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Abstract— Many algorithms in computer vision and robotics
make strong assumptions about uncertainty, and rely on the
validity of these assumptions to produce accurate and consistent
state estimates. In practice, dynamic environments may degrade
sensor performance in predictable ways that cannot be captured
with static uncertainty parameters. In this paper, we employ
fast nonparametric Bayesian inference techniques to more
accurately model sensor uncertainty. By setting a prior on
observation uncertainty, we derive a predictive robust estimator,
and show how our model can be learned from sample images,
both with and without knowledge of the motion used to generate
the data. We validate our approach through Monte Carlo
simulations, and report significant improvements in localization
accuracy relative to a fixed noise model in several settings,
including on synthetic data, the KITTI dataset, and our own
experimental platform.

I. INTRODUCTION

Modern ground, aerial, and underwater vehicles are able
to carry exteroceptive sensors capable of observing the world
with high spatial and temporal resolution. Despite steady
improvements in computing power, it remains impractical
in many situations for robots to reason directly over all
of the available sensor data. Instead, it is common to use
feature extraction and interest point detection algorithms
to provide a simplified representation of the environment,
and to perform tasks like odometry and mapping using that
simplified feature-based representation.

However, not all features are created equal; most feature-
based methods rely on random sample consensus algorithms
[1] to partition the extracted features into inliers and outliers,
and perform estimation based only on inliers. It is common
to guard against misclassifying an outlier as an inlier by
using robust estimation techniques, such as the Cauchy costs
employed in Kerl, Sturm, and Cremers [2] or the dynamic
covariance scaling devised by Agarwal, Tipaldi, Spinello, et
al. [3]. These approaches, often grouped under the title of
M-estimation, aim to maintain a quadratic influence of small
errors, while reducing the contribution of larger errors. The
robustness and accuracy of feature-based visual odometry of-
ten hinges on the tuning of the parameters of inlier selection
and robust estimation. Performance can vary significantly
from one environment to the next, and most algorithms
require careful tuning to work in a given environment.
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Fig. 1. Our experimental apparatus: a Clearpath Husky rover outfitted with
a PointGrey XB3 stereo camera and an GPS unit and base station.

In this paper, we describe a principled, data-driven way to
build a noise model for visual odometry. We combine our
previous work [4] on predictive robust estimation (PROBE)
with our work on covariance estimation [5] to formulate
a predictive robust estimator for a stereo visual odometry
pipeline. We frame the traditional non-linear least squares
optimization problem as a problem of maximum likelihood
estimation with a Gaussian noise model, and infer a distribu-
tion over the covariance matrix of the Gaussian noise from
a predictive model learned from training data. This results
in a Student’s t distribution over the noise, and naturally
yields a robust nonlinear least-squares optimization problem.
In this way, we can predict, in a principled manner, how
informative each visual feature is with respect to the final
state estimate, which allows our approach to intelligently
weight observations to produce more accurate odometry
estimates. Our pipeline is outlined in Figure 2.

The central contributions of our paper are:

1) a probabilistic model for sparse stereo visual odometry,
leading to a predictive robust algorithm for inference
on that model,

2) a procedure for training our model using pairs of stereo
images with known relative transform, and

3) an iterative, expectation-maximization approach to
train our model when the relative ground truth ego-
motion is unavailable.
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Fig. 2. Graphical illustration of the proposed system. (a) At training time,
we compute and match landmarks from pairs of stereo image pairs, and
compute the reprojection error between pairs. We build a covariance model
using these reprojection errors. (b) At run time, we take a new image pair,
extract landmarks, and predict a covariance for each landmark. We use these
covariances in a robust nonlinear least-squares problem, which is solved to
estimate the transform between images. (c) If the ground truth transforms
between pairs of training stereo pairs are not known (yellow box), we
iteratively apply a similar optimization procedure to estimate them.

II. SYSTEM OVERVIEW

A. Sparse stereo visual odometry

In our frame-to-frame sparse stereo odometry pipeline, the
objective is to find Tt ∈ SE(3), the rigid transform between
the camera frames at times t and t+ 1. We begin by rectify-
ing, then stereo and temporally matching the set of 4 images
to generate the corresponding locations of a set of Nt visual
landmarks in each stereo pair. Each landmark corresponds
to a point in space, expressed in homogeneous coordinates
in the camera frame as pi,t :=

[
p1 p2 p3 p4

]> ∈ P3.
The stereo-camera model, f , projects a landmark expressed
in homogeneous coordinates into image space, so that yi,t,
the location of landmark i in frame t, is given by

yi,t =


ul
vl
ur
vr

 = f(pi,t) = M
1

p3
pi,t, (1)

where

M :=


fu 0 cu fu

b
2

0 fv cv 0
fu 0 cu −fu b2
0 fb cv 0

 . (2)

Here, {cu, cv}, {fu, fv}, and b are the principal points, focal
lengths and baseline of the stereo camera respectively. Note
that in this formulation, the stereo camera frame is centered
between the two individual lenses.

We triangulate landmarks in the camera frame at time
t, and re-project them into the stereo camera at time t +
1. We model errors due to sensor noise and quantization
as a Gaussian distribution in image space with a known

covariance R. The maximum likelihood transform, T ∗t , is
given by

T ∗t = arg min
Tt∈SE(3)

Nt∑
i=1

ei,t
>R−1ei,t, (3)

ei,t = y′i,t − f(Ttf−1(yi,t)). (4)

This is a nonlinear least squares problem, and can be solved
iteratively using standard techniques. During iteration n, we
represent the transform as the product of an estimate T (n) ∈
SE(3) and a perturbation δξ ∈ R6 represented in exponential
coordinates:

Tt = exp
(
δξ∧

)
T (n)
t . (5)

The wedge operator (·)∧ is defined (following Barfoot and
Furgale [6]) as both the map R3 → so(3),

φ∧ :=

φ1φ2
φ3

∧ :=

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 . (6)

and the map R6 → se(3)

ξ∧ :=

[
ρ
φ

]∧
:=

[
φ∧ ρ
0> 0

]
. (7)

Linearizing the transform for small perturbations δξ yields
a linear least-squares problem.

L(δξ) =
1

2

Nt∑
i=1

(
e
(n)
i,t − J

(n)
i,t δξ

)>
R−1

(
e
(n)
i,t − J

(n)
i,t δξ

)
(8)

Here,
e
(n)
i,t = y′i,t − f(T (n)

t f−1(yi,t)) (9)

is the reprojection error under the transform T (n)
t , and J

(n)
i,t

is the Jacobian matrix of the reprojection error. The explicit
form of the Jacobian matrix is omitted for brevity but can
be found in our supplemental materials 1.

Rearranging, we see the minimizing perturbation is the
solution to a linear system of equations:

δξ(n) =

(
Nt∑
i=1

J>i,tR
−1
, Ji,t

)−1 Nt∑
i=1

J>i,tR
−1e(n)i,t . (10)

We then update the estimated transform and proceed to the
next iteration.

T (n+1)
t = exp

(
δξ(n)∧

)
T (n)
t . (11)

There are many reasonable choices for both the initial trans-
form T (0)

t , and for the conditions under which we terminate
iteration. We initialize the estimated transform to identity,
and iteratively perform the update given by eq. (11) until we
see a relative change in the squared error of less than one
percent after an update.

1http://groups.csail.mit.edu/rrg/peretroukhin_
icra16/supplemental.pdf
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III. PREDICTIVE NOISE MODELS
FOR SPARSE STEREO ODOMETRY

The process described in the previous section employs a
fixed noise covariance R. However, not all landmarks are
created equal: differing texture gradients can cause feature
localization to degrade in predictable ways, and effects like
motion blur can lead to landmarks being less informative.
If we had a good estimate of the noise covariance for each
landmark, the optimization is almost entirely unchanged. We
simply replace the fixed covariance R with one that varies
by image frame and landmark index, Ri,t.

However, estimating these covariances in a principled way
is a nontrivial task. Even when we have reasonable heuristic
estimates available, it is difficult to guarantee those estimates
will be reliable. Instead of relying solely on such heuristics,
we propose to learn these image-space noise covariances
from data.

We associate with each landmark yi,t a vector of pre-
dictors, φi,t ∈ RM . Each predictor is computed from the
image pair, allowing us to model effects like motion blur and
self-similar textures. We then compute the covariance as a
function of these predictors, so that Ri,t = R(φi,t). In order
to exploit conjugacy to a Gaussian noise model, we formulate
our prior knowledge about this function using an inverse
Wishart distribution over positive definite d×d matrices. This
distribution is defined by a scale matrix Ψ ∈ Rd×d � 0 and a
scalar quantity called the degrees of freedom ν ∈ R > d−1:

p (R) = IW (R; Ψ, ν) (12)

=
|Ψ|ν/2

2
νd
2 Γd(

ν
2 )
|R|− ν+d+1

2 exp

(
−1

2
tr
(
ΨR−1

))
.

We use the scale matrix to encode our prior estimate of
the covariance, and the degrees of freedom to encode our
confidence in that estimate. Specifically, if we estimate the
covariance R associated with predictor φ to be R̂ with a
confidence equivalent to seeing n independent samples of
the error from N (0, R̂), we would choose ν(φ) = n and
Ψ(φ) = nR̂.

Given a sequence of observations

D = {{yi,t,y′i,t,φi,t}, Tt}, t ∈ [1, N ] (13)

we can use the procedure of generalized kernel estimation
[7] to infer a posterior distribution over the covariance matrix
R∗ associated with some query predictor vector φ∗:

p(R∗|D,φ∗) ∝
∏
i,t

N (ei,t|0,R∗)k(φ∗,φi,t)

× IW(R∗; Ψ(φ∗), ν(φ∗)) (14)
= IW(R∗; Ψ∗, ν∗). (15)

Here, ei,t = y′i,t − f(Ttf−1(yi,t)) as before. The function
k : RM × RM → [0, 1] is a kernel function which measures
the similarity of two points in predictor space. Note also
that the posterior parameters Ψ∗ and ν∗ can be computed in

closed form as

Ψ∗ = Ψ(φ∗) +
∑
i,t

k(φ∗,φi,t)ei,tei,t
>, (16)

ν∗ = ν(φ∗) +
∑
i,t

k(φ∗,φi,t). (17)

If we marginalize over the covariance matrix, we find
that the posterior predictive distribution is a multivariate
Student’s t distribution:

p(y′i,t|Tt,yi,t,D,φi,t) (18)

=

∫
dRi,tN (ei,t; 0,Ri,t) IW(Ri,t; Ψ∗, ν∗) (19)

= tν∗−d+1

(
ei,t; 0,

1

ν∗ − d+ 1
Ψ∗

)
(20)

=
Γ(ν∗+1

2 )

Γ(ν∗−d+1
2 )

|Ψ∗|−
1
2π−

d
2

(
1 + ei,t

>Ψ∗
−1ei,t

)− ν∗+1
2 .

(21)

Given a new landmark and predictor vector, we can infer
a noise model by evaluating eqs. (16) and (17). In order
to accelerate this computation, it is helpful to choose a
kernel function with finite support: that is, k(φ,φ′) = 0
if ‖φ − φ′‖2 > ρ. Then, by indexing our training data
in a spatial index such as a k-d tree, we can identify the
subset of samples relevant to evaluating the sums in eqs. (16)
and (17) in O(logN + logNt) time. Algorithm 1 describes
the procedure for building this model.

Algorithm 1 Build the covariance model
function BUILDCOVARIANCEMODEL(D)

Initialize an empty spatial index M
for all It, Tt in D do

for all {yi,t,y′i,t,φi,t} in It do
ei,t = yi,t − f(Ttf−1(y′i,t))
Insert φi,t intoM and store ei,t at its location

end for
end for
return M

end function

Once we have inferred a noise model for each landmark
in a new image pair, the maximum likelihood optimization
problem is given by

T ∗t = arg min
Tt∈SE(3)

Nt∑
i=1

(νi,t + 1) log
(
1 + ei,t

>Ψ−1i,t ei,t
)
. (22)

The final optimization problem thus emerges as a non-
linear least squares problem with a rescaled Cauchy-like
loss function, with error term ei,t

>( 1
νi,t+1Ψi,t)

−1ei,t and
outlier scale νi,t + 1. This is a common robust loss function
which is approximately quadratic in the reprojection error
for ei,t>Ψ−1i,t ei,t � νi,t + 1, but grows only logarithmically
for ei,t>Ψ−1i,t ei,t � νi,t + 1. It follows that in the limit
of large νi,t—in regions of predictor space where there are



many relevant samples—our optimization problem becomes
the original least-squares optimization problem.

Solving nonlinear optimization problems with the form of
Equation (22) is a well-studied and well-understood task,
and software packages to perform this computation are
readily available. Algorithm 2 describes the procedure for
computing the transform between a new image pair, treating
the optimization of Equation (22) as a subroutine.

Algorithm 2 Compute the transform between two images,
given a set I of landmarks and predictors extracted from an
image pair and a covariance model M

function COMPUTETRANSFORM(I∗, M)
for all {yi,∗,y′i,∗,φi,∗} in I∗ do

Ψ, ν ← INFERNOISEMODEL(φi,∗)
g(T ) = yi,t − f(T f−1(y′i,t))

L ← L+ (ν + 1) log
(

1 + g(T )
>

Ψ−1g(T )
)

end for
return arg min

T ∈SE(3)
L(T )

end function
function INFERNOISEMODEL(M, φ∗)

NEIGHBORS ← GETNEIGHBORS(M,φ∗, ρ)
. ρ is the radius of the support of the kernel k

Ψ∗ ← Ψ(φ∗)
ν∗ ← ν(φ∗)
for (φi,t, ei,t) in NEIGHBORS do

Ψ∗ ← Ψ∗ + k(φ∗,φi,t)ei,tei,t
>

ν∗ ← ν∗ + k(φ∗,φi,t)
end for
return Ψ∗, ν∗

end function

We observe that Algorithm 2 is predictively robust, in the
sense that it uses past experiences to predict not just the
reliability of a given image landmark, but also to introspect
and estimate its own knowledge of that reliability. Landmarks
which are not known to be reliable are trusted less than
landmarks which look like those which have been observed
previously (as defined by our prediction space).

A. Inference without ground truth

Algorithm 1 requires access to the true transform between
training image pairs. In practice, such ground truth data
may be difficult to obtain. In these cases, we can instead
formulate a likelihood model p(D′|T1, . . . , Tt), where D′ =
{(yi,t,y′i,t,φi,t)} is a dataset consisting only of landmarks
and predictors for each training image pair. We can construct
a model for future queries by inferring the most likely se-
quence of transforms for our training images. The likelihood
has the following factorized form:

p(D|T1:T ) ∝
∫ ∏

i,t

dRi,t p(y
′
i,t|yi,t, Tt,Ri,t)

× p(Ri,t|φi,t,D, T1:T ).

We cannot easily maximize this likelihood, since marginal-
izing over the noise covariances removes the independence
of the transforms between each image pair. To render the
optimization tractable, we follow Vega-Brown and Roy [5]
and formulate an iterative expectation-maximization (EM)
procedure. Given an estimate T (n)

t of the transforms, we
can compute the expected log-likelihood conditioned on our
current estimate:

Q(T1:T |T (n)
1:T ) =

∫ ∏
i,t

dRi,t p(Ri,t|D\i,t, T (n)
1:T )


× log

∏
i,t

p(y′i,t|yi,t, Tt,Ri,t). (23)

This has the effect of rendering the likelihood of each trans-
form to be estimated independently. Moreover, the expected
log-likelihood can be evaluated in closed form.

Q(T1:T |T (n)
1:T ) ∼= −1

2

T∑
t=1

Nt∑
i=1

ei,t
>
(

1

ν
(n)
i,t

Ψ
(n)
i,t

)−1
ei,t.

(24)

The symbol ∼= is used to indicate equality up to an additive
constant, and ei,t = y′i,t − f(Ttf−1(yi,t)) as before. A
derivation of this observation can be found in our supple-
mental material.

We can iteratively refine our estimate by maximizing the
expected log-likelihood

T (n+1)
1:T = arg max

T1:T∈SE(3)T
Q(T1:T |T (n)

1:T ). (25)

Due to the additive structure of Q(T1:T |T (n)
1:T ), this takes the

form of T separate nonlinear least-squares optimizations:

T (n+1)
t = arg min

Tt∈SE(3)

Nt∑
i=1

ei,t
>
(

1

ν
(n)
i,t

Ψ
(n)
i,t

)−1
ei,t. (26)

Algorithm 3 describes the process of training a model with-
out ground truth. We refer to this process as PROBE-GK-
EM, and distinguish it from PROBE-GK-GT (Ground Truth).
We note that the sequence of estimated transforms, T (n)

1:T , is
guaranteed to converge to a local maxima of the likelihood
function [8]. A good initial estimate of the sequence of
transforms is useful in ensuring good performance from the
resulting model.

B. Implementation Details

We implemented PROBE-GK using a combination of
MATLAB and C++. We used the open-source library
LIBVISO2 [9] for feature extraction and matching. We
implemented our own Levenberg Marquardt optimization
routine, and used a custom C++ library to maintain the
covariance model and perform inference.

IV. RESULTS AND DISCUSSION

To validate PROBE-GK, we used three types of data:
synthetic simulations, the KITTI dataset, and our own ex-
perimental data collected at the University of Toronto.



Algorithm 3 Build the covariance model without ground
truth

function BUILDCOVARIANCEMODEL(D, T (0)
1:T )

Initialize an empty spatial index M
for all I in D do

for all {yi,t,y′i,t,φi,t} in I do
ei,t = yi,t − f(T (0)

t f−1(y′i,t))
Insert φi,t intoM and store ei,t at its location

end for
end for
repeat

for all I in D′ do
for all {yi,t,y′i,t,φi,t} in I do

Ψ, ν ← INFERNOISEMODEL(M,φi,t)
g(T ) = yi,t − f(T f−1(y′i,t))

L ← L+ g(T )
> ( 1

νΨ
)−1

g(T )
end for
Tt ← arg min

T ∈SE(3)
L(T )

ei,t = yi,t − f(T (0)
t f−1(y′i,t))

Update the error stored at φi,t in M to ei,t
end for

until converged
return M

end function

A. Simulation

1) Monte-Carlo Verification: To begin, we verified that
PROBE-GK can predict increasingly accurate estimates of
the true error covariance as more training data is added. We
developed a basic simulation environment consisting of a
large amount of point landmarks being observed by a stereo
camera. In our simulation, the camera traversed a single step
in one direction, and recorded empirical reprojection errors
based on ground truth poses. We simulated additive Gaussian
noise on image coordinates, and used Monte Carlo simula-
tions (propagating the additive noise through Equation (9))
to estimate the true covariances. Figure 3 shows the mean
Frobenius norm (as defined in [6]) between the covariances
estimated by PROBE-GK and the true covariances for a test
trial. The mean norm tends to zero as more landmarks are
added, indicating that PROBE-GK does learn the correct
covariances.

2) Synthetic World: Next, we formulated a synthetic
dataset wherein a stereo camera traverses a circular path
observing 2000 randomly distributed point features. We
added Gaussian noise to each of the ideal projected pixel co-
ordinates for visible landmarks at every step. We varied the
noise variance as a function of the vertical pixel coordinate
of the feature in image space. In addition, a small subset
of the landmarks received an error term drawn from a
uniform distribution to simulate the presence of outliers. The
prediction space was composed of the vertical and horizontal
pixel locations in each of the stereo cameras.

We simulated independent training and test traversals,
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Fig. 3. Mean Frobenius norm of the error between the estimated and true
noise covariance as a function of training data size. The norm tends to zero
as training data is added which indicates that PROBE-GK is learning the
correct covariances.

where the camera moved for 30 and 60 seconds respectively
(at a forward speed of 3 metres per second for final path
lengths of 90 and 180 meters). Figure 4 and Table I document
the qualitative and quantitative comparisons of PROBE-GK
(trained with and without ground-truth) against two baseline
stereo odometry frameworks. Both baseline estimators were
implemented based on Section II-A. The first utilized fixed
covariances for all reprojection errors, while the second
used a modified robust cost (i.e. M-estimation) based on
Student-t weighting, with ν = 5 (as suggested in [2]).
These benchmarks served as ’standard’ estimators (with and
without robust costs) that used fixed covariance matrices and
did not include a predictive component.

Using PROBE-GK with ground truth data for training, we
significantly reduced both the translation and rotational Aver-
age Root Mean Squared Error (ARMSE) by approximately
50%. In our synthetic data, the Expectation Maximization
approach was able to achieve nearly identical results to the
ground-truth-aided model within 5 iterations.

B. KITTI Dataset

To test PROBE-GK on realistic environments, we trained
and tested several models on the KITTI Vision Benchmark
suite [10], [11], a series of datasets collected by a car outfit-
ted with a number of sensors driven around different parts of
Karlsruhe, Germany. Within the dataset, ground truth pose
information is provided by a high grade inertial navigation
unit which also fuses measurements from differential GPS.
The data is categorized by the type of environment in which
the car was driving; for our work, we focused on the city,
residential and road categories (Figure 5). For each category,
we chose two trials, using one for training and the other for
testing.

Our prediction space consisted of inertial magnitudes, high
and low image frequency coefficients, image entropy, pixel
location, and estimated transform parameters. The choice of
predictors is motivated by the types of effects we wish to
capture (in this case: grassy self-similar textures, as well as
shadows, and motion blur). For a more detailed explanation
of our choice of prediction space, see Peretroukhin, Clement,
Giamou, et al. [4].
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Fig. 5. The KITTI dataset contains three different environments. We validate PROBE-GK by training on each type and testing against a baseline stereo
visual odometry pipeline.
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Fig. 4. A comparison of translation and rotational Root Mean Square
Error on simulated data (RMSE) for four different stereo-visual odometry
pipelines: two baseline bundle adjustment procedures with and without a
robust Student’s t cost with a fixed and hand-tuned covariance and degrees
of freedom (M-Estimation), a robust bundle adjustment with covariances
learned from ground truth with algorithm 1 (GK-GT), and a robust bundle
adjustment using covariances learned without ground truth using expectation
maximization, with algorithm 3 (GK-EM). Note in this experiment, the
RMSE curves for GK-GT and GK-EM very nearly overlap. The overall
translational and rotational ARMSE values are shown in Table I.

Figures 6 to 8 show typical results; Table I presents a
quantitative comparison. PROBE GK-GT produced signifi-
cant reductions in ARMSE, reducing translational ARMSE
by as much as 80%. In contrast, GK-EM showed more
modest improvements; this is unlike our synthetic exper-
iments, where both GK-EM and GK-GT achieved similar
performance. We are still actively exploring why this is the
case; we note that although our simulated data is drawn from
a mixture of Gaussian distributions, the underlying noise
distribution for real data may be far more complex. With no
ground truth, EM has to jointly optimize the camera poses
and sensor uncertainty. It is unclear whether this is feasible
in the general case with no ground truth information.

Further, we observe that the performance of PROBE-GK
depends on the similarity of the training data to the final test
trials. A characteristic training dataset was vital for consistent
improvements on test trials.

C. Experimental Dataset

To further investigate the capability of our EM approach,
we evaluated PROBE-GK on experimental data collected at
the University of Toronto Institute for Aerospace Studies
(UTIAS). For this experiment, we drove a Clearpath Husky
rover outfitted with an Ashtech DG14 Differential GPS,
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Fig. 6. RMSE comparison of stereo odometry estimators evaluated on data
from the city category in the KITTI dataset. See Table I for a quantitative
summary.

and a PointGrey XB3 stereo camera around the MarsDome
(an indoor Mars analog testing environment) at UTIAS
(Figure 1) for five trials of a similar path. Each trial was
approximately 250 m in length and we made an effort to
align the start and end points of each loop. We used the
wide baseline (25 cm) of the XB3 stereo camera to record
the stereo images. The approximate trajectory for all 5 trials,
as recorded by GPS, is shown in Figure 9. Note that the GPS
ground truth was not used during training, and only recorded
for reference.

For the prediction space in our experiments, we mimicked
the KITTI experiments, however this time omitting inertial
magnitudes as no inertial data was available. We trained
PROBE-GK without ground truth, using the Expectation
Maximization approach. Figure 10 shows the likelihood and
loop closure error (used as a proxy to ARMSE) as a function
of EM iteration.

The EM approach indeed produced significant error re-
ductions on the training dataset after just a few iterations.
Although it was trained with no ground truth information,
our PROBE-GK model was used to produce significant
reductions in the loop closure errors of the remaining 4
test trials. This reinforced our earlier hypothesis: the EM
method works well when the training trajectory more closely
resembles the test trials (as was the case in this experiment).
Table II lists the statistics for each test.



TABLE I
COMPARISON OF AVERAGE ROOT MEAN SQUARED ERRORS (ARMSE) FOR ROTATIONAL AND TRANSLATIONAL COMPONENTS. EACH TRIAL IS

TRAINED AND TESTED FROM A PARTICULAR CATEGORY OF RAW DATA FROM THE SYNTHETIC AND KITTI DATASETS.

Trans. ARMSE [m] Rot. ARMSE [rad]

Length [m] Fixed Covar. Static M-Estimator GK-GT GK-EM Fixed Covar. Static M-Estimator GK-GT GK-EM

Synthetic 180 3.19 3.04 1.65 1.63 0.15 0.15 0.080 0.080
City 332.9 3.84 2.99 1.69 2.87 0.032 0.021 0.0046 0.018
Residential 714.1 13.48 9.37 1.97 8.80 0.068 0.050 0.013 0.044
Road 723.8 17.69 9.38 5.24 8.87 0.060 0.027 0.015 0.024
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Fig. 7. RMSE comparison of stereo odometry estimators evaluated on
data from the residential category in the KITTI dataset. See Table I for a
quantitative summary.
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Fig. 8. RMSE comparison of stereo odometry estimators evaluated on data
from the road category in the KITTI dataset. See Table I for a quantitative
summary.
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Fig. 9. GPS ground truth for 5 experimental trials collected near the UTIAS
Mars Dome. Each trial is approximately 250 m long.

TABLE II
COMPARISON OF LOOP CLOSURE ERRORS FOR 4 DIFFERENT

EXPERIMENTAL TRIALS WITH AND WITHOUT A LEARNED

PROBE-GK-EM MODEL.

Loop Closure Error [m]

Trial Path Length [m] PROBE-GK-EM Static M-Estimator

2 250.3 3.88 8.07
3 250.5 3.07 6.64
4 205.4 2.81 7.57
5 249.9 2.34 7.75
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Fig. 10. Training without ground truth using PROBE-GK-EM on a 250.2m
path around the Mars Dome at UTIAS. The likelihood of the data increases
with each iteration, and the loop closure error decreases, as expected.



V. RELATED WORK

There is a large and growing body of work on the problem
of deriving accurate, consistent state estimates from visual
data. Although our approach to noise modelling is applicable
in other domains, for simplicity we focus our attention on the
problem of inferring egomotion from features extracted from
sequential pairs of stereo images; see Sünderhauf and Protzel
[12] for a survey of techniques. The spectrum of alternative
approaches to visual state estimation include monocular
techniques, which may be feature-based [13], direct [14],
or semi-direct [15].

Apart from simply rejecting outliers, a number of recent
approaches attempt to select the optimal set of features to
produce an accurate localization estimate from tracked visual
features. For example, Tsotsos, Chiuso, and Soatto [16]
amend Random Sample Consensus (RANSAC) with statis-
tical hypothesis testing to ensure that tracked visual features
have normally distributed residuals before including them in
the estimator. Unlike our predictive approach, their technique
relies on the availability of feature tracks, and requires scene
overlap to work continuously. In a different approach, Zhang
and Vela [17] choose an optimally observable feature subset
for a monocular SLAM pipeline by selecting features with
the highest informativeness - a measure calculated based
on the observability of the SLAM subsystem. Observability,
however, is governed by the 3D location of the features,
and therefore cannot predict systematic feature degradation
due to environmental or sensor-based effects. In contrast,
PROBE-GK can leverage prior data to learn such effects and
map them to predicted uncertainty on visual observations,
optimally weighting the contribution of each observation to
the final state estimate.

VI. CONCLUSION

The method presented in this paper applies the technique
of generalized kernel estimation to improve on the uncorre-
lated and static Gaussian error models typically employed in
stereo odometry. By inferring a more accurate noise model
given past sensory experience, we can reduce the tracking
error of a sequence of estimates and improve the robustness
of our estimator, even when the training data does not have
associated ground truth.

Our method has the advantage of having relatively few
tuning parameters, meaning it can be applied to new prob-
lems with very little user intervention. We do rely on the
availability of a good set of predictors, and have found that
for problems of interest finding a good set is not difficult; a
principled choice of an optimal set of predictors, however,
remains an interesting open problem.

Although our experiments demonstrate utility only in the
context of sequential maximum likelihood estimation on
stereo vision data, we believe the model presented here
can be applied to a more general class of filter or factor-
based estimation algorithms, as well as to a more general
class of sensors. Investigating the applicability of our method
into problems of simultaneous localization and mapping or
probabilistic state estimation is an interesting avenue for
future work.
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