the four target bills were

introduced in the 110th or 111th Congresses. Repeated runs of contiguous sections

139

Figure 4-1: Jaccard coefficients and lengths for 246 labeled matching and
non-matching bill sections.

are annotated with their policy content. These plots reveal interesting insights about

the dynamics of legislation in Congress:

4.5.1 Housing and Economic Recovery Act (HERA) of 2008

Figure 4-2 illustrates the trajectory of various policy ideas that were incorporated into

the Housing and Economic Reform Act (HERA) of 2008. Its provisions included the

creation of the Federal Housing Finance Industry, which was empowered to place the

government-sponsored enterprises Fannie Mae and Freddie Mac under government

conservatorship (it would do so in September 2008 [23].

We label five regions with varying length and consideration times that correspond

to different kinds of policies. This figure underscores how bills can contain a wide

range of policy ideas; in fact, at least three “Acts” (the Federal Housing Finance

Regulatory Reform Act, the Secure and Fair Enforcement of Mortgage Licensing

Act, and the FHA Modernization Act) are all part of this bill. Rising economic

uncertainties and the growing housing crisis led to the passage of all of these pieces

of legislation as part of HERA in July 2008.

140

Figure 4-2: Housing and Economic Recovery Act (HERA)

4.5.2 Emergency Economic Stabilization Act of 2008 (includ-

ing TARP)

In Figure 4-3, we annotate the contents of the Emergency Economic Stabilization Act,

which includes, as the first part of the bill, the Troubled Asset Relief Program (TARP)

that created a $700 billion fund to purchase assets and equity from failing financial

institutions [39]. . Given the politically unpalatable nature of such a bailout, the

U.S. House of Representatives voted against the bill on September 29, 2008, causing

the Dow Jones Industrial Average to fall 7 percent, or 777 points, which, as of the

publication of this thesis, still remains the largest one-day drop in the history of the

stock market index.

Figure 4-3 is notable for what it reveals about the contents of the Emergency

141

Enacted October 3, 2008 Enacted October 3, 2008

Failed House Vote (Dow Jones drops 777 points)
September 29, 2008

Tax Extenders and Alternative Minimum Tax Relief
Act of 2008

Reauthorization of the Secure Rural Schools and
Community Self-Determination Act of 2000

Energy Improvement and Extension Act of 2008

Figure 4-3: Troubled Asset Relief Program (TARP)

Economic Stabilization Act: It contains legislation related to renewable energy tax

credits, a stalled tax bill that was a point of contention between Democrats and

Republicans, and provisions related to Secure Rural Schools Act, which relates to

emergency services in rural communities. These policy riders, which, at best, have

a tenuous relationship to TARP, were inserted into the successful bill to obtain the

majorities needed for it to pass the House and Senate. This figure demonstrates how

bills are merely vehicles for policies, and the dealmaking that goes into the lawmaking

process: Any bill that can assemble a majority of legislators to vote for it can become

enacted law. Finding these coalitions of legislators and viable bill vehicles can be a

substantial part of the role of any Member of Congress and their staff.

4.5.3 American Recovery and Reinvestment Act (ARRA) of

2009

Figure 4-4 shows the trajectories of policy ideas of President Barack Obama’s early-

first-term economic stimulus package, enacted in February 2009. In contrast to the

142

Figure 4-4: American Recovery and Reinvestment Act

three other bills, this enacted law contains relatively few long-considered policy ideas,

with the only exception being a set of health information technology provisions from

the previous Congress. As a signature bill of a new presidential administration, it

is perhaps unsurprising that ARRA contains a relatively large amount of original

content, with little reused text from the preceding two-year period.

4.5.4 Dodd-Frank Wall Street Reform and Consumer Protec-

tion Act of 2010

The Dodd-Frank law, shown in Figure 4-5, was a major piece of financial reform

legislation with sweeping impacts on many different aspects of financial regulations.

In this plot, the varying consideration times for different sections of Dodd-Frank are

interesting. While the analysis of “regulatory buildup” is beyond the scope of this

chapter, Figure 4-5 suggests how text reuse might be used to study the existence and

extent of such a phenomenon.

143

Figure 4-5: Dodd-Frank Wall Street Reform and Consumer Protection Act

4.6 Bill Consideration Time Metrics

The visualization of these four bills illustrates how many sections were actually in-

troduced in Congress days, months, or even years earlier. We can define a summary

metric of the “consideration time” metric in two ways:

∙ Week Threshold (WT): The percentage of bill sections introduced more than 𝑘

weeks prior to the passage of the bill. Based on these four financial bills, we set

𝑘 = 12, corresponding to about three months.

∙ Average gestation (AG): The average time that the sections of a bill were con-

sidered. Formally, if a bill has n sections, had its final successful vote on day

𝐷𝑝, and section 𝑖 was introduced on day 𝐷𝑖:

𝐴𝐺 =
1

𝑛

𝑛∑︁
𝑖=1

(𝐷𝑝 −𝐷𝑖) (4.2)

The values of these two metrics for each of the four bills under study are shown in

Table 2. They capture how HERA and Dodd-Frank contain provisions that had long

144

Table 4.2: Consideration Time Metrics for Financial Crisis Bills

Bill WT (𝑘=12) AG (weeks)
HERA 0.541 26.0
TARP 0.154 7.2
ARRA 0.086 5.8
Dodd-Frank 0.551 21.4

consideration times in Congress, while TARP (as an urgent response to the collapse

of systemically important financial institutions) and ARRA (as the product of the

new Obama administration) were considered for much shorter periods.

4.7 Analysis and Discussion

4.7.1 Consideration Times of Financial Crisis Bills

The results in Table 4.2 show that TARP and ARRA had relatively short consid-

eration times compared to HERA and Dodd-Frank. TARP was a response to the

failure of Lehman Brothers on September 14, 2008—time was of the essence, com-

pelling Congress to quickly draft legislation enabling the federal government to buy

toxic assets from financial institutions. Such a plan, it appears, simply did not exist

prior to September 2008, or at least was not considered on the floor of the House

or Senate. Meanwhile, ARRA’s consideration time metrics are also short, albeit for

different reasons: it was the product of a new presidential administration, and other

than one part focused on electronic health records, it appears to have contained new

policy ideas.

The sections added to these two bills were, arguably, peripheral to their respective

core missions. These “policy riders” are typically discussed in the context of appro-

priations bills and are the subject of substantial controversy []. The political urgency

associated with TARP and ARRA seem to have made them suitable for policy rider

inclusion.

In contrast, HERA and Dodd-Frank had longer gestation times. Their long-

considered bill sections appear to be germane to the overall goal of the bill. One

145

Figure 4-6: Bill sizes and average gestation times in 110th Congress.

extension of this work would be to identify whether these ideas were actually intro-

duced in earlier Congresses or in other kinds of political documents.

4.7.2 Summarizing Congressional Lawmaking Activity

We have focused on the Financial Crisis through the lens of lawmaking activity. We

chose to explore bill text for the following reasons:

∙ Congressional bills are the distillation of the debates surrounding policy ideas

– they contain text that could potentially become law.

∙ The visualization of enrolled bills is inherently biased toward successful ideas,

which inevitably discounts other dimensions of the data, such as the structure

of previously introduced bills. However, focusing on policy ideas with high

“fitness” seems both reasonable and useful.

4.7.3 Distribution of Consideration Times

For comparison, Figure 4-6 shows the bill sizes and average gestation times of 439

enrolled bills in the 110th Congress, for which the dataset had a complete set of dates

for enrolled bills.

Somewhat surprisingly, the 110th Congress did not appear to consider bills with

the most number of sections for longer periods of time: the average gestation seems

insensitive to the number of sections. Similarly, there did not seem to be a relationship

between the week threshold metric and bill size.

146

Table 4.3: S. 2338 Policy Sections Excluded from HERA

Bill Section Title Maximum Jaccard Score
102 Maximum principal loan obligation 0.68
103 Cash investment requirement and pro-

hibition of seller-funded downpayment
assistance

0.82

112 Home equity conversion mortgages 0.57
123 Moratorium on implementation of risk-

based premiums
0.49

210 Leasehold requirements 0.81

Along with TARP and HERA, we annotated Figure 4-6 with the following bills:

∙ H.R. 2764, the bill with the most number of sections in the 110th Congress, is

the Consolidated Appropriations Act of 2008.

∙ H.R. 4986 and H.R. 6124 are the National Defense Authorization Act and the

Food, Conservation, and Energy Act, respectively.

∙ The two bills with the longest AGs were H.R. 2040 (the Civil Rights Act of

1964 Commemorative Coin Act) and H.R. 923 (the Emmett Till Unsolved Civil

Rights Act of 2007), both sponsored by Rep. John Lewis (D-GA). Interestingly,

H.R. 923 was delayed because Sen. Tom Coburn (R-OK) placed a hold on it

until it passed in September 2008.

4.7.4 Finding Unsuccessful Policy Ideas

The method applied in this project can also be used to find Financial Crisis-related

policies that did not become law. As a case study, we selected S. 2338 (the FHA

Modernization Act of 2007) from the 110th Congress. The visualization (Figure 4-7)

now includes markers after its passage in the Senate in December 2007. S. 2338 has

twelve sections that are “non-matches” with HERA, seven of which are structural or

boilerplate elements. Table 4.3 lists the titles of the other five excluded sections and

their maximum Jaccard coefficient with any HERA section.

147

Figure 4-7: Trajectories of sections of S. 2338, FHA Modernization Act of 2007

For some of these sections, the maximum Jaccard coefficient suggests overlaps

with parts of HERA. For example, HERA also includes a section entitled “Maximum

principal loan obligation,” but the HERA version has additional text related to the

“treatment of up-front premiums.” This clause’s inclusion reduced the Jaccard coef-

ficient of Section 102 of S. 2338 to below the threshold required to be a “matched”

section.

4.8 Limitations and Further Work

Conceptually, parsing bills into sections is logical — as Wilkerson et al. [56] note,

Section 104 of Title 1 of the United States Code states that a section “shall contain,

as nearly as may be, a single proposition of enactment.” In practice, bill sections differ

substantially in length and policy content. As well, ambiguity may exist about the

definition of a section—all 36 sections of Title 1 of the TARP part of the Emergency

Economic Stabilization Act, for instance, were defined as a single “section” in the

dataset. For consistency, we did not attempt to re-section the bills.

Meanwhile, compressing a bill section into a single dot is clearly a simplification.

A worthwhile extension could be incorporating interactivity, such as zooming into

specific time frames or clicking points to reveal the original bill text.

148

Beyond studying the Financial Crisis, this text-based approach could have value

as an open-government tool. For example, it is already possible, through a web

interface called “Scout,” to receive notifications when a vote on a bill takes place in

Congress [46]. Following the trajectory of highly similar passages of text through

the lawmaking process could help citizens, journalists, and other interested parties

efficiently keep track of the progress of policy ideas through Congress.

4.9 Conclusions

In this chapter, we provide an estimation of policy trajectories in four significant bills

passed by Congress related to the Financial Crisis. The visualization makes it possible

to determine which policy proposals were considered in Congress for longer periods of

time, and which parts of these bills were genuinely new. Our “week threshold” (WT)

and “average gestation” (AG) metrics reveal that HERA and Dodd-Frank had much

longer consideration periods than TARP and ARRA. The computational approach

presented here could be useful for promoting greater understanding and accountability

of Congress.

149

150

Chapter 5

Probabilistic Text Reuse

Overview

Many collections of related documents contain passages of text that are highly similar.

Discovering these passages can be an informative way to represent and understand

interesting hidden structure in the document collection. In this paper, we present a

new probabilistic model for document collections with repeated text passages. Our

Probabilistic Text Reuse (PTR) model takes a generative approach and assumes

that documents are composed of passages, where passages are either drawn from a

canonical set of word sequences or ideas, or from a background language model. We

model ideas as probabilistic finite state transducers, which generate each of the words

in our sequence with some probability of matching, substitution, addition, or deletion.

We also present algorithm for learning these ideas and their locations. Finally, we

illustrate the utility of our model by finding common ideas in a large set of public

comments on proposed U.S. net neutrality regulations and repeated sections of text

in U.S. congressional bills. This paper provides a global objective function for text

reuse, algorithms for optimizing this function, and an application for understanding

a large collection of documents.

151

5.1 Introduction

Making sense of a large collection of text documents is an important task in many

domains. For example, in the realm of politics and public policy, politicians may

receive large numbers of letters from their constituents, and government agencies

may receive millions of comments on proposed legislation. Citizens and journalists

may be interested in the evolution of bills, regulations, and other documents released

by government agencies or whistleblowers. Manually reading these large collections

of documents may be impractical; automated and accurate ways of representing the

content and viewpoints of these datasets are needed.

In each of the aforementioned tasks, the collections of text documents have a

common characteristic: there are many instances of reused text. In some cases, such

as when an advocacy organization encourages people to submit a form letter, entire

documents can be repeated; in others, such as a collection of all bills introduced in

a legislative body, smaller parts of documents may be reused. These duplicates can

also be noisy, either due to technical processes (such as optical character recognition

or text formatting variations) or human editing efforts (such as changes in wording or

accidental copying mistakes or changes). Research in text reuse [e.g. 49, 56, 28] aims

to understand documents through patterns of repeated or approximately repeated

text.

In this chapter, we present a principled, probabilistic approach to capture and

quantify these instances of text reuse in a corpus. We describe Probabilistic Text

Reuse (PTR), a generative model for text reuse. Our PTR model explicitly learns a

latent set of canonical text passages, which we term “ideas,” that are directly useful

to a person seeking to make sense of a large collection of documents. Our approach

allows us to handle uncertainty and noise in text reuse — many documents may

contain the same “idea” but with slight variations, and we can discover those examples

in a principled manner. In this way, we take an important step towards automatically

discovering common ideas from such large collections.

The contributions of our work are as follows:

152

1. We present Probabilistic Text Reuse (PTR), a generative model for making

sense of collections of documents that have instances of repeated text. To the

best of our knowledge, the PTR model is the first text reuse model with a

global objective function, enabling patterns of text reuse to be evaluated in a

principled, quantitative manner.

2. We present scalable algorithms for finding good parameter settings for PTR,

including the discovery of ideas, partitions, and assignments.

3. We show the utility of PTR by illustrating how it is helpful for making sense of

tens of thousands of citizen comments on the 2014 proposed rules by the Federal

Communications Commission (FCC) related to net neutrality, particularly in

comparison to more naive approaches to finding reused text and models that

do not take into account word ordering. We also show how it finds repeated

passages of text in bills introduced in Congress over a two-year period.

5.2 Related Work

5.2.1 Text Reuse Approaches

Our work is driven by interest, particularly among computational social scientists,

in text reuse methods to understand large text corpora. Recent research involving

text reuse includes mapping the diffusion of ideas in 19th-century newspapers during

the U.S. Civil War [49], quantifying party contributions to the 2010 U.S. healthcare

reform bill (Obamacare) [56], and tracing policy idea trajectories in Financial Crisis-

related legislation [28]. In these domains, text reuse is a promising approach because

there are substantial instances of copied or repeated text. As well, the content of

the instances themselves are interpretable and often meaningful to social scientists.

Determining whether text reuse exists, where it occurs in a collection of documents,

and the content of repeated text are precisely the goals of both this literature and

this current paper.

153

Currently, text reuse researchers typically use a chain of deterministic methods

to find repeated sections of text in documents. In [49], for example, the researchers

build a hash table of n-grams to find similar sections, run local sequence alignment

algorithms to find matching pairs, and then use agglomerative clustering to group

together similar passages. Each of these steps contains parameters and assumptions,

such as n-gram window sizes, local sequence alignment costs, and clustering criteria,

that could affect the quality of the discovered instances of text reuse. The gap that

our work seeks to address is the lack of a global objective function for evaluating the

quality of a text reuse solution.

5.2.2 Probabilistic Models of Text Corpora

Probabilistic generative models of text, in which words are drawn from some mean-

ingful probability distribution over words, are a principled approach to modeling text

corpora. They have at least three beneficial properties: 1) they assume a plausible,

interpretable method by which the text data is generated; 2) they draw from a rich

set of probability concepts and algorithms for inferring parameters; and 3) they have

been shown to be empirically useful for language analysis tasks.

For instance, building a probabilistic model of text that is likely to appear in a

collection of documents involves the following: 1) assuming that documents are drawn

from a probability distribution over words; 2) inferring the probabilities of words by

counting their relative frequencies, which can be seen as a form of maximum likelihood

estimation; and 3) applying the model for prediction tasks such as speech recognition

or machine translation, or visualizing the results s a word cloud, with more frequent

words being more prominent.

A relevant latent-variable approach to characterizing text is probabilistic topic

models, which assume that there exists a latent set of topics (multinomial distribu-

tions over words), and that each document is a multinomial distribution over topics.

Popular methods for topic modeling include Latent Dirichlet Allocation (LDA) [7]

and Probabilistic Latent Semantic Analysis (PLSA) [22]. Variants of these meth-

ods have been used to understand large text corpora ranging from research fields

154

from scientific articles [6] to political agendas in U.S. Senate press releases [17]. The

highest-weighted terms in a topic often provide some sense of the “meaning” of the

topic, and the corresponding topic weights for a document can indicate what the

document is about.

While they have value, these word-based approaches suffers from limitations for

making sense of the ideas in large document collections. First, they treat documents

as unordered bags of words, losing all of the language structure and voice that inscribe

meaning to pieces of writing. Second, reading the highest-probability words in a topic

is not always effective at interpreting a topic model’s output, a challenge that has

sparked additional work in labeling topics in topic models [33, 43, e.g.] and efforts to

produce more human-interpretable topics [35]. In practice, for a human to make sense

of these documents and topics, it might be necessary to post-topic modeling analysis

and use the highly weighted words in topics as search terms to find and read relevant

documents. While there are variants of LDA that move beyond unigrams into larger

n-grams, they generally do not recover clauses or longer phrases [e.g. 54, 55, 31]. For

these reasons, the outputs of probabilistic topic models alone may be insufficient for

making sense of the content of large document collections.

5.2.3 Text Summarization

Our task is distinct from, though arguably related to, the task of automatic text sum-

marization, particularly in the multi-document setting [see, e.g., 38, 13, 16]. Finding

frequently repeated sections of text in a large collection of documents might be use-

ful for understanding the contents of the corpus, but we do not focus on building a

written, coherent summary in this work. Identifying patterns of repeated text may

itself be useful for understanding the corpus, or the repeated passages may be useful

for other downstream tasks.

155

5.3 Probabilistic Text Reuse Model

We take a generative modeling approach and assume that our documents are com-

prised of text passages, which are sequences of words of varying-length “ideas” that

repeat throughout the corpus. Our working hypothesis in this Probabilistic Text

Reuse (PTR) model is that these ideas are useful units, both for quantitatively ex-

plaining the documents and for humans to make sense of them.

Let 𝐷 be the set of 𝑁 text documents, 𝑑1, 𝑑2, . . . , 𝑑𝑁 . Each document, 𝑑𝑛, consists

of 𝑇𝑛 words, 𝑤1, 𝑤2, . . . , 𝑤𝑇𝑛 ; let 𝑉 be the set of unique words, meaning that |𝑉 | is the

size of the vocabulary. PTR places the following generative process on the document

collection 𝐷:

1. We assume that there exist 𝐼 “text sequence generators” or ideas {𝑘1, . . . , 𝑘𝐼}.

These ideas can be of varying length. As described further below in Section 5.3,

ideas are modeled as probabilistic finite state transducers (PFSTs), which are

probabilistic functions over sequences of words.

2. A document 𝑑𝑛 is a sequence of partitions, which contain passages of text. Each

partition is either generated from a probabilistic finite state transducer (PFST)

of idea 𝑘𝑖 or from a background language model. We use 𝑧𝑛𝑚 to denote the

start index of the 𝑚𝑡ℎ partition in document and 𝑎𝑛𝑚 to denote the idea or

background model associated with the 𝑚𝑡ℎ partition.

In contrast to models that assume that documents are unordered bags of words,

the ideas 𝑘𝑖 consist of ordered sequences of words, which can be of varying length

(generally, as shown below, ideas can be as short as clauses to paragraphs). Thus,

our PTR model can capture more interpretable, meaningful entities than a standard

topic model, which usually describes documents as unordered mixtures of n-grams.

Let 𝐾 be the collection of ideas {𝑘𝑖}, 𝑍 be the collection of partition indices {𝑧𝑛𝑚},

and 𝐴 be the collection of assignments {𝑎𝑛𝑚}. We place priors 𝑃 (𝐾), 𝑃 (𝑍), 𝑃 (𝐴)

over each of these collections; given the data 𝐷, the joint distribution 𝑃 (𝐷,𝐾,𝑍,𝐴)

156

is given by

𝑃 (𝐷,𝐾,𝑍,𝐴) = 𝑃 (𝐾,𝑍,𝐴) · 𝑃 (𝐷 | 𝐾,𝑍,𝐴)

= 𝑃 (𝐾) · 𝑃 (𝑍) · 𝑃 (𝐴)
∏︁

partitions, 𝑧𝑛𝑚

𝑃 (𝑑𝑧𝑛𝑚 | 𝑘𝑎𝑛𝑚)
(5.1)

where we use 𝑑𝑧𝑛𝑚 to denote the text associated with the partition 𝑧𝑛𝑚 and the

assignment 𝑎𝑛𝑚 can be either an idea 𝑘𝑖 or a background language model, which we

denote by 𝑘0.

Our objective is to find the parameter settings for 𝐾, 𝑍, and 𝐴 that maximizes

the objective function, i.e.:

arg max
𝐾,𝑍,𝐴

𝑃 (𝐷,𝐾,𝑍,𝐴) = arg max
𝐾,𝑍,𝐴

𝑃 (𝐾,𝑍,𝐴) · 𝑃 (𝐷 | 𝐾,𝑍,𝐴) (5.2)

We describe each of these factors below.

Idea Model, 𝑃𝑟(𝐾) In our model, we consider frequently reused passages of text as

the ideas: Through some societal process, these ideas occur in multiple documents in

our collection. We first generate the length of an idea 𝐿𝑖 from a uniform distribution

between 𝑁𝑘,𝑚𝑖𝑛 and 𝑁𝑘,𝑚𝑎𝑥 words and then generate each of the words a unigram

language model:

𝐿𝑖 ∼ Unif(𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥)

𝑘𝑖(𝑙) ∼ 𝜋(𝑤)

𝑃 (𝐾) =
𝐼∏︁

𝑖=0

1

𝑁𝑚𝑎𝑥 −𝑁𝑚𝑖𝑛

·
∏︁

words,𝑤𝑙∈𝑘𝑖

𝜋(𝑤𝑙)

where 𝜋(𝑤) is the probability of generating word 𝑤; we set 𝜋(𝑤) to be the empirical

probabilities of each word in the corpus. Thus, the cost of generating an idea is

157

the probability of generating its length and each of its words from the background

language model. More frequent words in the corpus tend to have higher probabilities,

so they are more likely to be part of an idea.

We seek to discover ideas that are longer phrases, as opposed to short n-grams

that may occur frequently but not be as meaningful. Consequently, we set 𝑁𝑚𝑖𝑛 to be

about a few words long (we use 𝑁𝑚𝑖𝑛 = 5 in our experiments. It is also worth noting

that our model might consider “boilerplate” text (e.g. addresses, form language, or

preambles in legal documents) as “ideas” — the definition of “boilerplate” might differ

across applications. However, in practice, these boilerplate ideas should be easily

identifiable from the output of the model and could be appropriately disregarded by

a human analyst.

Partitions Model, 𝑃 (𝑍) We posit that the number of partitions in a document

|𝑧𝑛| is drawn from a uniform distribution Unif(0, 𝑁𝑧). We choose to model |𝑧𝑛|, rather

than the specific locations 𝑧𝑛𝑚, for robustness — each partition can independently

choose its length. As a result, the probability of a set of partitions 𝑃 (𝑍) is simply

𝑃 (𝑍) = (
1

𝑁𝑧

)𝑁

partitions per document ∼ Unif(1, 𝑁𝑧)

𝑃 (𝑍) =
𝑁∏︁

documents,𝑛

(
1

𝑁𝑧 − 1
)

= (
1

𝑁𝑧 − 1
)𝑁

158

Assignments Model, 𝑃 (𝐴) Each partition is assigned either to an idea 𝑘𝑖 or the

background language model with some hidden parameters 𝜃𝑖:

𝑃 (𝐴) =
∏︁
𝑛,𝑚

𝐼∏︁
𝑖=0

𝜃I(𝑎𝑛𝑚=𝑖) (5.3)

Text Passage Model, 𝑃 (𝐷|𝑍,𝐾,𝐴) A passage, 𝑑𝑖, is either generated from the

background language model 𝑘0 or from an idea, 𝑘𝑖. In this work, we simply use a

unigram background language model:

𝑃 (𝑑𝑧𝑛𝑚 | 𝑎𝑛𝑚 = 𝑘0) =
𝐿𝑛𝑚∏︁
𝑙=1

𝜋(𝑑𝑧𝑛𝑚(𝑙)) (5.4)

where 𝜋(𝑤) is the empirical frequency of word 𝑤 is the corpus.

Since both the partition text 𝑑𝑧 and the assigned idea 𝑘𝑎 are sequences of words,

we need to define a conditional probability distribution of any sequence of words given

an idea. Conceptually, we seek a function that does the following:

𝑃 (𝑑𝑧 | 𝑘𝑎) = stochastic edit distance between 𝑑𝑧 and 𝑘𝑎 (5.5)

We define this sequence using finite state transducers (FSTs). FSTs are finite

automata that read an “input” string and, in addition, produce an “output” string. In

PTR, we use probabilistic finite state transducers (PFSTs) for our ideas, which have

valid probabilities as weights in each of the transitions and place a valid distribution

over possible output strings. Specifically, we use the PFST formulation described

in [14]. The PFST for each idea 𝑘𝑖 is defined as follows:

∙ The states of the PFST are the start state 𝑞0, states 𝑞1, . . . , 𝑞𝐿𝑖
corresponding

to each word 𝑤1, . . . , 𝑤𝐿𝑖
that make up the idea 𝑘𝑖, and an end state 𝑞𝑓 .

∙ For each of the states from 𝑞0 to 𝑞𝐿𝑖
, there are |𝑉 | self-transitions, corresponding

to insertions of any of the |𝑉 | words in th vocabulary, and |𝑉 |+1 transitions to

159

the next state. The transitions are described with two symbols: one for the input

string and one for the output string that are, by convention, represented with a

colon (:) separation. In the case of an idea currently in the state corresponding

to the word “a”, the possible 2|𝑉 |+ 1 transitions can be represented as follows:

– 𝑎 : 𝑎 advances the FST to the next state with a match probability 𝑝𝑚.

– 𝑎 : 𝑏 advances the FST to the next state with a substitution (𝑝 = 𝑝𝑠/|𝑉 |

for each of |𝑉 | − 1 words in the vocabulary). There are |𝑉 | − 1 possible

substitutions.

– 𝑎 : 𝜖 advances the FST to the next state with a deletion probability 𝑝𝑑.

– 𝜖 : 𝑏 keeps the FST in the current state, and represents an insertion with

probability 𝑝𝑖. There are |𝑉 | possible insertions, corresponding to each of

the words in the vocabulary.

∙ The state corresponding to the last word, 𝑞𝐿𝑖
, has just two types of transitions:

with probability 𝑝𝑖, the PFST stays in the current state, representing an in-

sertion (with probability 𝑝𝑖). Otherwise, the string terminates with probability

1− 𝑝𝑖.

With these operations, it is possible to generate any string from the PFST. In

fact, in general, there are multiple ways to generate an output string from a PFST.

We can efficiently compute the probability of an observed string—which involves

summing over the probabilities of all of the paths in the PFST—through dynamic

programming, i.e. the forward algorithm. For this work, we fix the parameters

{𝑝𝑚, 𝑝𝑠, 𝑝𝑑, 𝑝𝑖} = {0.8, 0.1, 0.1/|𝑉 |, 0.1}, which provides high weights for similar or

identical strings and equal penalties for an addition, substitution, or deletion. The

corresponding language model for a three-word idea is shown in Figure 5-1.

For any string, we can infer the probability that it was generated by the idea,

along with most likely sequence of matches, additions, deletions, and substitutions,

using a dynamic programming algorithm.

To summarize, Figure 5-2 shows the purpose of PTR: The goal is to take a large

160

START 𝑤0 𝑤1 𝑤2 END

MATCH: 𝑝𝑚

SUB/DEL: 𝑝𝑠 · 𝜋(𝑤𝑖)

ADD: 𝑝𝑎 · 𝜋(𝑤𝑖)

MATCH: 𝑝𝑚

SUB/DEL: 𝑝𝑠 · 𝜋(𝑤𝑖)

ADD: 𝑝𝑎 · 𝜋(𝑤𝑖)

MATCH: 𝑝𝑚

SUB/DEL: 𝑝𝑠 · 𝜋(𝑤𝑖)

ADD: 𝑝𝑠 · 𝜋(𝑤𝑖)

𝑝 = 0.9

ADD: 𝑝𝑠 · 𝜋(𝑤𝑖)

Figure 5-1: Probabilistic finite state transducer (PFST) for three-word idea

collection of unlabeled documents (𝐷) and infer both the ideas (𝐾) for the corpus

and the partitions (𝑍) and assignments (𝐴) for each document.

Figure 5-2: Inputs and outputs of Probabilistic Text Reuse (PTR)

5.4 Inference

Inference in our Probabilistic Text Reuse model involves inferring the ideas 𝐾, the

partitions 𝑍, and the assignment of partitions to ideas 𝐴. To obtain an approximate

MAP solution to the objective in equation 5.1, we iteratively optimize the each of

these three sets of hidden variables given the rest.

5.4.1 Initialization

A good initialization of the ideas 𝑘 can greatly reduce the number of iterations re-

quired to converge to the approximate MAP solution. We first find a large number

of word sequences that may be recurring ideas in the dataset. Through a hash table,

we can count and mark the locations, which we call “anchors”, of the most common

161

n-grams of size 5, the minimum length of an idea in our model. We choose a random

subset of these anchors and perform local sequence alignment on the other anchor

positions to find a common idea string. An alternative, more scalable approach is to

run a sentence boundary detector on the data, and to consider sentence boundaries

as passage boundaries. In a later step, we can then merge together ideas that are

more than one sentence in length.

5.4.2 Updating Ideas

Given a set of partitions assigned to a particular idea 𝑘, updating the associated idea

string is a form of the Steiner consensus string problem [19]. In the general case,

finding the Steiner consensus string (the idea string that would minimize the distance

to all of the strings in the set) is NP-hard [47]; however, choosing the best-performing

representative from the set of partitions as the idea is guaranteed to be a reasonable

approximation — the best performing string in the set will be no worse than twice

the true optimum. We update the idea by choosing the string among those assigned

to the idea that maximizes the probability of the set of partitions currently assigned

to the idea.

5.4.3 Updating Partitions and Assignments

Next, we map sequences of text to our ideas or the background language model. Using

dynamic programming, we find the probability that the text was generated from the

PFST corresponding to each of the ideas. If this probability is greater than the the

passage’s score from the background language model, then this passage is assigned to

the idea. Each idea now has a set of passages assigned to it that either match exactly

or approximately. We devise a novel dynamic programming algorithm to accomplish

this task — the alignment of an idea to a substring of a document is independent

of the preceding and following substrings. As a result, it is possible to compute all

possible alignments and then find the most probable path through the document.

162

5.4.4 Merging Ideas

Merging similar ideas means that the cost of creating one of the ideas is no longer

needed, and it also increases the 𝑃 (𝐴) assignment term. However, merging dissimilar

ideas can reduce the likelihood, because having more ideas can match passages of text

more closely. We propose the following approach to merge ideas:

1. Count pairs of consecutive idea assignments across the corpus, where “consec-

utive idea assignment” means that an adjoining pair of partitions are assigned

to two ideas.

2. Choose the most popular consecutive assignment and propose a new idea that

consists of the merged versions of the two ideas. We also retain the two original

ideas, in case there are other partitions throughout the corpus that most closely

align with just one of these ideas.

3. If the likelihood of the partitions belonging to these consecutive ideas increases

when they are assigned to a single, merged idea, then the ideas are merged.

5.4.5 Assignment Probabilities

During inference, we fit the maximum likelihood parameters to 𝜃𝑖, which results in

Pr(𝐴) =
∏︁
𝑛,𝑚

𝐼∏︁
𝑖=0

𝑁𝑖

|𝐴|

I(𝑎𝑛𝑚=𝑖)

(5.6)

where 𝑁𝑖 is the number of passages assigned to idea 𝑖 and |𝐴| is the total number of

passages.

5.5 Dataset: FCC Comments on Net Neutrality

We use submissions from the first comment period (May 15 to July 15, 2014) to the

U.S. Federal Communications Commission (FCC) on its proposed rules on “Protect-

ing and Promoting the Open Internet”. This collection was the FCC’s largest public

163

comment collection to date and is publicly available. This comment period trig-

gered enormous reaction from citizens and civil-society groups, including citizens and

civil-society groups advocating for network neutrality. For example, many comments

encouraged the FCC to classify and ISPs as “common carriers” (similar to telephone

companies), which would, like telephone companies, empower the FCC to enforce

network neutrality. Other comments, meanwhile, urged the FCC and the government

not to get involved in regulations that could stifle innovation.

In general, many of comments are relatively short, often just a single sentence

or paragraph. They also contain large numbers of form letters, some of which have

customizable passages, prepared by civil-society groups, who mobilized individuals

to submit them. We sample approximately 80,000 comments for our training set.

Table 5.1 provides summary statistics of the corpus that we use to analyze our dataset.

Table 5.1: Summary of FCC comment corpus (N=800000)

mean # of words per comment (mean and
standard deviation)

131 ± 2681

of unique comments 650,300

Making sense of this large dataset of comments is a challenge for regulators and

other interested parties that we seek to solve. We compare PTR with other methods

in the next section.

Model Parameters We set the minimum and maximum idea lengths to be 𝑁𝑘,𝑚𝑖𝑛 =

5 and 𝑁𝑘,𝑚𝑎𝑥 = 45, and the maximum number of partitions in a document to be

𝑁𝑧 = 50. These values were chosen to ensure that ideas tend to be more like sen-

tences or sequences of sentences than single words or common multiword expressions.

The PFST parameters were set to 𝑝𝑚 = 0.8, 𝑝𝑑 = 0.1, 𝑝𝑖 = 0.1/|𝑉 |. These values

were chosen to provide high weights for similar or identical strings and equal penalties

for an addition, substitution, or deletion. As we describe in our discussion, future

work could involve learning these parameters, perhaps on an idea-specific basis or in

a tied manner.

164

5.6 Results

PTR finds passages of varying length and gives more accurate counts. In Table 5.2

and Table 5.3, we show an idea discovered by the sentence-boundary method with

higher counts (due to finding approximate matches).

5.6.1 Noteworthy Top Ideas

Many of the top ideas come from templates from civil society groups, which encour-

aged people to submit form letters that they had prepared. Some examples of these

ideas are below:

CREDO Action: The corpus contains 93,711 comments that include the follow-

ing text: “As an Internet user who believes strongly in the importance of a free and

open Internet, I urge the FCC to reclassify broadband Internet access as a telecom-

munications service, and save Net Neutrality. In addition, the FCC should reject the

proposed rules that would allow Internet service providers to divide the Internet into

fast lanes for wealthy corporations and slow lanes for the rest of us.”1

Fight for the Future: 89,989 comments contain the following text: “Net neu-

trality is the First Amendment of the Internet, the principle that Internet service

providers (ISPs) treat all data equally. As an Internet user, net neutrality is vitally

important to me. The FCC should use its Title II authority to protect it. Most Amer-

icans have only one choice for truly high speed Internet: their local cable company.

This is a political failure, and it is an embarrassment. America deserves competition

and choice...”.2

Electronic Frontier Foundation: Approximately 68,000 comments begin with

the following text: Dear FCC, My name is Steve Roberts and I live in West Lafayette,

IN. Net neutrality, the principle that Internet service providers (ISPs) treat all data

that travels over their networks equally, is important to me because without it...”.3

1See “CREDO Action: URGENT: Tell the FCC: Don’t Kill The Internet”, http://act.
credoaction.com/sign/fcc_nn_comments_2014.

2See “Fight for the Future”, https://www.fightforthefuture.org/.
3See “Electronic Frontier Foundation: Net Neutrality”, https://www.eff.org/issues/

net-neutrality.

165

http://act.credoaction.com/sign/fcc_nn_comments_2014
http://act.credoaction.com/sign/fcc_nn_comments_2014
https://www.fightforthefuture.org/
https://www.eff.org/issues/net-neutrality
https://www.eff.org/issues/net-neutrality

American Commitment: Over 9,300 comments calling for less government

intervention in Internet regulation (a view opposite to the ones expressed above)

contained the following text: “As an American citizen, I wanted to voice my opposition

to the FCC’s crippling new regulations that would put federal bureaucrats in charge of

internet freedom, and urge you to stop these regulations before they’re enacted...Please

stop the FCC’s dangerous new regulations, and protect the future of internet freedom

here in America.”4

5.6.2 Less-Common Voices

PTR is able to discover variations of less-common voices — it aggregates passages

that share a significant amount of common text. Tables 5.3 and 5.2 show examples

of relatively rare ideas that, as a result of PTR’s ability to capture variation, are

included in the set of ideas that characterize the FCC net neutrality comments.

Table 5.2: Variations on “the internet should be open” (168 assignments)

variation on idea (sample of 21 variations)
the internet should be publicly owned
the internet should never be regulated
the internet should be divided
the internet should be open and neutral
the internet should be open to everyone equally
the internet should be an open platform
the internet should be equal opportunity
the internet should be taxed
the internet should be fair
the internet should absolutely be open

5.6.3 Baseline Comparisons

Topic Modeling: Table 5.4 shows the five words with the highest probability in

selected topics of a 100-topic model using Latent Dirichlet Allocation [7]. The topics

4See “American Commitment: 808,363 Americans Tell the FCC: ’Do Not Regulate the Internet,” ’
https://www.americancommitment.org/content/do-not-regulate-internet.

166

https://www.americancommitment.org/content/do-not-regulate-internet

Table 5.3: Variations on “keep the internet a level playing field” (244 comments)

variation on idea (sample of 90 variations)
keep the internet an even playing field
keep the internet an open playing field
keep it a level playing field
keep net neutrality keep a level playing field
keep the net a level playing field
keep the internet a level playing field that it is
keep the internet a fair playing field
keep the net on a level playing field
keep the internet open as a fair playing field
keep the media landscape a level playing field

illustrate some general themes that emerge from the corpus; however, it is difficult to

directly discern submitted viewpoints from the LDA results themselves.

Table 5.4: Top ten words from selected topics of LDA model with 50 topics

topic keywords
1 isps, use, slow, able, destroy
2 isps, important, new, services, better
3 communications, corporations, rules, reclassify, federal
4 free, access, equal, corporations, open
5 common, carriers, reclassify, carrier, broadband
6 companies, small, businesses, business, innovation
7 people, corporations, right, corporate, government
8 pay, content, companies, access, speed
9 wealthy, save, user, addition, believes
10 comcast, like, verizon, cable, time

Figure 5-3 shows the results of clustering documents by topic distributions. We

applied k-means clustering on the document-topic distributions, then sized the nodes

in the displayed plot by the number of documents in those clusters. The layout of the

graph is based on a force-equilibrium approach, in which the attraction between two

clusters is proportional to their similarity and a pair of clusters has a visible edge if

at least one of the clusters is among the top-five closest clusters of the other. This

tends to put larger and more central nodes closer to the center of the layout. As the

167

Figure 5-3: Topic-based clusters of public comments, with nodes sized by the
number of comments in the cluster

figure shows, topic models can provide a useful global overview of the corpus, but

they fail to capture the context in which words are used.

Common Sentences: A second approach is to run a sentence boundary detector

and extract the most common sentences. As shown in Table 5.5, this process, by

definition, results in coherent sentences. However, it turns out that the most frequent

sentences are all from the most frequently occurring repeated comment.

5.6.4 Quantitative Comparison to LDA

One approach to quantitatively analyzing the results is to compute the likelihood of

the data with respect to the model. Table 5.6 compares the log-likelihood/token for

a baseline unigram language model, PTR, and a 50-topic LDA model trained on the

data. Most notably, for the FCC corpus, PTR outperforms LDA on the dataset in

terms of likelihood, which occurs because there is substantial text reuse — about 39%

of the partitions are assigned to an idea. In contrast, while text reuse does occur in

168

Table 5.5: Top sentences in corpus, by frequency.

count sentence
116,923 in addition, the fcc should reject the proposed rules that

would allow internet service providers to divide the in-
ternet into fast lanes for wealthy corporations and slow
lanes for the rest of us.

113,702 14-28 comments as an internet user who believes
strongly in the importance of a free and open internet,
i urge the fcc to reclassify broadband internet access as
a telecommunications service, and save net neutrality.

111,240 title ii is the strong, legally sound way to enforce net
neutrality.

111,225 this is the same trick they pulled last time.
111,225 isps are opposing title ii so that they can destroy the

fcc’s net neutrality rules in court.
111,221 the fcc should use its title ii authority to protect it.
111,221 please, let’s not be fooled again.
111,211 it also causes tremendous economic harm.
111,211 that kills choice, diversity, and quality.
111,206 without net neutrality, a bad situation gets even worse.

the Congressional bills dataset, it represents a much smaller proportion of the corpus

(approximately 1%). As a result, while the instances of text reuse are qualitatively

interesting, LDA performs better at characterizing the dataset.

Table 5.6: Log Likelihood per token with unigram, LDA, and PTR models

model log-likelihood/token
baseline unigram -7.32
100-topic LDA -6.48
PTR -3.26

5.7 Discussion and Further Work

The results from PTR are better suited for making sense of this corpus than LDA or

our other baseline methods. Specifically, it has the following advantages:

1. The outputs are more human-interpretable than the bags of words of other

169

topic modeling approaches. Our generative model is able to discover examples

of text reuse throughout the corpus, cluster together similar passages of text

as originating from the same idea, and find a reasonable exemplar (the “idea”)

that, in itself, is useful to read.

2. The model handles stop words, which, in practice, need to be removed from

bag-of-words representations. In fact, stop words are an important component

of PTR’s representation of the data: Without them, it would be more difficult,

if not impossible, to understand the passages of reused text in the comments.

3. Topic modeling does not necessarily produce topics that correspond to themes

or ideas in the corpus. In LDA, for example, documents are multinomial dis-

tributions over topics, and topics are multinomial distributions over words. A

topic in which few words have a relatively high amount of the probability mass

could explain the data well, but it may not yield any practical significance for

someone trying to make sense of a large corpus of documents. For example,

topic 6 in Table 5.4 appears to be a set of words (“united”, “states”, “people”,

“fcc”, etc.) that might appear very frequently throughout the corpus (but ar-

guably should not be excluded as stop words). Similarly, while topics 1 and 3

are clearly about cable companies and Internet service providers (ISPs), the list

of words poorly conveys the meaning of these statements.

4. In contrast, the ideas in the PTR model are more closely aligned to the FCC’s

goal of understanding the comments than the output of LDA. Finding passages

of text that have high conditional probability for any of the topics is certainly

possible, but it would require an additional, post-hoc analysis step. In contrast,

PTR directly outputs useful-to-read ideas.

5. By assuming that passages of text are generated, with noise, from the set 𝐾,

PTR identifies and finds similar statements. As a result, it provides more

accurate counts or proportions of ideas than simply counting sentences, and is

a more principled approach than simply clustering similar sentences afterward.

170

Figure 5-4 provides an illustration of how PTR can be applied to a text corpus to

find key phrases: We can go directly from sequences of words (documents) directly

to these PTR idea sequences. In contrast, models such as PLSA and LDA require an

intermediate representation of documents, namely an unordered bag of words, which,

especially in text corpora with substantial text reuse, results in a mismatch between

the model and the data. In order to discover key phrases that occur in topic clusters,

one needs to return to the original documents and somehow extract these key phrases.

While PLSA and LDA have great utility for a general global understanding of a text

corpus or for other applications, they are ill-suited for identifying commonly repeated

phrases.

Figure 5-4: Summary of pipeline for finding key phrases with PTR vs. bag-of-words
PLSA and LDA models

Future work on PTR could focus on efficiently finding the optimal set of partitions,

ideas, and assignments, as well as more sophisticated background language models.

More broadly, there are many interesting directions in learning the PFST parameters

to go beyond text reuse and encode semantic similarity—which would be the eventual

goal when extracting key ideas from large collections of text.

171

5.8 Conclusions

In this chapter, we introduce Probabilistic Text Reuse (PTR), a model that discovers

and quantifies repeated passages of text in a large corpus of documents. On the FCC

net neutrality comment dataset, we show that PTR qualitatively outperforms LDA

and other baseline methods at presenting ideas from the corpus. Our approach could

be useful for understanding key ideas of other large datasets, both in computational

social science and in other domains.

Given the widespread prevalence of text reuse in legal and political documents,

PTR could be applicable in many other large text collections. For measuring political

speech, other public comment datasets collected by governments or online platforms

or communities such as Facebook, Twitter, or Reddit might be useful. One could

speculate that a “PTR web crawler” could find meaningful instances of significant

text reuse on the Internet, perhaps bringing together online conversations or even

automatically starting petitions or larger movements. More generally, these online

platforms or Internet researchers might use text reuse more generally to examine how

reused text propagates in their social and document networks, revealing the dynamics

of how memes and other ideas spread. Meanwhile, text reuse detection could help

public or private organizations break data silos (by discovering that similar text or

documents are used in different parts of the organization), find new opportunities to

collaborate, or even improve worker productivity, either by avoiding the duplication

of the same manual work on a given document or passage of text (e.g. in language

translation, customer service, or document approvals) or as an informative feature for

machine learning systems. Returning to the government domain, text reuse occurs

widely in bills and laws, and PTR could be useful for seeing the evolution of documents

in institutions such as Congress (similar to the work in Chapter 4) or even across

legislative bodies. It would be fascinating and informative, for example, to map out

the diffusion of policy ideas across U.S. state lines by detecting text reuse in the

bills introduced in all 50 states; going further, the influence of lobby groups (some of

which are known to draft template bills) and other civil society movements might be

172

measured with PTR. Ultimately, written language is highly rich and flexible, allowing

people to express ideas in an infinite number of ways; empirically, though, text reuse

occurs in a wide range of contexts, and detecting its existence, as illustrated in this

chapter, can reveal important insights into large document collections.

173

174

Chapter 6

Conclusions

This thesis presents the development and application of novel language technologies

for understanding law, politics, and public policy. The projects share a common

domain (legal and political documents) and technical approach (large-scale text anal-

ysis). More specifically, though, the central approach of the work in this thesis is to

infer the origins of legal and political texts, thereby revealing information about the

people or organizations behind the ideas of these documents. These hidden origins

referred to authorship (Chapter 2 in the case of Supreme Court opinions, the first

instance of laws (Chapter 3 in the United States Code, the introduction of policy

ideas in Congress (Chapters 4, and the sources of ideas in large collections of public

comments 5). By revealing these authors, sources, or origins, we discovered insights

in government processes, including the dynamics of Supreme Court decision-making,

the ways in which legislation is written and codified, and the nature of democratic

participation through public speech in the age of the Internet.

6.1 The Role of Text Reuse in Public Data and Pub-

lic Speech

Text reuse detection is a subject that reoccurs throughout this thesis: We develop

techniques and applications to find repeated sections of text in the U.S. Code, bills

175

in Congress, and public comments on regulations. Arguably, even our approach to

determining the authorship of judicial opinions can be seen as employing text reuse

— we take observed n-grams to learn the justice’s writing styles. The widespread

existence of common legal language and the availability of different historical versions

of the same document make text reuse quite common across many open government

datasets; as a result, we argue that the text reuse models described in earlier chapters

can be widely applicable in the legal and political domain.

Perhaps even more interesting, however, is the notion of text reuse being a form of

political speech: The copying and pasting of text that occurs in political documents,

such as legislative bills or public comments, often express explicit support for another

party’s point of view. In the FCC net neutrality comments, this support through text

reuse occurs in at least two ways: 1) through explicit copying in the form of submitting

template comments, and 2) the expression of the same idea multiple times, often with

slightly different wording, which suggests that many different people have made the

effort to communicate the same idea. In the same way that attendees of a political

event, such as a rally or protest, may hold up copies of the same sign or shout the

same slogan, members of the public can express the same idea in writing in text

reuse. Discovering and measuring text reuse, therefore, can be a way to characterize

the political speech in these large text corpora.

It is also noteworthy that text reuse involving wording variations of the same idea

are more difficult to count and characterize. Arguably, this second pattern of text

reuse may represent a more robust, popular idea — it takes more effort for individuals

to express an idea in an original fashion than simply copying a template comment —

but it can be more hidden in large document collections. Given that the ability to

express free-form language offers one of the best ways to express diverse ideas and

viewpoints, techniques that find text with similar semantic meaning seem in large

collections of political speech are needed.

176

6.1.1 Measuring Political Speech

Our experiments with text reuse detection lead to an important question: As a demo-

cratic society, how well do we measure political speech? How effectively do our legis-

lators and policymakers capture the viewpoints of members of the public, in order to

make informed, representative public decisions? The text reuse detection methods in

this thesis aim to make sense of large collections of political speech in text documents.

In doing so, they center on the notion that reused text is a form of political speech:

People “claim” speech and text from others, from short rhetorical turns of phrase to

longer passages of text, to express strong agreement with that viewpoint.

More generally, it is worth considering the techniques or systems that govern-

ments use to measure political speech. In many cases, the number of people who

agree with a particular viewpoint can be quantified: We can easily count votes in

elections, percentages in opinion polls, or the number of signers of a petition. All

of these methods, though, have limitations: They only count the number of peo-

ple in agreement with specific, pre-defined ideas. Ideally, citizens should be able to

contribute ideas and express themselves with the full richness of language; indeed,

in some cases, like letter-writing or other communications with government officials,

public forums, public comments, they have the opportunity to write or speak their

views.

Figure 6-1 offers a framework for the tradeoffs between numerical and text-based

approaches to measuring public speech. To begin, voting and public opinion polling

are easiest to implement and evaluate, but they offer less diversity in terms of idea

choices. Petitions are arguably less purely numerical and allow for more variety —

they require some descriptive text that signers read and agree with. At the other

end of the spectrum, public comments offer the potential for the richest diversity of

opinions, but are more difficult to characterize. Techniques such as topic models,

document clustering, automatic summarization, and, now, probabilistic text reuse all

offer potential ways to mitigate the difficulty of analyzing and quantify the viewpoints

in these large text collections.

177

Figure 6-1: Spectrum of political speech measurement systems, from numbers to
text

Thinking about these tradeoffs in political speech measurement systems leads

to a related area of speculation: How might be design better systems that capture

ideas. One approach might involve a hybrid of voting and free text, perhaps with the

ability to propose ideas and upvote others (similar to sites like Digg and Reddit). In

many ways, the large prevalence of template ideas in public comments is the result

of individuals being unable to “upvote” an existing idea. Such systems also allow

people to propose new ideas that could gain popularity; ideally, the number of ideas

should scale appropriately to each issue. These propose-and-upvote systems also

have drawbacks — websites that use them do not always result in civil, sensible, or

diverse ideas, and they are just one possible design in the space of collecting text and

votes. A second idea might be to incorporate discussion into such systems, allowing

commenters to respond to others or engage in dialog. In this case, again, governments

may be able to draw on the experiences of different online communities to understand

the benefits and disadvantages of different kinds of systems.

178

6.2 Summary of Contributions

1. Chapter 2 describes a machine learning classifier that provides insights into

the authorship of unsigned and disputed U.S. Supreme Court opinions. The

classifier is trained on signed opinions of the Roberts Court to predict, with

greater than 80% accuracy on a held-out test set, which author wrote an opinion.

On the Obamacare decision, our model predicts that the Chief Justice wrote

the majority, while the main dissent was written by Justices Scalia or Kennedy.

Meanwhile, unsigned per curiam opinions have been predominantly written by

the conservative wing of the Supreme Court in the Roberts era.

2. Chapter 3 presents a unique analysis of the United States Code through the lens

of software engineering, building on the metaphor of legal code as software code.

By using the text from the original codification in 1926 to the present day, our

analysis examines the entire history of the U.S. Code. Our wide array of software

metrics (conciseness, change, coupling and complexity) introduces a common

set of techniques for describing the structure and evolution of law. Using these

techniques, we discover new insights into laws, from the stark differences in

network structure of reform bills and appropriations bills, as well as some of the

most condition-laden parts of complex pieces of legislation like the Dodd-Frank

Wall Street Reform and Protection Act of 2010.

3. In Chapter 4, we apply text reuse techniques to illustrate the trajectories of

policy ideas in four key Financial Crisis bills (HERA, TARP, ARRA, and Dodd-

Frank). By splitting bills up into sections and finding similar passages of text

from preceding bills, we can examine, on a section-by-section basis, the “consid-

eration time” of the policy ideas advanced in each bill. This technique brings

useful patterns to the surface in the legislative process: enacted bills often con-

tain unrelated policy riders to assemble a majority coalition of legislators to vote

in favor of it, new presidential administrations often introduce entirely new text

(e.g. the Obama Administration’s American Recovery and Reinvestment Act

contains very few provisions from the previous Congress), and different provi-

179

sions can have dramatically different consideration times.

4. Lastly, Chapter 5 introduces Probabilistic Text Reuse (PTR), a model that pro-

vides a global objective function for finding passages of text reuse in a corpus

of documents. Rather than assuming documents are unordered sets of words,

as is the case in many document clustering and classification approaches, we

assume that documents consist of latent partitions, ideas, and assignments that

can be learned from the dataset. These ideas are based on probabilistic finite

state transducers, which assign high probabilities to the exact underlying se-

quence of words and assign costs to additions, deletions, and substitutions. We

present methods for inferring the parameters of PTR through coordinate de-

scent approaches. Finally, we demonstrate how PTR can be used to measure

public speech in a large collection of public comments on the FCC’s proposed

net neutrality regulations, including large numbers of duplicate comments from

civic organizations, variations of ideas, and less-common voices.

6.3 Future Work

The work in this thesis is arguably an early example of applying machine learning

to the domain of legal and political texts. Consequently, there are many potential

directions from both a computational and a social science standpoint. However, some

compelling research questions that arise directly from this work include the following:

Authorship Attribution: Our work on Supreme Court authorship follows from

a long line of work on authorship attribution, beginning with Mosteller and Wallace’s

seminal work on the Federalist Papers in 1963 [37]. An interesting direction would

be to explicitly model the effect of law clerks in the writing process, which could help

answer other interesting questions about judicial authorship; for example, it might

reveal which justices rely more heavily on clerks, or whether this reliance changes

over the course of their careers. A second extension could involve modeling multiple

authors, as many opinions are co-signed by more than one justice (our work assumed

that the main author was the label for the work). For both clerks and multiple

180

authors, a common modeling framework might involve assuming that documents are

generated by a mixture of author language models, and the machine learning task

would be to infer the right mixture weights for each author and document.

Law as Code: A software engineering approach to analyzing the structure and

evolution of legal code is the basis for an ambitious research agenda. First, the U.S.

Code is not the only “source document” that determines the law — bills, regulations,

and judicial opinions also contribute to written law. Among these text corpora, at the

federal level, applying software engineering metrics to the Code of Federal Regulations

seems most promising — the rules are promulgated by government agencies and may

have a more orderly, predictable structure that could be quantified and analyzed.

A second broad research direction for treating law as code is semantic understand-

ing of the law: By developing semantic representations of the law, it could become

possible to determine the legality of actions, identify contradictions, or identify op-

portunities to reduce needless complexity. In other words, semantic understanding

could make it possible to “compile” the legal code, find bugs or issues, and make

optimizations.

Text Reuse: Repeated text occurs frequently in legal and political documents,

making text reuse a useful technique for analyzing open government datasets. Beyond

the Congressional bills and public comments that were examined in this thesis, other

interesting research directions include tracing repeated text across different states,

which could illustrate common pathways by which policy ideas transmit geograph-

ically, or quantifying the occurrence of particular provisions in large collections of

contracts. Meanwhile, the probabilistic text reuse (PTR) model introduced in this

thesis could be extended to model documents more accurately. For example, a more

hierarchical model might assume that “ideas” (prototypical passages of text) are gen-

erated from “topics”, and that each document is a mixture of topics. Another direction

could be to introduce different probabilistic models of ideas; for instance, instead of

being generated from a probabilistic finite state transducer, other linguistic struc-

tures, such as parse trees, might be represented probabilistically (see, e.g. [24]). Such

approaches could permit the discovery of passages with similar meanings, even if they

181

are not similar in a linear sense.

182

Appendix A

Law Is Code: Mathematical

Definitions

The purpose of this appendix is to give formal definitions of the terms used in our

network analysis of the U.S. Code. Because of this, it is heavy in mathematics and

is intended for the interested reader. Each definition includes a description of how it

is relevant to the U.S. Code and this Article.

Networks. A network 𝑁 = (𝑉,𝐸) is given by a set of vertices 𝑉 (also called

nodes) and a set of edges 𝐸 ⊂ 𝑉 × 𝑉 . We say that there is an edge from 𝑢 to 𝑣 (and

write 𝑢 → 𝑣) if the pair (𝑢, 𝑣) belongs to the set 𝐸. In our application to the vertices

are sections of the U.S. Code and edges correspond to citations between sections.

There is an edge 𝑢 → 𝑣 if and only if 𝑢 cites 𝑣.

Reachability. Given two vertices 𝑢, 𝑣 in a network, we say that 𝑣 is reachable

from 𝑢 if there exists a set of vertices 𝑥1, 𝑥2, ..., 𝑥𝑛 ∈ 𝑉 such that 𝑢 → 𝑥1 → 𝑥2 → ... →

𝑥𝑛 → 𝑣. In our application, this would imply that there is a chain of citations going

from 𝑢 to 𝑣. Thus, any change to section 𝑣 of the U.S. Code could indirectly affect

section 𝑢. Throughout this section, if 𝑣 is reachable by 𝑢, we say that 𝑢 indirectly

cites 𝑣.

Strong Connectedness. Given two vertices 𝑢, 𝑣 in a network, we say that 𝑢 is

strongly connected to 𝑣 if:

183

1. 𝑣 is reachable from 𝑢 and

2. 𝑣 is reachable from 𝑢.

In this work, two sections of the U.S. Code are strongly connected if there is a

path of citations via which 𝑢 affects 𝑣 and there is another path of citations from 𝑣

to 𝑢. The simplest way in which 𝑢, 𝑣 can be strongly connected is if they both cite

each other. It follows that not only will changes to 𝑣 affect 𝑢 (because 𝑢 cites 𝑣, but

they can also affect itself by following a loop of citations.

Strong Connectedness as an Equivalence Relation. Strong connectedness

induces an equivalence relation on the set of vertices. That is, it satisfies:

∙ Reflexivity: For any vertex 𝑣, 𝑣 is strongly connected to itself

∙ Symmetry: For any 𝑢, 𝑣, we have that 𝑢 is strongly connected to 𝑣 if and only

if 𝑣 is strongly connected to 𝑢.

∙ Transitivity: For any three vertices 𝑢, 𝑣, 𝑤, we have that if 𝑢 is strongly con-

nected to 𝑣, and 𝑣 is strongly connected to 𝑤, then 𝑢 is strongly connected to

𝑤.

For any vertex 𝑣 ∈ 𝑉 , define the strongly connected component containing 𝑣 as

𝐶(𝑣) = {𝑢 : 𝑢 is strongly connected to 𝑣}. Note that, because strong connectedness

is an equivalence relation, for every 𝑢 strongly connected to 𝑣, we have 𝐶(𝑢) = 𝐶(𝑣).

Thus, we can partition the set of vertices 𝑉 into 𝑛 disjoint equivalence classes 𝑉 =

𝑉1 ∪ 𝑉2 ∪ ... ∪ 𝑉𝑛, where all the elements in a given equivalence class 𝑉𝑖 are strongly

connected to each other, but for 𝑖 ̸= 𝑗, any the elements in 𝑉𝑖, 𝑉𝑗 are not strongly

connected. Each 𝑉𝑖 is called a strongly connected component of the network. In our

legal application, the set 𝑉𝑖 are sets of sections of the U.S. Code which all indirectly

cite each other. Thus, these sets can be interpreted as a modular decomposition of

the U.S. Code, with each 𝑉𝑖 representing a module.

Core of a network. Given a network 𝑁 = (𝑉,𝐸), and a corresponding decom-

position into strongly connected components 𝑉 = 𝑉1 ∪ ...∪ 𝑉𝑛, the core is the largest

strongly connected component, i.e. Core(𝑁) = argmax𝑉𝑖
|𝑉𝑖|.

184

In our legal application, the core of the U.S. Code is a subset of sections of the

U.S. Code that satisfies the following two properties:

∙ All sections in the U.S. Code indirectly cite each other

∙ The core is the largest set satisfying property (1)

Thus, the core can be seen as the largest “module” of the U.S. Code. Changing

any section in the U.S. Code will, by definition, affect a large number of other sections

that indirectly cite it, and is a possible way of introducing contradictions in the law,

since each section in the core belongs to a large “citation loop.”

Measuring the coupling of a law. When a law passed by Congress gets

codified, different sections of the law become incorporated into different sections of

the U.S. Code. Thus, we can interpret a given law as a subset 𝑆 ⊂ 𝑉 of the sections

of the U.S. Code that it is modifying. At first approximation, a law that has multiple

sections in the core of the U.S. Code will indirectly affect the operation of many other

laws, while a law that does not modify the core of the U.S. Code will not have such

a high impact. Thus, we can approximately model how “central” a given law is by:

∙ Finding the set 𝑆 of sections of the U.S. Code modified by the law

∙ Computing the size of the intersection of 𝑆 with the core of the U.S. Code.

That is, given a law that modifies a set 𝑆 of sections in the code, we have that its

coupling metric is given by coupling(𝑆) = |𝑆 ∩ Core(𝑁)|. Note that we identify the

law with the set of sections of the U.S. Code it modifies. We can do this by using the

Table III provided by the Office of the Law Revision Counsel.1

Subgraphs and the core of a given law. Given a network 𝑁 = (𝑉,𝐸) and a

subset 𝑆 ⊂ 𝑉 of vertices, we can define the subgraph induced by 𝑆 as 𝑁 ′ = (𝑆,𝐸 ′(𝑆))

where 𝐸 ′(𝑆) = {(𝑢, 𝑣) ∈ 𝐸 : (𝑢, 𝑣) ∈ 𝑆}. That is, 𝑁 ′ only contains elements of 𝑆 as

vertices, and the edges are the edges of the original network that connect nodes in 𝑆.

1Table III Tool, supra note 119.

185

This definition is useful for our work because the entirety of the U.S. code is a

very large network with tens of thousands of nodes. In our work, we also find it useful

to focus on individual laws. As mentioned in the above paragraph, we identify a law

with the subset 𝑆 ⊂ 𝑉 of sections of the U.S. Code that it modifies. This induces a

subgraph 𝑁 ′(𝑆) which contains only the sections of the U.S. Code modified by the

given law. This subgraph is frequently much smaller, with only hundreds of nodes.

We define the core of a given law as the core of the induced subgraph 𝑁 ′(𝑆). A law

with a large core can be interpreted as more complex and non-linear than a law with

a small core, since changing one section of the law is likely to have indirect effects on

a large number of other sections.

Analogously, we can define the core of a title of the U.S. Code as the core of the

subgraph induced by all sections in that title.

PageRank. While analyzing the core of a law or title of the U.S. Code can help

us understand the degree of coupling in said law or title, this type of analysis cannot

be used to rank the complexity of individual sections. Because the core of a network is

an equivalence class, all sections in the core are equally complex. In order to provide a

ranking by complexity of sections in a piece of legislation, we use an algorithm called

PageRank, which is one of the main backbones behind search engine algorithms.2

We first give an informal definition of the PageRank procedure to give a general

intuition. Afterwards, we give a formal definition for readers with a background in

linear algebra. Informally, the PageRank procedure seeks to answer the following

question: if a reader followed citation links in the U.S. Code randomly, following

a random citation every time they reached a new section, what is the probability

that they would end up in any given section? Intuitively, sections that have a high

probability of being visited by such a random walk are sections that are highly central,

and which have a high indirect impact on many sections of the U.S. Code.

The PageRank algorithm uses the network’s modified transition matrix , defined

below, in order to quickly compute the probability that a given vertex will be visited

2Brian White, Math 51 Lecture Notes: How Google Ranks Web Pages, Department of Mathemat-
ics Stanford U. (Nov. 2004), http://math.stanford.edu/~brumfiel/math_51-06/PageRank.pdf.

186

http://math.stanford.edu/~brumfiel/math_51-06/PageRank.pdf

by a random walk.

We now more formally give this algorithm, for readers with a background in

linear algebra and algorithms. Let 𝑁 = (𝑉,𝐸) be a network with 𝑛 vertices. Label

the vertices of this network with the numbers 1 through 𝑛. Given two indices 𝑖, 𝑗

representing vertices in 𝑉 , define the following:

𝑎𝑖𝑗 =

⎧⎪⎨⎪⎩1 if (𝑖, 𝑗) ∈ 𝐸 or if 𝑗 has no outgoing edges

0 otherwise
(A.1)

𝑛𝑗 =
∑︁
𝑖

𝑎𝑖𝑗 (A.2)

𝑝𝑖𝑗 =
𝑎𝑖𝑗
𝑛𝑗

(A.3)

Define the following matrices:

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12 𝑝13 . . . 𝑝1𝑛

𝑝21 𝑝22 𝑝23 . . . 𝑝2𝑛
...

...
...

𝑝𝑛1 𝑝𝑛2 𝑝𝑛3 . . . 𝑝𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ (A.4)

𝑇 =

⎡⎢⎢⎢⎣
1
𝑛

. . . 1
𝑛

...
1
𝑛

. . . 1
𝑛

⎤⎥⎥⎥⎦ (A.5)

Let 𝑄 = 𝛼𝑃 + (1− 𝛼)𝑇 , where 𝛼 is a parameter of our choice when running the

algorithm. In our work, we use 𝛼 = 0.85. One can prove that there exists a unique

vector 𝑥 ∈ 𝑅𝑛 such that:

1. 𝑥 = 𝑄𝑥

2. 𝑥𝑖 ≥ 0

3.
∑︀

𝑖 𝑥𝑖 = 1

187

Intuitively, 𝑥 is the steady state of a random walk on our given network, where

the random walk resets itself with probability 1 − 𝑎𝑙𝑝ℎ𝑎. This steady state is given

by the eigenvector of 𝑄 with eigenvalue 1.

188

Appendix B

Law Is Code: Cores of

Appropriations Bills

In this appendix, we show the cores of all appropriations bills passed since 1994. This

visualization confirms our intuition that appropriation bills are very simple.

The definition of the core of a given law is given in Appendix A.

189

(a) Agriculture, Rural Development,
Food and Drug Administration, and

Related Agencies Appropriations
Act, 1997

(b) Continuing Appropriations Act,
2011

(c) Continuing Appropriations
Resolution, 2013

(d) Department of Defense
Appropriations Act, 1999

(e) Department of Defense
Appropriations Act, 2001

(f) Department of Defense
Appropriations Act, 2003

(g) Department of Defense
Appropriations Act, 2005

(h) Department of Defense
Appropriations Act, 2007

(i) Department of Defense
Appropriations Act, 2008

(j) Department of Defense
Appropriations Act, 2010

Figure B-1: Network Representation of Cores of Appropriations Bills

190

(a) Department of Homeland
Security Appropriations Act, 2005

(b) Department of Transportation
and Related Agencies

Appropriations Act, 1997

(c) Department of Transportation
and Related Agencies

Appropriations Act, 2001

(d) Departments of Labor, Health
and Human Services, and

Education, and Related Agencies
Appropriations Act, 2006

(e) District of Columbia
Appropriations Act, 2001

(f) District of Columbia
Appropriations Act, 2005

(g) Emergency Supplemental
Appropriations Act for Defense and
for the Reconstruction of Iraq and

Afghanistan, 2004

(h) Emergency Supplemental
Appropriations Act for Defense, the

Global War on Terror, and
Hurricane Recovery, 2006

(i) Energy and Water Development
Appropriations Act, 1997

(j) Energy and Water Development
Appropriations Act, 1999

Figure B-2: Network Representation of Cores of Appropriations Bills

191

(a) Energy and Water Development
Appropriations Act, 2001

(b) Energy and Water Development
Appropriations Act, 2004

(c) Energy and Water Development
Appropriations Act, 2006

(d) Foreign Operations, Export
Financing, and Related Programs

Appropriations Act, 1998

(e) Foreign Operations, Export
Financing, and Related Programs

Appropriations Act, 2006

(f) Legislative Branch
Appropriations Act, 1997

(g) Legislative Branch
Appropriations Act, 1999

(h) Military Construction and
Veterans Affairs and Related

Agencies Appropriations Act, 2009

(i) Military Construction
Appropriations Act, 1997

(j) Military Construction
Appropriations Act, 1999

Figure B-3: Network Representation of Cores of Appropriations Bills

192

(a) Military Construction
Appropriations Act, 2001

(b) Military Construction
Appropriations Act, 2004

(c) Military Construction
Appropriations and Emergency

Hurricane Supplemental
Appropriations Act, 2005

(d) Military Construction, Military
Quality of Life and Veterans Affairs

Appropriations Act, 2006

(e) Science, State, Justice,
Commerce, and Related Agencies

Appropriations Act, 2006

(f) Supplemental Appropriations
Act, 2008

(g) Supplemental Appropriations
Act, 2010

(h) Transportation, Housing and
Urban Development, and Related
Agencies Appropriations Act, 2010

(i) Transportation, Treasury, and
Independent Agencies

Appropriations Act, 2004

(j) Transportation, Treasury,
Housing and Urban Development,

the Judiciary, the District of
Columbia, and Independent

Agencies Appropriations Act, 2006

Figure B-4: Network Representation of Cores of Appropriations Bills

193

194

Appendix C

Law Is Code: Bills with large cores

In this appendix, we show the cores of all laws passed since 1994 that have a core

of size larger than 50. This includes many well-known complex laws, including, for

example, the Wall Street Transparency and Accountability Act of 2010. The purpose

of this appendix is to illustrate instances of bills that differ from the simple core

structure of appropriations bills.

The definition of the core of a given law is given in Appendix A.

195

(a) Small Business Job Protection
Act of 1996

(b) Personal Responsibility and
Work Opportunity Reconciliation

Act of 1996

(c) Veterans Benefits Act of 1998 (d) TEA 21 Restoration Act

(e) Workforce Investment Act of
1998

(f) Web-Based Education
Commission Act

(g) Public Law 105-34 (h) Public Law 107-16

(i) Working Families Tax Relief Act
of 2004

(j) Fair and Equitable Tobacco
Reform Act of 2004

Figure C-1: Network Representation of Cores of Laws with Core of Size greater
than 50

196

(a) Tax Technical Corrections Act
of 2005 (b) Pension Protection Act of 2006

(c) Public Law 109-59 (d) Public Law 109-8

(e) Tax Technical Corrections Act
of 2007

(f) Small Public Housing
Authorities Paperwork Reduction

Act

(g) Private Student Loan
Transparency and Improvement Act

of 2008

(h) Wall Street Transparency and
Accountability Act of 2010

197

198

Appendix D

Law Is Code: Cores of Titles of the

U.S. Code

In this appendix, we show the cores of all the titles in the U.S. Code. This visualization

confirms our intuition that some titles, such as Titles 13 and 14, are relatively simple

while other titles, such as Titles 12, 26 and 42, are highly complex.

The definition of the core of a title is given in Appendix A.

199

(a) Title 1 (b) Title 2

(c) Title 3 (d) Title 4

(e) Title 5 (f) Title 6

(g) Title 7 (h) Title 8

(i) Title 9 (j) Title 10

Figure D-1: Network representation of U.S. Code Titles 1 through 10

200

(a) Title 11 (b) Title 12

(c) Title 13 (d) Title 14

(e) Title 15 (f) Title 16

(g) Title 17 (h) Title 18

(i) Title 19 (j) Title 20

Figure D-2: Network representation of U.S. Code Titles 11 through 20

201

(a) Title 21 (b) Title 22

(c) Title 23 (d) Title 24

(e) Title 25 (f) Title 26

(g) Title 27 (h) Title 28

(i) Title 29 (j) Title 30

Figure D-3: Network representation of U.S. Code Titles 21 through 30

202

(a) Title 31 (b) Title 32

(c) Title 33 (d) Title 34

(e) Title 35 (f) Title 36

(g) Title 37 (h) Title 38

(i) Title 39 (j) Title 40

Figure D-4: Network representation of U.S. Code Titles 31 through 40

203

(a) Title 41 (b) Title 42

(c) Title 43 (d) Title 44

(e) Title 45 (f) Title 46

(g) Title 47 (h) Title 48

(i) Title 49 (j) Title 50

Figure D-5: Network representation of U.S. Code Titles 41 through 50

204

Bibliography

[1] The Annotated 8 Principles of Open Government Data. http://opengovdata.
org/. Accessed: 2014-05-31.

[2] Virginia Decoded. http://vacode.org/. Accessed: 2014-05-31.

[3] Tracing Policy Ideas From Lobbyists Through State Legislatures. http://
sunlightfoundation.com/tools/churnalism-us//, 2013. Accessed: 2015-12-
20.

[4] E. Scott Adler and John Wilkerson. Congressional Bills Project: 1973-2014.
http://congressionalbills.org/, 2014.

[5] Jaime Arguello, Jamie Callan, and Stuart Shulman. Recognizing citations in
public comments. Journal of Information Technology & Politics, 5(1):49–71,
2008.

[6] David M Blei and John D Lafferty. A correlated topic model of science. The
Annals of Applied Statistics, pages 17–35, 2007.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation.
the Journal of Machine Learning Research, 3:993–1022, 2003.

[8] Thomas R. Bruce. Cornell Legal Information Institute. http://www.law.
cornell.edu/, 2015. Accessed: 2014-05-28.

[9] Thomas R Bruce and Peter W Martin. The Legal Information Institute: What
Is It and Why Is It. Cornell Law Forum, 20, 1994.

[10] Matthew Burgess, Eugenia Giraudy, Julian Katz-Samuels, Lau-
ren Haynes, and Joe Walsh. Tracing Policy Ideas From Lobbyists
Through State Legislatures. http://dssg.uchicago.edu/project/
tracing-policy-ideas-from-lobbyists-through-state-legislatures/,
2015.

[11] Claire Cardie, Noah Smith, Anne Washington, and John Wilkerson. NLP
Unshared Task in PoliInformats 2014. https://sites.google.com/site/
unsharedtask2014/. Accessed: 2014-05-31.

205

http://opengovdata.org/
http://opengovdata.org/
http://vacode.org/
http://sunlightfoundation.com/tools/churnalism-us//
http://sunlightfoundation.com/tools/churnalism-us//
http://congressionalbills.org/
http://www.law.cornell.edu/
http://www.law.cornell.edu/
http://dssg.uchicago.edu/project/tracing-policy-ideas-from-lobbyists-through-state-legislatures/
http://dssg.uchicago.edu/project/tracing-policy-ideas-from-lobbyists-through-state-legislatures/
https://sites.google.com/site/unsharedtask2014/
https://sites.google.com/site/unsharedtask2014/

[12] Sophie Chou, William Li, and Ramesh Sridharan. Democratizing Data Science.
In Data for Good: KDD at Bloomberg, 2014.

[13] Janara Christensen, Stephen Soderland Mausam, Stephen Soderland, and Oren
Etzioni. Towards Coherent Multi-Document Summarization. In HLT-NAACL,
pages 1163–1173, 2013.

[14] Ryan Cotterell, Nanyun Peng, and Jason Eisner. Stochastic Contextual Edit
Distance and Probabilistic FSTs. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, Volume 2: Short Papers, pages 625–630, 2014. URL
http://aclweb.org/anthology/P/P14/P14-2102.pdf.

[15] Sharon S Dawes. Stewardship and usefulness: Policy principles for information-
based transparency. Government Information Quarterly, 27(4):377–383, 2010.

[16] Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark Kantrowitz. Multi-
document summarization by sentence extraction. In Proceedings of the 2000
NAACL-ANLPWorkshop on Automatic summarization-Volume 4, pages 40–48.
Association for Computational Linguistics, 2000.

[17] Justin Grimmer. A Bayesian hierarchical topic model for political texts: Mea-
suring expressed agendas in Senate press releases. Political Analysis, 18(1):1–35,
2010.

[18] Justin Gross, Brice Acree, Yanchuan Sim, and Noah A Smith. Testing the Etch-
a-Sketch Hypothesis: A Computational Analysis of Mitt Romney’s Ideological
Makeover During the 2012 Primary vs. General Elections. In APSA 2013 Annual
Meeting Paper, 2013.

[19] Dan Gusfield. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge university press, 1997.

[20] Alexander Hertel-Fernandez. Who Passes Business’s “Model Bills”? Policy Ca-
pacity and Corporate Influence in US State Politics. Perspectives on Politics, 12
(03):582–602, 2014.

[21] Alexander Hertel-Fernandez and Konstantin Kashin. Capturing Business Power
Across the States with Text Reuse. In Annual conference of the Midwest Political
Science Association, Chicago, April, pages 16–19, 2015.

[22] Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of
the 22Nd Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’99, pages 50–57, New York, NY,
USA, 1999. ACM. ISBN 1-58113-096-1. doi: 10.1145/312624.312649. URL
http://doi.acm.org/10.1145/312624.312649.

[23] Mark Jickling. Fannie Mae and Freddie Mac in Conservatorship. Congressional
Research Service, Library of Congress, 2008.

206

http://aclweb.org/anthology/P/P14/P14-2102.pdf
http://doi.acm.org/10.1145/312624.312649

[24] Kevin Knight and Jonathan Graehl. An overview of probabilistic tree transducers
for natural language processing. In Computational linguistics and intelligent text
processing, pages 1–24. Springer, 2005.

[25] Michael Laver, Kenneth Benoit, and John Garry. Extracting policy positions
from political texts using words as data. American Political Science Review, 97
(02):311–331, 2003.

[26] Michael Levandowsky and David Winter. Distance between sets. Nature, 234
(5323):34–35, 1971.

[27] William Li, Pablo Azar, David Larochelle, Phil Hill, James Cox, Robert C
Berwick, and Andrew W Lo. Using Algorithmic Attribution Techniques to De-
termine Authorship in Unsigned Judicial Opinions. Stan. Tech. L. Rev., 16:
503–503, 2013.

[28] William P. Li, David Larochelle, and Andrew W. Lo. Estimating Policy Tra-
jectories during the Financial Crisis. In NLP Unshared Task in PoliInformatics,
2014.

[29] William P. Li, David Azar, Pablo Larochelle, and Andrew W. Lo. Law is Code:
Software Engineering the United States Code. In Journal of Business and Tech-
nology Law, 2015.

[30] Yu-Ru Lin, Drew Margolin, and David Lazer. Uncovering social semantics from
textual traces: A theory-driven approach and evidence from public statements
of US Members of Congress. Journal of the Association for Information Science
and Technology, 2015.

[31] Robert V. Lindsey, William P. Headden, III, and Michael J. Stipicevic. A Phrase-
discovering Topic Model Using Hierarchical Pitman-Yor Processes. In Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, EMNLP-CoNLL ’12,
pages 214–222, Stroudsburg, PA, USA, 2012. Association for Computational Lin-
guistics. URL http://dl.acm.org/citation.cfm?id=2390948.2390975.

[32] Alexander Madrigal. Data.gov Launches to Mixed Reviews. http://www.wired.
com/2009/05/datagov-launches-to-mixed-reviews/. Accessed: 2014-05-31.

[33] Qiaozhu Mei, Xuehua Shen, and ChengXiang Zhai. Automatic Labeling of Multi-
nomial Topic Models. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’07, pages 490–
499, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-609-7. doi: 10.1145/
1281192.1281246. URL http://doi.acm.org/10.1145/1281192.1281246.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

207

http://dl.acm.org/citation.cfm?id=2390948.2390975
http://www.wired.com/2009/05/datagov-launches-to-mixed-reviews/
http://www.wired.com/2009/05/datagov-launches-to-mixed-reviews/
http://doi.acm.org/10.1145/1281192.1281246

[35] David Mimno, Hanna M Wallach, Edmund Talley, Miriam Leenders, and Andrew
McCallum. Optimizing semantic coherence in topic models. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pages
262–272. Association for Computational Linguistics, 2011.

[36] Martin Moore. Churnalism Exposed. http://www.cjr.org/the_news_
frontier/churnalism_exposed.php, 2011.

[37] Frederick Mosteller and David L Wallace. Inference in an authorship problem:
A comparative study of discrimination methods applied to the authorship of the
disputed Federalist Papers. Journal of the American Statistical Association, 58
(302):275–309, 1963.

[38] Ani Nenkova and Kathleen McKeown. A survey of text summarization tech-
niques. In Mining Text Data, pages 43–76. Springer, 2012.

[39] Anh Phuong Nguyen and Carl E Enomoto. The Troubled Asset Relief Program
(TARP) and the financial crisis of 2007-2008. Journal of Business & Economics
Research (JBER), 7(12), 2011.

[40] Barack Obama. Memorandum for the Heads of Executive Departments and
Agencies: Transparency and Open Government. http://www.whitehouse.gov/
the_press_office/TransparencyandOpenGovernment. Accessed: 2014-05-30.

[41] Barack Obama. Executive Order: Open Data Policy — Managing Information
as an Asset. http://www.whitehouse.gov/the-press-office/2013/05/09/
executive-order-making-open-and-machine-readable-new-default-government-,
2013. Accessed: 2014-05-30.

[42] Peter R. Orszag. Memorandum for the Heads of Executive Departments and
Agencies: Open Government Directive. http://www.whitehouse.gov/open/
documents/open-government-directive, 2009. Accessed: 2014-05-30.

[43] Daniel Ramage, Christopher D. Manning, and Susan Dumais. Partially Labeled
Topic Models for Interpretable Text Mining. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’11, pages 457–465, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0813-7. doi: 10.1145/2020408.2020481. URL http://doi.acm.org/10.1145/
2020408.2020481.

[44] David Robinson, Harlan Yu, William P Zeller, and Edward W Felten. Govern-
ment data and the invisible hand. Yale JL & Tech., 11:159, 2008.

[45] Jeffrey S Rosenthal and Albert H Yoon. Judicial ghostwriting: authorship on
the Supreme Court. Cornell L. Rev., 96:1307, 2010.

[46] Scout. The Sunlight Foundation. https://scout.sunlightfoundation.com/,
2014. Accessed: 2014-06-05.

208

http://www.cjr.org/the_news_frontier/churnalism_exposed.php
http://www.cjr.org/the_news_frontier/churnalism_exposed.php
http://www.whitehouse.gov/the_press_office/TransparencyandOpenGovernment
http://www.whitehouse.gov/the_press_office/TransparencyandOpenGovernment
http://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-
http://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-
http://www.whitehouse.gov/open/documents/open-government-directive
http://www.whitehouse.gov/open/documents/open-government-directive
http://doi.acm.org/10.1145/2020408.2020481
http://doi.acm.org/10.1145/2020408.2020481
https://scout.sunlightfoundation.com/

[47] Jeong Seop Sim and Kunsoo Park. The consensus string problem for a metric is
NP-complete. Journal of Discrete Algorithms, 1(1):111–117, 2003.

[48] Yanchuan Sim, Brice Acree, Justin H Gross, and Noah A Smith. Measuring
ideological proportions in political speeches. In Proceedings of EMNLP, 2013.

[49] David A Smith, Ryan Cordell, Elizabeth Maddock Dillon, Nick Stramp, and
John Wilkerson. Detecting and modeling local text reuse. In Digital Libraries
(JCDL), 2014 IEEE/ACM Joint Conference on, pages 183–192. IEEE, 2014.

[50] Sunlight. The Sunlight Foundation. https://sunlightfoundation.com/, 2014.
Accessed: 2014-05-31.

[51] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. Learning
structured prediction models: A large margin approach. In Proceedings of the
22nd International Conference on Machine Learning, pages 896–903. ACM, 2005.

[52] Joshua Tauberer. GovTrack.us. http://www.govtrack.us/. Accessed: 2014-
05-28.

[53] Kiri L Wagstaff. Machine Learning that Matters. In Proceedings of the 29th
International Conference on Machine Learning (ICML-12), pages 529–536, 2012.

[54] Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the
23rd international conference on Machine learning, pages 977–984. ACM, 2006.

[55] Xuerui Wang, Andrew McCallum, and Xing Wei. Topical n-grams: Phrase and
topic discovery, with an application to information retrieval. In Data Mining,
2007. ICDM 2007. Seventh IEEE International Conference on, pages 697–702.
IEEE, 2007.

[56] John Wilkerson, David Smith, and Nick Stramp. Tracing the Flow of Policy
Ideas in Legislatures: A Text Reuse Approach. New Directions in Analyzing
Text as Data. London School of Economics, 2013.

[57] Tae Yano, Noah A. Smith, and John D. Wilkerson. Textual Predictors of Bill
Survival in Congressional Committees. In Proceedings of the 2012 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL HLT ’12, pages 793–802, Stroudsburg,
PA, USA, 2012. Association for Computational Linguistics. ISBN 978-1-937284-
20-6. URL http://dl.acm.org/citation.cfm?id=2382029.2382157.

[58] Bei Yu, Stefan Kaufmann, and Daniel Diermeier. Classifying party affiliation
from political speech. Journal of Information Technology & Politics, 5(1):33–48,
2008.

[59] Harlan Yu and Stephen Schultze. Using Software to Liberate U.S. Case Law.
XRDS, 18(2):12–15, December 2011. ISSN 1528-4972. doi: 10.1145/2043236.
2043244. URL http://doi.acm.org/10.1145/2043236.2043244.

209

https://sunlightfoundation.com/
http://www.govtrack.us/
http://dl.acm.org/citation.cfm?id=2382029.2382157
http://doi.acm.org/10.1145/2043236.2043244

	Introduction
	Motivation
	Background
	Opportunity: Big Data and E-Government
	Technology: Data Science for Large Document Collections

	Related Work
	Open Government Data

	Research Hypothesis
	Roadmap

	Authorship Attribution of Unsigned Supreme Court Opinions
	Introduction
	Unsigned Opinions
	Historical Context of Unsigned Opinions
	Problems with Unsigned Opinions
	Solving Attributional Questions the Old-Fashioned Way
	Solving Attributional Questions Algorithmically

	Test Case: Obamacare
	Experimental Setup
	Experimental Questions
	Data Preparation
	Machine Learning System Overview
	Design of Authorship Attribution System

	Empirical Results and Discussion
	Feature Sets and Classification Methods
	Comparison of Feature Selection Models
	Interpreting Authorship Attribution Model Scores
	Insights on Writing Styles
	Controlling for Clerks
	Authorship Prediction for Sebelius
	Comparison to Predictions by Domain Experts
	Section-by-Section Analysis

	Authorship Predictions for Per Curiam Opinions of the Roberts Court
	Conclusion

	Law Is Code: A Software Engineering Approach to Analyzing the United States Code
	Context
	Abstract
	Introduction
	The United States Code
	Early Federal Codification Problems
	Early Problems with the U.S. Code
	The U.S. Code, 1926 to Today
	Criticisms and Aspirations for the U.S. Code

	Software Engineering Approaches to Analyzing the Law
	Analogizing Legal Code to Software Code
	U.S. Code Datasets for Analysis
	Choosing Software Engineering Approaches and Metrics

	Evolution of the U.S. Code
	Conciseness: Evolution of the Size of the U.S. Code
	Change: Evolution of Content in the U.S. Code
	Coupling: Evolution of Structure of U.S. Code
	Complexity: Complexity: Evolution of Conditional Statements in the U.S. Code

	Structure of Current Laws: 111th Congress
	Structure of the Current U.S. Code: Titles 12 (Banks and Banking) and 26 (Internal Revenue Service)
	Case Study of Title 12
	Case Study of Title 26 (Internal Revenue Code)
	Comparing Titles 12 and 26 to Other Titles

	Conclusion

	Text Reuse and Financial Crisis Policy Trajectories in Congress
	Introduction: ``Legitimate'' Text Reuse in Legal and Political Texts
	Text Reuse in Financial Crisis Legislation
	Related Work
	Dataset and Methodology
	Finding Similar Sections
	Classifying Matched Sections

	Results and Visualization
	Housing and Economic Recovery Act (HERA) of 2008
	Emergency Economic Stabilization Act of 2008 (including TARP)
	American Recovery and Reinvestment Act (ARRA) of 2009
	Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010

	Bill Consideration Time Metrics
	Analysis and Discussion
	Consideration Times of Financial Crisis Bills
	Summarizing Congressional Lawmaking Activity
	Distribution of Consideration Times
	Finding Unsuccessful Policy Ideas

	Limitations and Further Work
	Conclusions

	Probabilistic Text Reuse
	Introduction
	Related Work
	Text Reuse Approaches
	Probabilistic Models of Text Corpora
	Text Summarization

	Probabilistic Text Reuse Model
	Inference
	Initialization
	Updating Ideas
	Updating Partitions and Assignments
	Merging Ideas
	Assignment Probabilities

	Dataset: FCC Comments on Net Neutrality
	Results
	Noteworthy Top Ideas
	Less-Common Voices
	Baseline Comparisons
	Quantitative Comparison to LDA

	Discussion and Further Work
	Conclusions

	Conclusions
	The Role of Text Reuse in Public Data and Public Speech
	Measuring Political Speech

	Summary of Contributions
	Future Work

	Law Is Code: Mathematical Definitions
	Law Is Code: Cores of Appropriations Bills
	Law Is Code: Bills with large cores
	Law Is Code: Cores of Titles of the U.S. Code

