
Inference Compute-Optimal 
Video Vision Language Models (vVLMs)
Peiqi Wang, ShengYun Peng, Xuewen Zhang, Hanchao Yu, 

Yibo Yang, Lifu Huang, Fujun Liu, Qifan Wang

Analysis based on LlaVA-like video VLM
• vision encoder processes 𝑥𝑇  frames independently
• 𝑥𝑁-param LM consumes ~𝑥𝑇𝑥𝑉  tokens
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Optimizing for inference is crucial for 
deploying video VLMs at scale

Use vVLM to understand videos, e.g., topic 
tagging, flagging policy violation
• 1M videos for finetuning vs. ~1B videos/month 

(e.g., TikTok) inference 
➟ ∼340× higher inference compute cost than 
finetuning compute cost

Q: Given fixed  finetuning data of size 𝑛 & inference compute budget 𝑐 (in FLOPs),
 How to select scaling factors 𝑥 with the smallest task error 𝑓?
  where 𝑥𝑁 = LM size, 𝑥𝑇  = number of frames, 𝑥𝑉  = tokens/frame
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Scaling factors 𝑥 = 𝑥𝑁, 𝑥𝑇 , 𝑥𝑉  affects ① inference compute cost 𝑐 𝑥  ② downstream task error 𝑓

 Dataset
~2.2M video instruction datasets, including chat, 
QA, captioning
 Model: LLaVA-like architecture

 SoViT-400m/14 vision encoder 
 Llama-3.2 series of LMs 𝑥𝑁 ∈ {1B, 3B, 8B}

 Finetuning
 ① pretrain projector 
 ② full finetuning using instruction datasets
 Evaluation
8 video benchmarks: Video Detailed Caption, ActivityNet-
QA, benchmarks VCGBench, LongVideoBench, PerceptionTest, 
MVBench, Video-MME, Next-QA

 Metrics: QA accuracy; LM’s rating for 
captions & open-ended QA

Experimental Setups

 Performance improves as 𝑥 and 𝑛 increase, albeit at a diminishing rate

 Fixing LM params 𝑥𝑁, better performance when increase 𝑥𝑇 , 𝑥𝑉  jointly
 15 ➟ 30 TFLOPs: larger LM (𝑥𝑁 = 7.5B) makes better use of 2× compute

implies bottleneck imposed by LM size!
 Important to jointly scale 𝑥𝑁, 𝑥𝑇, and 𝑥𝑉 to maximize performance
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•Star sweep: vary one 𝑥𝑘  at a 
time while keeping others fixed 
around the “star center” 𝑥⋆ =
(8B, 32, 196) and finetune 
vVLM on three data sizes 𝑛 (in 
millions): 0.25, 0.5, and 1

min𝑥:𝑐 𝑥 ≤𝑐 𝑓(𝑥, 𝑛) 
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min𝑥𝑁,𝑛𝑝𝑡:𝑐 𝑥𝑁,𝑛𝑝𝑡 ≤ 𝑐𝑝𝑡
𝑓(𝑥𝑁, 𝑛𝑝𝑡)Pretraining

Optimizing LM training compute vs. vVLM inference compute.

  ➟  we ignore effect of data size 𝑛 on compute!

• IsoFLOP sweep: adjust scaling 
factors 𝑥𝑁, 𝑥𝑇 , 𝑥𝑉  to maintain a 
fixed inference compute cost 𝑐(𝑥) 
across 4 target TFLOPs: 2, 5, 15, 30 
and finetune vVLM on 2M sample

Model task error using add-interact, a simple additive 
power-law relationship with interaction terms

𝑓𝑘 𝑥𝑘 , 𝑛 =  𝛼𝑘𝑥𝑘
−𝑎𝑘 + 𝛽𝑘𝑥𝑘

𝑏𝑘 +  𝜉𝑘 𝑛−𝑑 +  𝜀𝑘

• Coefficients 𝛼𝑘, 𝛽𝑘, 𝜉𝑘  represent error reducible by increasing 𝑥𝑘  or 𝑛
• Coefficient 𝜀𝑘  accounts for irreducible error
• Exponent 𝑎𝑘  describe how error scales with 𝑥𝑘  in data-unbounded regime
• Exponent 𝑑 quantifies how error decreases with increasing 𝑛
• Exponent 𝑏𝑘  determines how 𝑥𝑘  affects the impact of increasing 𝑛

Estimate 𝜃 = {𝛼𝑘, 𝛽𝑘, 𝜉𝑘, 𝜀𝑘  𝑎𝑘, 𝑏, 𝑑} by minimizing 
MSE between predicted vs. observed performance

for 𝑘-th scaling factor:

min𝜃 Σ𝑖  (log𝑓(𝑥 𝑖 , 𝑛 𝑖 ; 𝜃)  −  log𝑓(𝑖))2

 Modeling 𝑥𝑘- 𝑛 interaction is helpful: add-interact achieve the best fit, 
outperform simpler additive (add) and multiplicative (mult) power law models

In-distribution Extrapolation

 Bagging add-interact provides a reasonable fit for predicting task performance

Some variability in bootstrap 
resampled parameter estimates 
due to small sample size for fitting

Bagged add-interact fits 
well on training data

Bagged add-interact extrapolates well 
for Avg performance, but struggles on 
LongVideoBench (LVB) & Next-QA (NQA)

Allocate inference compute across 𝑥 = 𝑥𝑁, 𝑥𝑇 , 𝑥𝑉  
to minimize task error

𝑥∗ 𝑐; 𝑛 = argmin𝑥:𝑐 𝑥 ≤𝑐 𝑓(𝑥, 𝑛)

No analytical solution because ① 𝑐 𝑥  considers vision 
encoder’s cost ② 𝑥 is discrete
   ➟ just solve with brute-force search!

Inference compute cost for both the vision encoder and LM 
is measured in FLOPs

𝑐 𝑥 = 2𝑥𝑇(0.43𝑒9 ⋅ 768 +  𝑥𝑁𝑥𝑉)

# vision encoder 
parameters

# visual 
features

for SoViT-400m/14

 the efficiency frontier 𝑥∗ 𝑐; 𝑛 requires joint scaling of 𝑥𝑁, 𝑥𝑇 , 𝑥𝑉  
at varying rates and is non-monotonic (due to 𝑥 discrete)

Inference compute-
optimal frontiers for 
vVLMs trained on 1M 
(𝒙∗ 𝒄; 𝟏M )  vs. 10M 
samples (𝒙∗(𝒄; 𝟏𝟎M))

 Inference compute-optimal 𝑥𝑁  ↑  and 𝑥𝑇, 𝑥𝑉  ↓ as data size 𝑛 grows
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𝜕𝑥𝑘

∗(𝑐;𝑛)

𝜕𝑛
⋅

𝑛

𝑥𝑘
∗ 𝑐;𝑛

 quantifies the sensitivity of 𝑥∗ 𝑐; 𝑛  to changes in data size
 ➟ 𝑒𝑇 > 0 implies frontier shifts upwards

Elasticity across benchmarks

 Inference compute-optimal 𝑥𝑁 ↑  and 𝑥𝑇, 𝑥𝑉  ↓ as data size 𝑛 
grows across benchmarks, with task-specific variations
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