Inference Compute-Optimal Views Video Vision Language Models (vVLMs)

Peiqi Wang, ShengYun Peng, Xuewen Zhang, Hanchao Yu, Yibo Yang, Lifu Huang, Fujun Liu, Qifan Wang

MIT Paper Code

George

 $\bigcap \bigcap$

Language

Response

Optimizing for inference is crucial for deploying video VLMs at scale

Use vVLM to understand videos, e.g., topic tagging, flagging policy violation

- 1M videos for finetuning vs. ~1B videos/month (e.g., TikTok) inference
 - \rightarrow ~340× higher inference compute cost than

7.5B

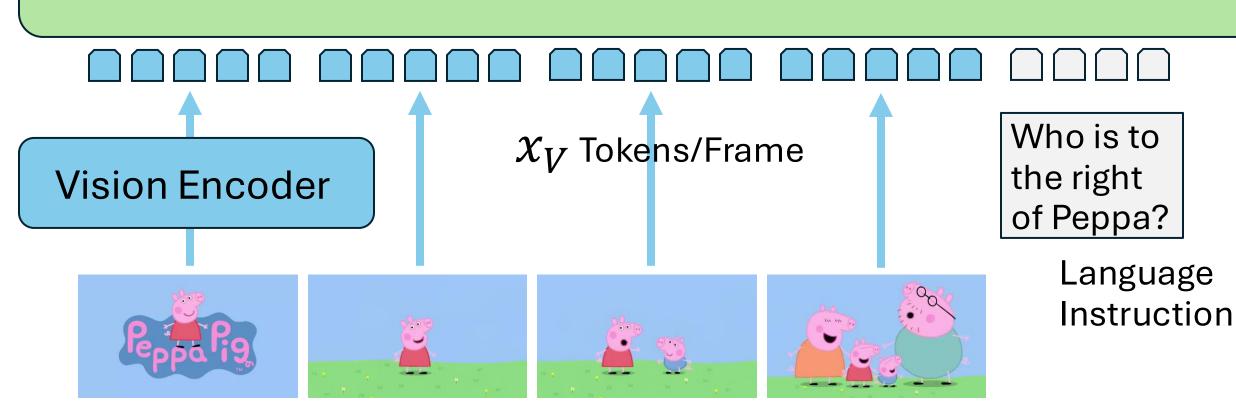
2.8B

1.0B

0.25M 0.5M

Analysis based on LlaVA-like video VLM • vision encoder processes x_T frames independently • x_N -param LM consumes $\sim x_T x_V$ tokens

Language Model (x_N params)



 χ_T Video Frames

Experimental Setups

Dataset

- ~2.2M video instruction datasets, including chat,
- QA, captioning
- Model: LLaVA-like architecture
 - SoViT-400m/14 vision encoder
 - \bigcirc Llama-3.2 series of LMs $x_N \in \{1B, 3B, 8B\}$
- 然 Finetuning
 - ① pretrain projector
 - ② full finetuning using instruction datasets
- **Evaluation**
 - 8 video benchmarks: Video Detailed Caption, ActivityNet-QA, benchmarks VCGBench, LongVideoBench, PerceptionTest, MVBench, Video-MME, Next-QA
 - Metrics: QA accuracy; LM's rating for
 - captions & open-ended QA

finetuning compute cost

Scaling factors $x = (x_N, x_T, x_V)$ affects 1 inference compute cost $\mathcal{C}(x)$ 2 downstream task error f

Optimizing LM training compute vs. vVLM inference compute. \rightarrow we ignore effect of data size *n* on compute!

Compute Problem $\min_{x_N, n_{pt}: c(x_N, n_{pt}) \le c_{pt}} f(x_N, n_{pt})$ Pretraining $\min_{\boldsymbol{x}:c(\boldsymbol{x})\leq c} f(\boldsymbol{x},\boldsymbol{n})$ Inference

• Star sweep: vary one x_k at a time while keeping others fixed around the "star center" $x^* =$ (8B, 32, 196) and finetune vVLM on three data sizes n (in millions): 0.25, 0.5, and 1

1.0M

• **IsoFLOP sweep**: adjust scaling factors (x_N, x_T, x_V) to maintain a fixed inference compute cost c(x)across 4 target TFLOPs: 2, 5, 15, 30 and finetune vVLM on 2M sample

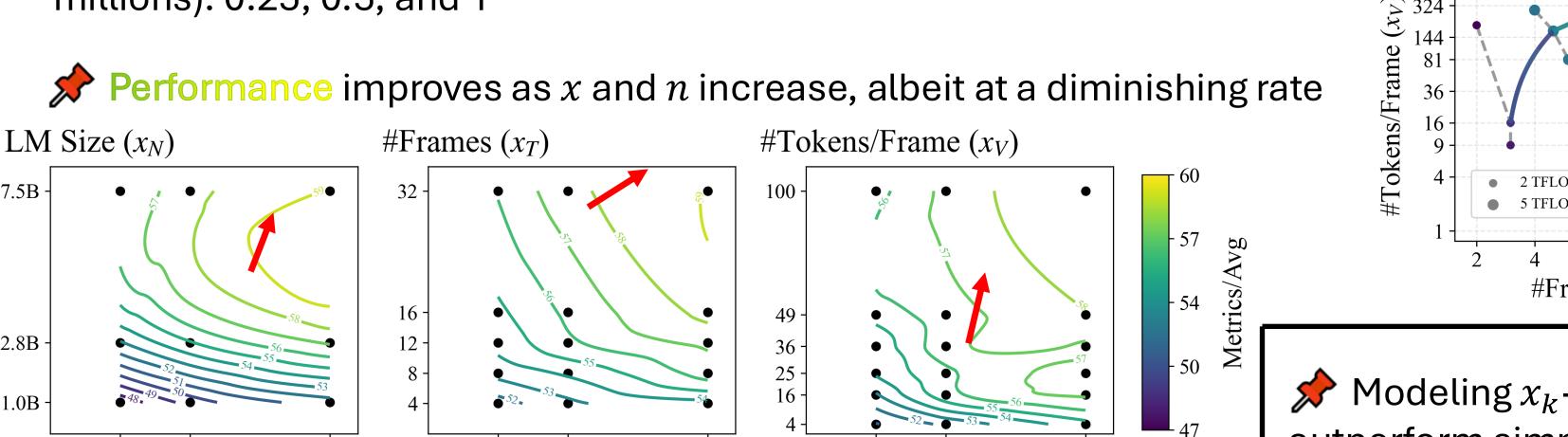
Q: Given fixed finetuning data of size *n* & inference compute budget *c* (in FLOPs),

How to select scaling factors x with the smallest task error f?

where x_N = LM size, x_T = number of frames, x_V = tokens/frame

Sweeps finetune & evaluate vVLMs to collect $(x^{(i)}, n^{(i)}, f^{(i)})$

Training

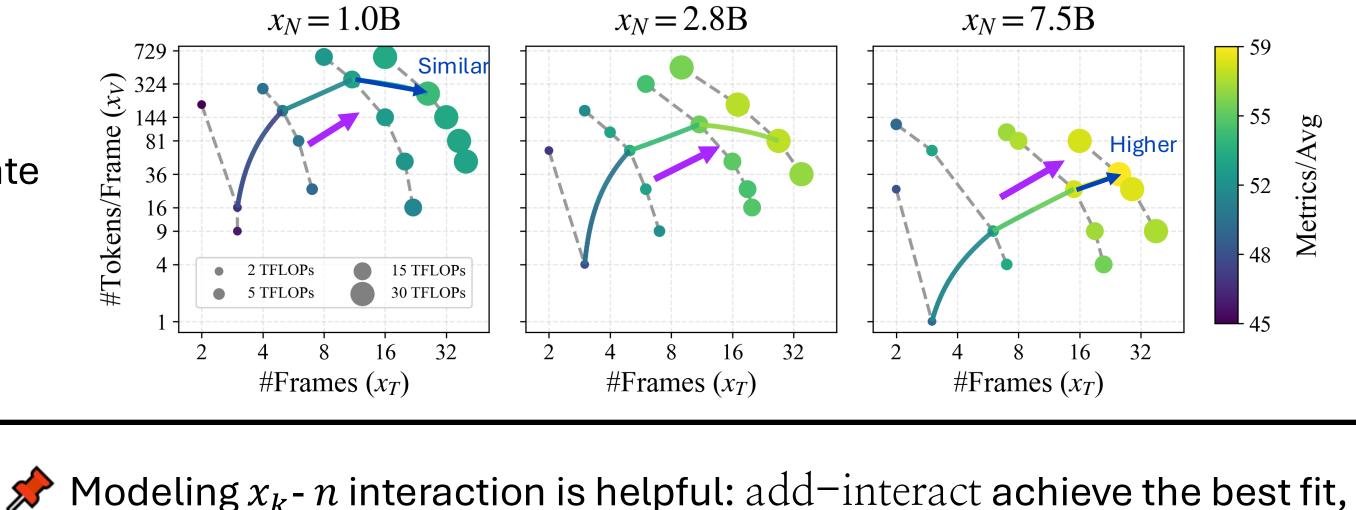


0.25M 0.5M

1.0M

 \bigcirc Fixing LM params x_N , better performance when increase x_T , x_V jointly 15 \rightarrow 30 TFLOPs: larger LM ($x_N = 7.5B$) makes better use of 2× compute implies bottleneck imposed by LM size!

for the second second



Performance Modeling modeling & fitting of $f(x,n;\theta)$

Model task error using add-interact, a simple additive power-law relationship with interaction terms

1.0M

for k-th scaling factor: $f_k(x_k, n) = \alpha_k x_k^{-a_k} + (\beta_k x_k^{b_k} + \xi_k) n^{-d} + \varepsilon_k$

• Coefficients α_k , β_k , ξ_k represent error reducible by increasing x_k or n • Coefficient ε_k accounts for irreducible error

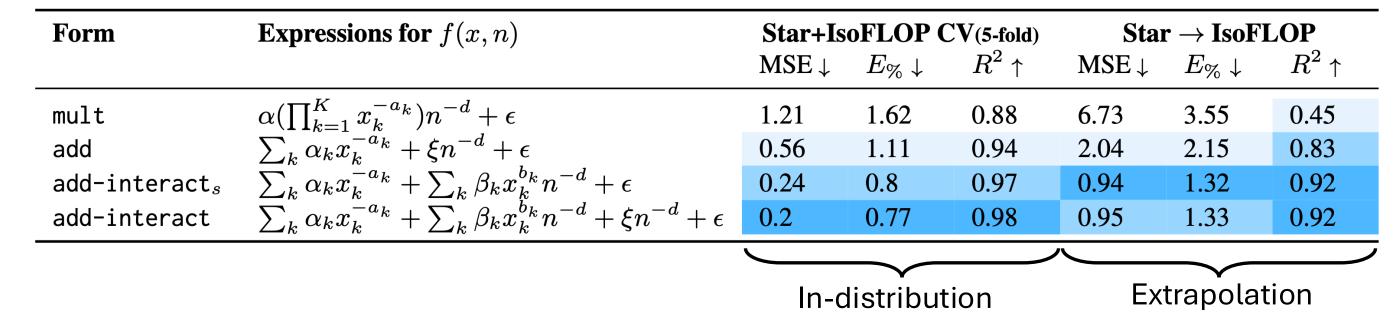
0.25M 0.5M

• Exponent a_k describe how error scales with x_k in data-unbounded regime

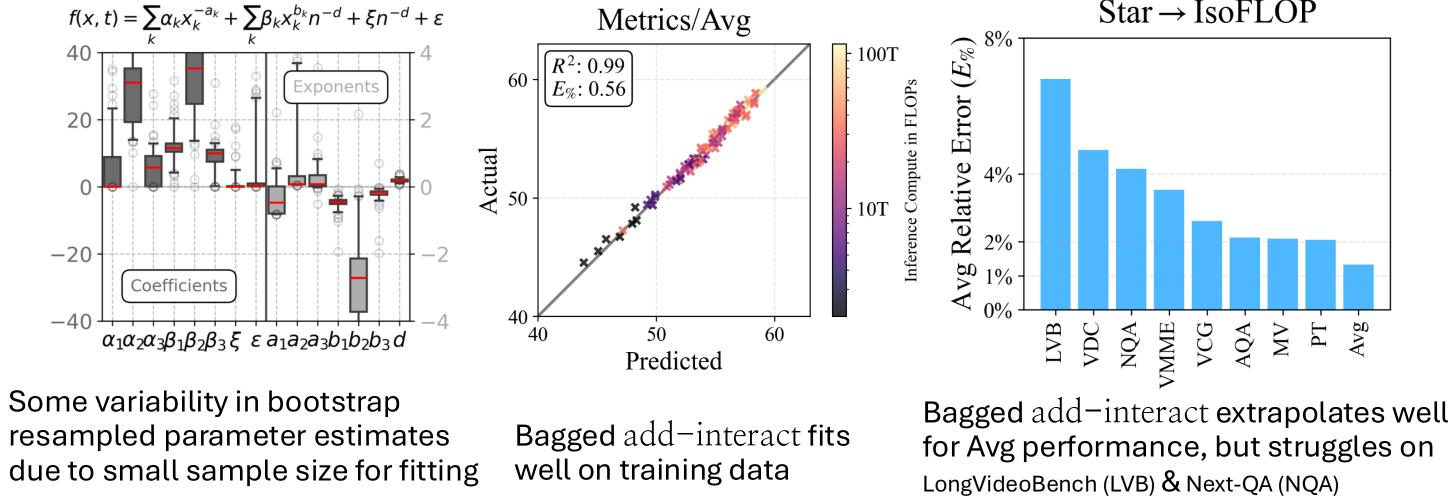
- Exponent d quantifies how error decreases with increasing n
- Exponent b_k determines how x_k affects the impact of increasing n

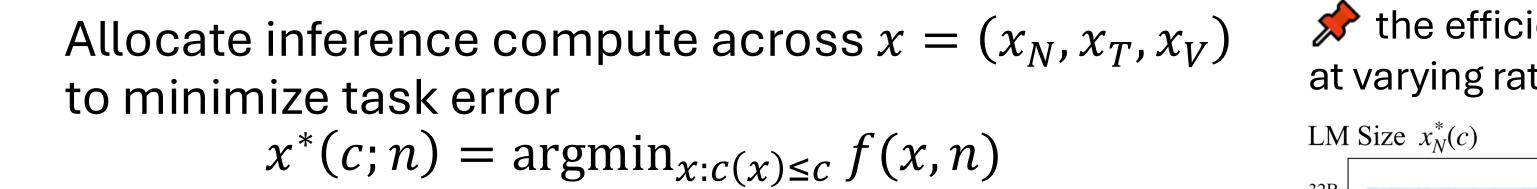
Estimate $\theta = \{\alpha_k, \beta_k, \xi_k, \varepsilon_k, \alpha_k, b, d\}$ by minimizing MSE between predicted vs. observed performance $\min_{\theta} \Sigma_i (\log f(x^{(i)}, n^{(i)}; \theta) - \log f^{(i)})^2$

outperform simpler additive (add) and multiplicative (mult) power law models



Provides a reasonable fit for predicting task performance $Star \rightarrow IsoFLOP$





 \not the efficiency frontier $x^*(c; n)$ requires joint scaling of (x_N, x_T, x_V) at varying rates and is non-monotonic (due to x discrete) #Frames $x_T^*(c)$ #Tokens/Frame $x_V^*(c)$ $10.7 \times$

Inference compute-

Constrained Optimization solve for the Inference computeoptimal frontier $\mathbf{x}^*(c;n)$ $= \operatorname{argmin}_{x:c(x) \le c} f(x, n)$ Inference compute cost for both the vision encoder and LM is measured in FLOPs

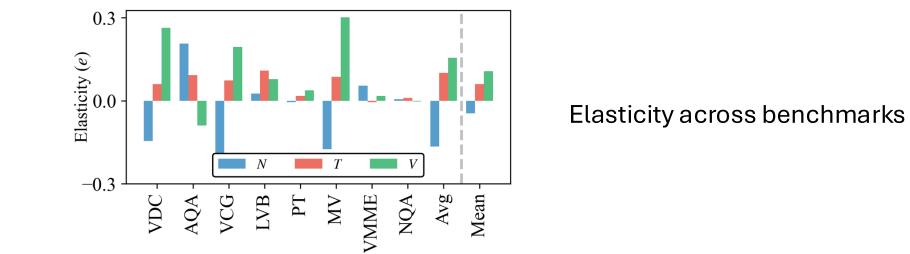
$$c(x) = 2x_T(0.43e9 \cdot 768 + x_N x_V)$$

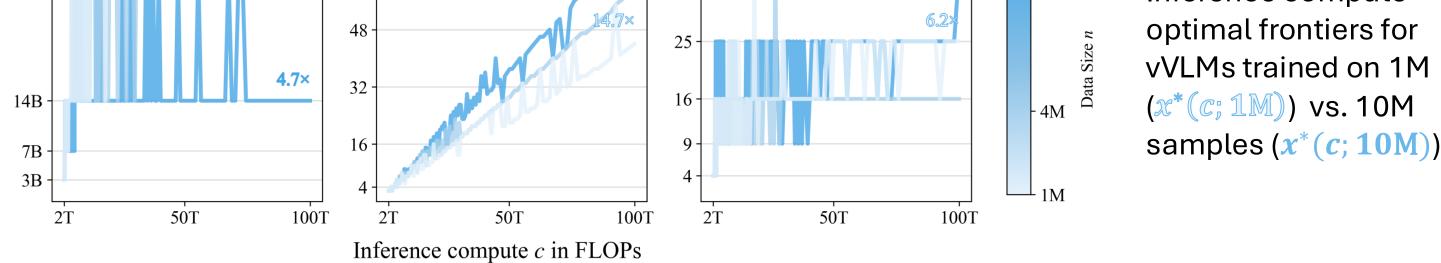
for SoViT-400m/14 # vision encoder # visual features parameters

No analytical solution because $\bigcirc c(x)$ considers vision encoder's cost @x is discrete

→ just solve with brute-force search!

 \not Inference compute-optimal $x_N \uparrow$ and $x_T, x_V \downarrow$ as data size n grows across benchmarks, with task-specific variations





\not Inference compute-optimal x_N \uparrow and x_T , $x_V \downarrow$ as data size n grows

