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Abstract— Path planning classically focuses on avoiding en-
vironmental contact. However, some assembly tasks permit
contact through compliance, and such contact may allow for
more efficient and reliable solutions under action uncertainty.
But, optimal manipulation plans that leverage environmental
contact are difficult to compute. Environmental contact pro-
duces complex kinematics that create difficulties for planning.
This complexity is usually addressed by discretization over
state and action space, but discretization quickly becomes
computationally intractable. To overcome the challenge, we
use the insight that only actions on configurations near the
contact manifold are likely to involve complex kinematics, while
segments of the plan through free space do not. Leveraging this
structure can greatly reduce the number of states considered
and scales much better with problem complexity. We develop an
algorithm based on this idea and show that it performs compa-
rably to full MDP solutions at a fraction of the computational
cost.

I. INTRODUCTION

Robot assembly has traditionally relied on powerful and
expensive manipulators capable of very precise positioning,
such as those used in automobile manufacturing. Humans
approach object manipulation differently, and intuitively use
contact with the environment to overcome the effects of
action uncertainty and achieve high precision. Leveraging
environmental contact allows the same task to be completed
with a more noisy, or less powerful manipulator, and possibly
one with fewer degrees of freedom [1]. Objects inevitably
make contact during assembly tasks, and therefore are al-
ready amenable to contact-rich plans. A motivating example
of contact-rich manipulation is the SE2 peg-in-hole problem
with friction [2]. We will examine this scenario, along
with others, including an implementation on the physical
Baxter robot. Baxter naturally exhibits action uncertainty, but
provides precise state estimates, and is sufficiently compliant
to be safe around humans as well.

We begin by formulating the contact-rich manipulation
problem as a Markov Decision Process (MDP). Specifically,
we consider the case of action uncertainty but perfect ob-
servability. We also assume prior knowledge of the noise
model and environment geometry. By densely discretizing
the state space using random sampling, we can construct
and solve an MDP that is an approximation to the original
problem, without domain-specific knowledge. We prove that
the resulting MDP policies are asymptotically optimal with
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Fig. 1. Baxter uses the policy found through solving the composite MDP
to place a toy block into a narrow opening. The policy pushes the block
against the left side of the opening to reduce uncertainty in the left-right
direction, and then is able to rotate the block into the opening.

the density of the discretization, and observe that such
policies mitigate action uncertainty though environmental
contact.

However, constructing an MDP through conventional dis-
crectization is computationally infeasible with larger envi-
ronments. To mitigate this difficulty, we use the insight that
complex kinematic constraints are only active in contact-
likely regions. Therefore, we take advantage of the structure
of the problem, and only explicitly generate configuration
space samples in these regions and simulate the contact kine-
matics there. For everywhere else, we use a simple feedback
policy. This composite MDP construction greatly reduces
the complexity of constructing the MDP and solving for
the optimal policy. We show that the approximate solutions
perform well in simulation and in practice.

The main contributions of this paper are:
1) An algorithm for the efficient construction of a ‘Com-

posite MDP’ which can be solved to find near-optimal
solutions to contact-rich manipulation problems (Sec-
tion III)

2) Proof of asymptotic-optimality of solutions derived
from MDP approximations constructed using the sam-
pled nearest neighbour transition function technique
(Section IV)

II. PRELIMINARIES

Our objective in this paper is to find a policy for a
stochastic system that achieves a state in the goal set and
minimizes the expected time to goal from every point in the
state space, subject to contact kinematic constraints.

A. Problem Statement

Let the state space X be a compact subset of Rdx and
the action space U be a compact subset of Rdu . Let x(t)
be the (fully-observable) state of the system at time t.



Also let {u(t) ∈ U |t ∈ R≥0} be the control process and
{w(t) ∈ Rdw |t ∈ R≥0} be a Weiner process. Let dx, du, and
dw be the dimension of the state space, control space, and
noise, respectively. We consider a (diffusion) process model
of the form:

x(t) = x(0) +

∫ t

0

f(x(τ), u(τ))dτ

+

∫ t

0

F (x(τ), u(τ))dw(τ)

s.t. x(t) ∈ X, ∀t > 0

(1)

where the instantaneous dynamics f : X × U 7→ Rdx and
and noise dynamics F : X × U 7→ Rdx×dw are bounded
measurable and continuous functions, and do not allow the
state to reach the boundary of X , which effectively model
contact. The process stops once a state in the goal set is
reached.

We use the infinite-horizon discounted reward formulation
since there is no general method to bound the maximum
length of the optimal policy. The value function is defined
as:

vπ(x0) = E

[∫ ∞
0

γτr(x(τ))dτ

]
(2)

where x0 is the initial state, γ ∈ R(0,1) is the discount factor,
and r(x) = 1x∈Xgoal

is the reward function. The evolution
of x(t) is governed by equation 1 where u(τ) = π(x(τ)), in
other words, under the policy π : X 7→ U .

We seek the policy π∗ that maximizes vπ(x0) for every
initial state x0 ∈ X , which is not solvable in general and
usually only for simple problem classes such as those with
linear dynamics, Gaussian noise, and quadratic cost. There-
fore, we use the MDP approximation in the following section
to find an asymptotically-optimal policy.

B. MDP Approximation

We define an MDP as a tupleM = {S, A, T, R, dt}. Let
S be a finite set of states and A be a finite set of actions. Let
T : S ×A× S 7→ R[0,1] be a Markovian transition function.
Note that

∑
s′∈S T (s, a, s′) = 1, where s, s′ ∈ S are the ini-

tial and final states, respectively. Lastly, let R(s) = 1s∈Sgoal

be the reward function. A reward is only earned whenever
the state transitions into a goal state. Each step of the
MDP occurs over a predefined time step dt. This concept
is extended in the composite MDP presented in this paper
to account for feedback-control path segments which apply
over several time steps. In accordance with equation 2, we
let rewards be accumulated over an infinite time horizon and
exponentially discounted by γ.

Notice that this MDP formulation allows us to model state-
dependent noise. We can find an approximate solution By
converting the problem described in equation 1 into an MDP.

C. Fully-sampling State Space

Although structured discretizations, such as grid-based
techniques, can be more efficient in representing a state
space, these approaches usually require domain knowledge to

employ. For higher-dimensional state spaces, or state spaces
with complex geometry, structured discretizations are often
impractical.

Therefore, we randomly generate the state space of the
approximating MDP by sampling the kinematically-feasible
(valid) regions of the configuration space using rejection
sampling. The goal set is also explicitly added to the state
space. Furthermore, for problems with complex contact kine-
matics, the MDP fidelity can only be improved by additional
samples near contact manifolds. Therefore, we attempt to co-
erce invalid samples into valid configuration space using the
physics engine. This is represented as FORWARDSIM(s, 0)
in Algorithm 1 (i.e., forward simulating with no input, such
that only forces generated by surface penetration are applied
to the object).

D. Control Input Discretization

Apart from the state space, we must also discretize the
action space. The action set is discretized uniformly as in
Huynh et al. [3]. In fact, it is imperative to explore the full
action set, without bias or pruning, to ensure the optimal
solution is found.

E. Generating Transition Function

Having the input space, we can proceed to calculating the
transition function.

This is the key step in the construction of the MDP that
allows the complex contact kinematics of the problem to be
modeled, thus enabling the policy to learn to use the envi-
ronment to reduce action uncertainty. However, solving for
the transition function is the most computationally intensive
part of the construction of the full MDP. In fact, since we
have an unevenly discretized state space by virtue of our
random sampling approach to creating the state space, need
to compute a different transition function for each state.

For each state, the transition function is calculated by
repeatedly forward simulating the result of applying each
control input a, from the initial state s, with action noise
w, for some constant time dt. The closest configuration in
the discretized state space to each simulated sample, by
Euclidean distance, is recorded as a neighbour of the initial
state. The probability of reaching any neighbour, given the
control input applied, is the percentage of simulated samples
which arrive at this neighbour. This is formally expressed
in Section IV-A. Using this transition function, we can now
solve the MDP using value iteration.

F. Value Iteration

We use a standard value-iteration-based approach,

Vi+1(s) = max
a∈A′

{∑
s′∈S

V ′i (s, a, s′)

}
+ γVi(s), (3)

where

V ′i (s, a, s′) = γ T (s, a, s′)
(
Vi(s

′) +R(s, a, s′)
)
. (4)



G. Full-MDP Solutions

As we will show in Section IV, formulating and solving
the problem as a full MDP, where states are uniformly sam-
pled from the kinematically-feasible region of the configura-
tion space, and all control inputs are considered everywhere,
produces asymptotically-optimal solutions in the limit of
infinite samples and infinite action-space samples.

These solutions exhibit the desired behaviour of leveraging
contact to overcome errors due to action noise. For instance,
in the 2D peg-in-hole problem, policies learn to press the
peg against the edge of the hole to reduce action uncertainty,
and often succeeds on the first attempt. Similar results are
shown in [4], but derived using a domain-specific approach.
For comparison, a simple feedback-guided waypoint policy
usually results in missing on the first try, and bouncing
around the hole without success.

However, the full MDP approach quickly becomes compu-
tationally intractable. The number of state samples required
empirically scales with the volume of the valid configuration
region. Furthermore, calculating the transition function—
which is the most computationally-intensive step—scales
with O(|S||A|).

III. DESCRIPTION OF COMPOSITE MDP

The key insight of the composite MDP is that a simple
feedback policy can be used wherever the probability of
contact given any action is very low. As a result, wherever
contact is unlikely, the policy can be derived without explicit
state representation. We only need discrete samples near
contact manifolds. This concept is more concretely described
in the following subsection. The remainder of the work is
designed to accommodate this policy paradigm within an
MDP framework.

A. Generating Composite MDP State Samples

The approach we take is similar in spirit to [5], since our
approach can also be thought of as a method for variable-
resolution sampling. However, rather than directly using
characteristics of the value function or policy to choose
where to concentrate samples, which require expensive roll-
outs and an incremental algorithm, we use our knowledge of
where kinematics are complex, i.e., where contact is likely.

We formally define near-contact configuration points that
satisfy the following,

{s ∈ S : ∃ a ∈ A s.t. Pcontact(s, a) > β} (5)

where Pcontact(s, a) is the probability of the state coming into
contact with the environment given the initial state s and
some action a, and β is a parameter which determines how
far the configuration point cloud extends above the contact
manifold. Algorithm 1 details how these configuration points
are generated.

Essentially, we first use the sampling method described
in Section II-C for state space construction, and accept the
sample if it is initially invalid, but can be coerced into valid
configuration space by the physics engine. In this way, we
ensure our sample is in contact. If the sample is initially

Algorithm 1 Generate Contact-likely States
1: repeat
2: s← GENERATERANDOMCONFIG()
3: if not ISVALID(si) then
4: repeat
5: s← FORWARDSIM(s, a)
6: if ISVALID(s) then Accept Sample
7: break
8: until Iteration Limit Reached
9: else

10: repeat
11: a← GENERATERANDOMCONTROL()
12: a← a(1 + nσ)
13: s′ ← s
14: repeat
15: s′ ← FORWARDSIM(s′ , a)
16: if INCONTACT(s′) then Accept Sample
17: break
18: until Iteration Limit Reached
19: until INCONTACT(s′) or Itn. Limit Reached
20: until Sufficient Samples Generated

valid, then we choose a random action a and simulate
forward an additional nσ, where σ is the noise magnitude,
and n is a parameter controlling β. We repeat the simulation,
resetting to the initial state and applying a different action
each time, until the state makes contact, or an iteration limit
is reached. If any action pushes the state into contact with
the environment, the initial sample is accepted. We use the
Bullet physics engine [6] to forward simulate configuration
samples in the FORWARDSIM() function.

Note that it should then be possible to express β as a
function of n. For example, for Gaussian noise with standard
deviation σ, β = 1

2

[
1 + erf( n√

2
)
]
.

Algorithm 1 terminates when samples are sufficiently
dense. The samples are then placed into a KD-tree for
efficient nearest-neighbour lookup and sorting by distance
to an arbitrary point. An additional spatial decimation step
can further reduce total computation time. This is done by
iterating over all samples, and removing the sample if it has
more than a certain number of neighbours within a certain
radius.

B. The Composite MDP Action Set

The action set for the composite MDP includes both
the primitive actions as constructed in Section II-D and
additional feedback actions. We define these feedback actions
as actions which, given an initial state and a target state,
apply feedback control until the state has a high probability
of contact, i.e., satisfies equation 5. In practice, the distance
to the closest state in the composite MDP state space is used
as a proxy to the above criteria. In other words, the feedback
action terminates when the state drifts too close to any state
in the composite MDP state space. Sutton et al. refer to these
multiple time step actions as ‘options’ [7].



The feedback control can be quickly calculated using
knowledge of the system dynamics and the immediate target
configuration, since the process model in free space is simply

si+1 = si + (ûi + w)dt. (6)

An example of a simple feedback controller used is

u(x) =
xg − x
||xg − x||

(7)

where xg is a feedback target. Under the feedback controller,
likely paths form a cone-like volume, as seen in Figure 2.

Initial State Target State

Fig. 2. This is the volume of likely trajectories achieved using a
feedback controller. (Plotted in 3D and projected onto each plane for clarity.)
Hypothetically, if any state existed within the volume, this goal would not
be reachable.

Although it is feasible to apply a feedback action using
any state in the state space as a target, this can be highly
redundant, due to the termination condition mentioned above.
Therefore, we only evaluate feedback actions to ‘reachable’
states, which we informally define as states which, when used
as feedback targets, will be the neighbour which is reached
with highest probability. These reachable states are returned
by Algorithm 2.

Algorithm 2 GETREACHABLE()
1: INPUT: s0

2: S′ ← SORTBYDIST(S, s0)
3: C ← ∅
4: ~V ← ∅
5: Svis

6: for all s ∈ S′ do
7: C ′ ← s−s0

|s−s0| ·
~V

8: if c > 0 ∀ c in C − C ′ then
9: ~V ← ~V ∪ s−s0

|s−s0|
10: C ← C ∪ |s−s0|√

|s−s0|2+(ρdX)2

11: if |s− s0| > σdt then
12: Svis ← Svis ∪ s
13: return Svis

Algorithm 2 begins by checking the angle between s− s0

and each s − si where si is a previously accepted point.
If all angles are sufficiently large, we say the new point
is ‘reachable’ and is added to the reachable set. However,
the allowable angle to each previously-visited point varies,
depending on the distance from s0 to the visited point. This

angle is stored as a vector of cosines C. Unit vectors from
the initial point to each accepted point are also stored as ~V .
This is illustrated in Figure 3.

Reachable Point

Not Reachable Point

s0

Fig. 3. This figure illustrates how reachable points are found. The four
reachable points (green) are not occluded by any other points, while the
unreachable points (red) are occluded. This is achieved by Algorithm 2.

Only admitting actions to reachable states also reduces the
error in the assumption that all states within the feedback
volume have the same best next state, as assumed in Section
IV-B, since the feedback volume widens with the length.
The smaller distance also reduces the likelihood of reaching
a rogue state which is very far from the intended target, since
paths will deviate more from the hypothetical noise-free path
given longer distances.

C. Calculating the Composite MDP Transition Function
The standard one-step MDP transition function is cal-

culated wherever a sufficient number of neighbours are
available. Otherwise, reachable targets for a feedback action
are found, and are added as additional actions, and their
corresponding transition function is calculated.

Concretely, given a state s, if any control input a results
in too many simulated samples that are each too far from
the closest state in the contact-likely state space, then that
control input is pushing the state into free space. Any state
that can be pushed into free space in one time step is labeled
a ‘surface’ point.

All reachable states from a surface point, as returned
by Algorithm 2, are evaluated as feedback targets by the
FBSIM() method, which forward simulates the surface point
under feedback control to the target. Each feedback target is
added as a feedback action, that can be taken from the initial
state, and the associated transition probabilities are recorded.

Algorithm 3 Calculate Transition Function
1: for all s ∈ S do
2: surface point ← False
3: for all a ∈ A do
4: ssamples ← FORWARDSIM(s, a, num samples)
5: if NUMTOOFAR(ssamples, S) < µ then
6: ADDTOTRANS(s, a, TOPROB(ssamples))
7: else surface point ← True
8: if surface point then
9: Xvis ← GETREACHABLE()

10: for all stgt ∈ Xvis do
11: ssamples ← FBSIM(s, stgt, n samples)
12: ADDTOTRANS(s, stgt, TOPROB(ssamples))

Discovering feedback actions between surface points is
required to connect states in a non-convex configuration



region, or states between distinct configuration regions (e.g.
between two separate obstacles). This approach stems from
the intuition that an optimal path in space consists of straight
segments (feedback paths) and segments that lie on the edge
or connect at the corner of an obstacle.

Concretely, if the goal state is obstructed from the current
state by an obstacle, as in Figure 4, said goal state should
be reachable from a sample generated around the obstacle
(Point B). Therefore, the value of the goal state can then be
propagated to a point reachable from the current state (Point
A), which can then be used as an initial feedback target. This
is detailed in lines 8-12 in Algorithm 3.

Start

Goal

Feedback Path Segment

Standard MDP Path Segment

Surface Point

B
A

Fig. 4. The optimal path in this scenario involves using feedback control
to reach point A, then the standard MDP policy until point B, then feedback
control until the goal. A precomputed feedback action is used to achieve
the last path segment.

Since the calculation of the transition function at each
point is independent of all other points, this step is amenable
to parallelization for reliable speed-ups given sufficient com-
puting resources.

D. Solving the Composite MDP

To account for accumulated rewards in the composite
MDP, the value iteration update must be modified. Equation
4 is replaced with the following:

V ′i (s, a, s′) = γτT (s, a, s′)
(
Vi(s

′) +R(s, a, s′)
)

(8)

and the set of actions to search through A′, is now the union
of the standard set A and the available feedback actions.
Note that the reward R is zero everywhere except in the goal
set. Also, the exponent of γ should be the expected number
of steps to state s′. However, no noticeable difference was
found compared to using the configuration space distance to
calculate the expected number of time steps. Specifically,
we use τ = DIST(s,s′)

dt , since the control input is of unit
magnitude.

Value iteration terminates after no values change by more
than a set threshold. The optimal policy can then be extracted
by taking the argmax of each value update.

π(s) = argmax
a∈A′

{∑
s′∈S

γτT (s, a, s′)
(
Vi(s

′) +R(s, a, s′)
)}
(9)

E. Executing the Composite MDP Policy

If the initial state is in free space, we begin by searching
for the best feedback target. This is the only relatively
computationally-intensive step of the procedure, but is rarely
required after the first step. Once this first feedback target is

reached, we simply take the optimal action encoded in the
closest samples to the current state until the goal is reached.
Feedback targets can also be fed to external controllers to
achieve, as is done with the Baxter experiments in Section
V-C.

IV. OPTIMALITY ANALYSIS

Our approach is asymptotically optimal, in the sense that
the policies returned by our approach converge to the optimal
solution of equation 2 as the number n of samples goes
to infinity, and we outline the key ideas here. We first
argue that our calculated transition function satisfies a local
consistency condition, implying that the full MDP solution is
asymptotically optimal; this proof follows the same outline
as the proof of Huynh et al. [3]. Next, we argue that using
feedback control in lieu of an MDP solution does not prevent
asymptotic optimality.

A. Local Consistency

Consider a sequence of MDPs {Mn}∞n=0 that approxi-
mate the continuous process of equation 1 with increasingly
high resolution as n tends to infinity. We let Mn =
(Sn, A, Tn, Rn, dtn) and let πn be the optimal policy
derived from Mn. Kushner and Dupuis [8] give sufficient
conditions on the approximate MDPs {Mn} to ensure the
sequence of policies {πn} will converge the true optimal
policy in the underlying continuous problem.

lim
n→∞

dtn = 0 (10)

lim
n→∞

||sni+1 − sni ||2 = 0, ∀i ∈ N (11)

lim
n→∞

E[sni+1 − sni |sni = z, uni = u]

dtn
= f(z, u) (12)

lim
n→∞

COV[sn − sni |sni = z, uni = u]

dtn
= F (z, u)F (z, u)T

(13)

sni and uni are the ith state and control in the sequence,
respectively, in the nth MDP in the sequence. Equations 10
and 11 hold trivially for samples drawn uniformly from free
space and for the sequence of times dtn ∝ ( logn

n )1/d.
We sketch a proof that the conditions in 12 and 13 also

hold in our algorithm. The transition model described by
algorithm 3 can be described mathematically as

P̂ (∆s|s, a) =
1

|Sn|M

|SN |∑
q=1

M∑
m=1

Kn

(
∆sq,∆sm

)
δ(∆s−∆sq)

(14)
where ∆s = s(t + dt) − s(t) is the change in state after
applying action a from state s, and M is the number of
forward-simulated samples. The function δ(x) denotes the
Dirac delta function, and the functions Kn(r) can be any
sequence of kernel functions satisfying∫

d∆sKn(∆sq,∆sm) = 1 (15)

lim
n→∞

Kn(∆sq,∆sm) = δ(∆s). (16)



We recover Algorithm 3 when we let K(‖∆s‖) be propor-
tional to 1 when ‖∆s‖ is less than or equal to the distance
h to the closest neighbor of the forward-simulated sample,
and 0 otherwise.

Kn(∆sq,∆sm) =

{
1

ζdhd ‖∆sq −∆sm‖ ≤ h
0 else

(17)

We argue informally that this model satisfies equations 12
and 13. For example, the expectation in equation 12 can be
written explicitly using equation 14:

Ê
∆s

[
∆s
]

=
1

|Sn|M

|Sn|∑
q=1

M∑
m=1

Kn

(
‖∆sq −∆sm(s, a)‖

)
∆sq

(18)
where the expectation is taken with respect to the empirical
transition probability. Consider this expectation as a function
of the forward simulated samples δsm; it follows from the
consistency of kernel density estimation and the Lipschitz
continuity of the actual transition probability P (∆s|s, a) that

lim
M→∞

Ê
∆s

[
∆s
]

=
1

|Sn|

|Sn|∑
q=1

(p(∆sq|s, a) + o(h̄))∆sq (19)

where h̄ is the average distance between samples. Again
relying on the continuity of the actual transition probability,
it follows that

lim
|Sn|,M→∞

Ê
∆s

[
∆s
]

= f(s, a)dtn + o(h̄). (20)

Because our samples are drawn uniformly from free space,
we can show that h̄ = O(n1/d). Since dtn = ( logn

n )1/d, it
is straightforward to show that

lim
n→∞

o(h)

dtn
= lim
n→∞

(log n)−1/d = 0 (21)

and therefore 12 holds. A similar argument applies for
equation 13. Since our approach satisfies the conditions in
equations 10-13, the sequence of policies converge to the
true optimal policy.

B. Near-optimality of Feedback Policies

Our second deviation from conventional continuous MDP
solutions is the use of feedback control instead of a policy
computed from the approximate MDP in free space. We can
use feedback control while maintaining near-optimality in
regions without contact-likely states, since complex contact
kinematics are not relevant to planning in this region.

Feedback control can be thought of as the solution to an
LQR control problem, where there is some non-zero constant
cost for each control, and a large coefficient for the quadratic
error term. We stress that these assumptions do only apply
to regions which are unlikely to come into contact with
obstacles, and when goal states are appropriately chosen such
that the target is reachable, such as by the GETREACHABLE()
function.

However, we must make the assumption that at any point
within the feedback volume, the best next state in the MDP
does not change, since the feedback target cannot change

until the feedback action terminates. We argue that this is not
an unreasonable assumption, given the compactness of the
feedback volume under reasonable noise, as seen in Figure
2. This condition ensures an accurate value update and the
visibility-based feedback goal selection is a valid heuristic.
For further discussion on the latter, see Section III-C.

When both these assumptions are true, the optimal policy
produced by a full MDP in free space with infinite samples
is simply a feedback policy. Since the feedback policy is an
optimal MDP policy, and controlled Markov chains on the
MDP converge to solutions of equation 1 as the probability
of contact goes to zero (β → 1 in equation 5), the optimality
of solutions on the composite MDP is well-approximated.

V. EXPERIMENTAL RESULTS

A. Peg-in-hole Environment

The classic peg-in-hole environment is used to validate
the composite MDP. The state and action space are defined
in SE2, describing a fully-actuated 2D peg-in-hole scenario.
The pivot point (and origin) of the peg is defined well above
the centroid of the peg, to mimic the grasp of a manipulator.
The peg interacts with the surrounding environment with
realistic friction. Both these factors add difficulty to the task.
We assume no gravity, simulations assume 16% Gaussian
noise (σ = 0.167, where |û| = 1). A very low noise
magnitude precludes the need for accounting for action
uncertainty, while noise magnitudes above a certain threshold
are impossible to overcome by any control policy. In this
scenario, the control scheme performed well (> 85% success
rate) until σ = 1.5.
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Fig. 5. Solution length plotted against number of samples for each
contact cloud depth (nσ). Policies reaches optimal performance around 5000
samples, whereas the full MDP solution requires at least 25000 samples.
In general, lower n produces better performance, but might require more
feedback goal-searching during execution. The anomalous performance for
4σ at 1000 samples could be due to a sampling anomaly, retrials did not
show this effect.

The composite MDP produces intelligent policies which
use the side of the hole to reduce action uncertainty. Figure
5 compares the relative performance of using 1-4σ contact
clouds. Computation time is approximately one hour per
1000 samples for the full and composite MDP solution.
Table I summarizes the computation time required for various
methods. We compare against SARSA [9], which also pro-
duces asymptotically optimal solutions. The SARSA method



does not fare well, and only has a lower average solution
length because unsuccessful paths are excluded. Our method
requires less than a quarter of the computation time as the full
MDP solution, while producing comparable performance.

Start Start Start

Goal GoalGoal

Fig. 6. The two plots show a solution path of the peg-in-hole problem,
plotted over sample states coloured by the value function. The far left
plot shows the fully-sampled MDP solution, while the middle plot shows
the composite MDP solution. The latter approach performs similarly while
requiring a fraction of the computation since far fewer samples are required.
The diagram on the right shows a simulated solution path of the peg. Note
how the peg swings left against the hole to reduce uncertainty in the x
direction.

B. Narrow Corridor Environment

In this environment, a five-sided robot in SE2 is tasked
with passing through a narrow corridor, with realistic friction.
It can be thought of as an extension to the SE2 peg-in-hole,
but the peg can be inserted either side down. Similar noise
magnitudes to the previous environment are used.

Start

Start Start

1

2

1

1

2

2

Fig. 7. The two plots show one executed trajectory in configuration
space. The coloured dots represent the value function at each sampled
point. Configurations of interest are labeled and illustrated on the right.
The composite MDP algorithm correctly chooses to head into the corridor
angled-side first.

The optimal policy must minimize solution length by
appropriately choosing between entering the corridor blunt-
side first or angled-side first. When starting from a neutral
position, the policy always makes the correct choice, as
shown in Figure 7. For comparison, entering the corridor
blunt-side first takes 22.3 times steps versus 21.1 time steps
entering angled-side first (averaged over 500 trials).

This behaviour only emerges when sufficient action noise
is present in the system. In a completely noise-free scenario,
both goal states would take the same number of steps from
the goal position.

C. Baxter Experiments

The Baxter research robot is an excellent example of a
platform with accurate state estimates, but actuators which
cannot achieve the same precision. Less powerful actuators
allow Baxter to be safe for close-quarters human-robot
collaboration tasks, whereas traditional manipulators are not.
We also set force and displacement limits on the end effector
in the spirit of compliant manipulation, to further protect the
object and environment against damage.

We assume the manipulator movement is largely free
from any significant dynamic effects, such as momentum. In
practice, this is a reasonable assumption when manipulator
joint speeds are limited, and any effects can be handled as
action uncertainty.

The optimal policy calculated for the peg-in-hole environ-
ment is evaluated on the Baxter research robot. The default
endpoint controller is used to achieve feedback targets. The
policy performs well. The peg-in-hole task was attempted
using the default Baxter position controller and the MDP
policy, for 100 trials each. The default Baxter controller
failed 48 times, while the MDP policy only failed 3 times
out of 100 trials. The policy accomplishes this by leveraging
environmental contact to reduce action uncertainty despite
discrepancies between real-world geometry and dynamics
and the simulation environment, as described in Figure 1.

VI. PREVIOUS WORK

The SE2 peg-in-hole problem in general is a well-studied
compliant manipulation task [10], [11], [12]. Approaches
have involved hybrid control (force control in some di-
mensions and position control in the rest) [13], as well as
mechanical solutions leveraging compliant components [14].
More recent approaches to the peg-in-hole problem, and
other planning tasks in SE2 and SE3, are presented in [15].
This method also uses a physics engine to simulate complex
dynamics, and focuses on the idea of ‘reversible’ actions.
However, no guarantee of optimality is made. Compliant ma-
nipulation in general has been studied since Mason’s seminal
work [16], [17], [18]. Contact-rich manipulation in particular
has been addressed with neural networks [19], [20], including
recent policy search techniques such as Guided Policy Search
[21]. However, these are also focused on feasibility rather
than optimality, albeit in higher dimensional state spaces.
LaValle et al. also address complex dynamic and obstacle-
based constraints in [22], but do not address optimality.
Approaches from stochastic optimal control literature do
address optimality [23], [24], but require a Gaussian noise
model. Our approach is compatible with a wide range
of noise models, and performs well with highly-localized
reward functions. This is not necessarily the case with other
approaches to continuous control problems, [25], [26]. This
method is largely inspired by Vega-Brown and Roy’s work
on optimal integrated task and motion planning [27].

VII. CONCLUSION

We have shown that the composite MDP solution is
an efficient approach to finding near-optimal contact-rich



Environment Method # Samples
Total

Computation
Time (Minutes)

% Success
Average Solution

Length (Time
Steps)

Peg-in-hole SARSA 25000 1220 14 21.28
Peg-in-hole Full MDP Solution 25000 1290 100 24.86

Peg-in-hole Composite MDP Solution
(2-sigma) 5000 289 100 26.63

TABLE I
PERFORMANCE COMPARISON OF THE VARIOUS MDP SOLUTION METHODS

manipulation plans, since it scales with the total area of
the contact surfaces in configuration space, rather than the
full volume of the configuration space. These contact-likely
clouds (and their associated transition functions) can also
theoretically be reused for new environments involving the
same object geometry, saving re-computation of the tran-
sition function. The transition function can also be reused
to calculate policies to other goals in the environment.
Our approach is also amenable to a wide range of noise
models and does not require any domain knowledge beyond
environment geometry.

Although the composite MDP and underlying physics
engine is compatible with SE3 and more than 6 DOF, some
work may be required to extend this to be feasible in SE3
space. The MDP could also be extended to account for
system dynamics, such as momentum. The process currently
also lacks compatibility with arbitrary cost functions, but this
is also a plausible extension.

Another interesting direction would be applying the com-
posite MDP to underactuated problems. Since underactuation
effectively reduces the search space of the problem, the
solutions should be quicker to compute!
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