

	Debiased Contrastive Learning [Chuang et al. 2020]
Ideal Loss $\overline{\mathcal{L}}$	$\mathbb{E}_{(x,x^+)\sim\mathcal{D}_{\rm sim}}\left[-\log \left(\frac{1}{2}\right)\right]$
$\begin{array}{l} \textbf{Estimator } g(x, \left\{u_n\right\}, \left\{v_m\right\}; \eta) \\ \textbf{for } \mathbb{E}_{x^- \sim \mathcal{E}_{c_x}} \left[e^{s(x, x^-)}\right] \end{array}$	$\frac{1}{1-\eta} \left[\frac{1}{N} \sum_{n=1}^{N} e^{s(x,u_n)} \right] - \frac{\eta}{1-\eta} \left[\frac{1}{M} \sum_{m=1}^{M} e^{s(x,u_n)} \right] $
Computable Loss ${\cal L}$	$\mathbb{E}_{(x,x^+)\sim\mathcal{D}_{\rm sim},\{u_n\}\sim\mathcal{D}^N,\{v_m\}\sim\mathcal{D}}$
Legend c_x : Class label of x $ ho$: Distribution over	$\mathcal{E}_{c_x}(x') \triangleq p(x' \mid c \neq c)$ The set of $\mathcal{E}_{c_x}(x') = \frac{1}{1 - \rho(c_x)} \mathcal{I}$
$\begin{aligned} \left \mathcal{L} - \overline{\mathcal{L}} \right &\leq \frac{3e^2 \sqrt{\pi/2}}{\sqrt{N}} \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{1}{1 - 1} + 3e^2 \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{1}{1 - \eta(x)} \right] \right] \end{aligned}$	$\frac{1}{1-\rho(c_x)} \left[\frac{3e^2\sqrt{\pi/2}}{\sqrt{M}} \mathbb{E}_{x\sim\mathcal{D}} \left[\frac{\rho(c_x)}{1-\rho(c_x)} \right] \right]$ $\frac{1}{c_x} - \frac{1}{1-\rho(c_x)} \left[\frac{1}{1-\rho(c_x)} \right],$

provided by a language model (LM) for text x to construct the estimate $\eta(x)$ of the class probability $\rho(c_x)$ $\eta_{\rm LM}(x) = a \cdot p_{\rm LM}(x)^k$

correct item was found in the top K results; MedR is the median rank of the correct item in the ranked list.

Method	Classification		Grounding		Retrieval	
	AUC↑	$\mathrm{ACC}\uparrow$	$\mathrm{CNR}\uparrow$	$mIoU\uparrow$	$\operatorname{Recall}\uparrow$	MedR↓
No Correction BioViL	0.78	0.62	1.14	0.17	0.25	148
No Correction LSE+NL	0.79	0.65	1.40	0.19	0.29	115
Remove by CheX5 Labels	0.86	0.71	1.37	0.19	0.29	113
Resample by Text Sim.	0.82	0.71	1.37	0.19	0.30	111
Remove by Text Sim.	0.84	0.72	1.39	0.19	0.30	112
Reweight by Text Sim.	0.84	0.69	1.40	0.19	0.29	113
DCL- $\eta \le \eta = 0.05$	0.80	0.72	1.46	0.19	0.30	104
DCL- $\eta \le \eta = 0.1$	0.85	0.72	1.45	0.19	0.29	111
DCL- $\eta_{\rm LM}$ (Ours)	0.86	0.72	1.49	0.20	0.30	104

Debiased contrastive learning with sample-specific class probability $\eta_{\rm LM}$

minimal improvement for and retrieval tasks. We hypothesize that this is

$$\frac{(x,x^+)}{\sum_{n=1}^N e^{s(x,x_n^-)}}$$