
Bayesian Learning for Safe High-Speed
Navigation in Unknown Environments

Charles Richter, William Vega-Brown, and Nicholas Roy

In Proceedings of the International Symposium on Robotics Research (ISRR 2015).

Abstract In this work, we develop a planner for high-speed navigation in unknown
environments, for example reaching a goal in an unknown building in minimum
time, or flying as fast as possible through a forest. This planning task is challenging
because the distribution over possible maps, which is needed to estimate the feasibil-
ity and cost of trajectories, is unknown and extremely hard to model for real-world
environments. At the same time, the worst-case assumptions that a receding-horizon
planner might make about the unknown regions of the map may be overly conserva-
tive, and may limit performance. Therefore, robots must make accurate predictions
about what will happen beyond the map frontiers to navigate as fast as possible. To
reason about uncertainty in the map, we model this problem as a POMDP and dis-
cuss why it is so difficult given that we have no accurate probability distribution over
real-world environments. We then present a novel method of predicting collision
probabilities based on training data, which compensates for the missing environ-
ment distribution and provides an approximate solution to the POMDP. Extending
our previous work, the principal result of this paper is that by using a Bayesian
non-parametric learning algorithm that encodes formal safety constraints as a prior
over collision probabilities, our planner seamlessly reverts to safe behavior when
it encounters a novel environment for which it has no relevant training data. This
strategy generalizes our method across all environment types, including those for
which we have training data as well as those for which we do not. In familiar en-
vironment types with dense training data, we show an 80% speed improvement
compared to a planner that is constrained to guarantee safety. In experiments, our
planner has reached over 8 m/s in unknown cluttered indoor spaces. Video of our ex-
perimental demonstration is available at http://groups.csail.mit.edu/
rrg/bayesian_learning_high_speed_nav.

1 Introduction

A common planning strategy in unknown environments is the receding-horizon ap-
proach: plan a partial trajectory given the current (partial) map knowledge, and be-
gin to execute it while re-planning. By repeatedly re-planning, the robot can react to
new map information as it is perceived. However, avoiding collision in a receding-

Charles Richter, William Vega-Brown, and Nicholas Roy
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, e-mail:
car,wrvb,nickroy@mit.edu

1

http://groups.csail.mit.edu/rrg/bayesian_learning_high_speed_nav
http://groups.csail.mit.edu/rrg/bayesian_learning_high_speed_nav
car, wrvb, nickroy@mit.edu

2 Charles Richter, William Vega-Brown, and Nicholas Roy

horizon setting can be difficult, since the planner must not only ensure that its cho-
sen actions are collision-free within the planning horizon, but it must also consider
what actions will be feasible for the robot after the planned trajectory has been com-
pleted. To guarantee safety, a receding-horizon planner must plan trajectories that
are known to be collision-free for all time [10]. This constraint is often satisfied
through hand-coded rules or contingency plans, such as ensuring the existence of a
collision-free emergency-stop maneuver or cyclic holding pattern [2, 23]. If the map
is partially known, a safe planner must conservatively assume that every unknown
cell may contain an obstacle, and therefore must confine its trajectories to lie within
the observed free space. Figures 1a–1b illustrate this scenario for a robot approach-
ing a blind corner while guaranteeing safety. As the robot approaches the corner,
it slows dramatically to preserve its ability to complete a feasible emergency-stop
maneuver before entering unknown space. We use this “baseline” safe planner for
comparison in this paper.

Safety constraints imply an assumption that driving into unknown regions of the
map is always dangerous. However, our central claim in this line of research is that
this assumption may be overly conservative. In many cases, the agent can safely
drive at high speeds into the unknown if it is equipped with an accurate model of
collision probability based on previous experience in similar situations [20]. For
instance, many buildings have straight hallways with 90◦ turns and intersections.
If a robot observes a hallway with a turn, and has trained in similar environments,
it should be able to reason with high certainty that the hallway will continue, and
that there will be free space around the turn. Figure 1c shows our proposed solution
planning a high-speed turn around a blind corner, violating the safety constraint.
Emergency-stop trajectories from the chosen action (illustrated in black) all enter
unknown space. Yet, this type of maneuver is often empirically safe for hallway
environments and our solution correctly infers that it is not excessively risky.

One way to estimate the likelihood of collision in unknown space might be to
infer the probability that certain unknown map regions are occupied, using sensor
measurements and an accurate prior distribution over maps. Unfortunately, model-
ing an accurate distribution over real-world environments would be extremely dif-
ficult due to the very high dimensionality of building-sized occupancy grid maps,
the strong assumption of independence between map cells, and the richness of man-
made and natural spaces which resist compact parameterization. Without significant
modeling effort, or restriction of the problem domain to specific environments, the
best prior knowledge we can reasonably provide is to say that every map is equally
likely. Of course, this prior is very inaccurate and completely unhelpful for planning,
and prevents the agent from exploiting any intuitive knowledge of “typical” envi-
ronments. To compensate for this missing knowledge, we adopt a machine learning
approach to predict collision probability from training data, which implicitly cap-
tures the relevant traits of our training environments rather than modeling the map
distribution explicitly. This approach leads to a much lower-dimensional model that
is significantly easier to learn and efficient enough to run online.

In the next section, we develop the POMDP formulation of our problem, which
lays the foundation for decision theoretic planning. We then derive our approxima-

Bayesian Learning for Safe High-Speed Navigation in Unknown Environments 3

(a) (b) (c)

Fig. 1: Actions chosen for a robot approaching a blind corner while guaranteeing
safety (a)–(b). Chosen trajectories are drawn in blue, and feasible emergency-stop
maneuvers are drawn in red. Emergency-stop actions that would cause the robot to
collide with obstacles or unknown cells are drawn in black. The safety constraint
requires the robot to slow from 4 m/s in (a) to 1 m/s in (b) to preserve the ability to
stop within known free space. In (c), our solution plans a 6 m/s turn, which commits
the robot to entering the unknown, but the planner’s experience predicts a low risk
of collision. The light gray region shows the hallway of the true hidden map.

tions to the POMDP to make the problem tractable, which give rise to our learned
model of collision probability. Then, we discuss how we learn that model and how
we encode safety constraints as a prior over collision probability to help our planner
remain safe in novel environments for which it has no relevant training data. Finally,
we will present simulation and experimental results demonstrating 100% empirical
safety while navigating significantly faster than the baseline planner that relies on
formal constraints to remain safe.

2 POMDP Planning

We wish to control a dynamic vehicle through an unknown environment to a goal
position in minimum expected time, where the expectation is taken with respect
to the (unknown) distribution of maps. While solving this problem exactly is com-
pletely intractable, the POMDP formalism is useful for defining the planning task
and motivating our approximations. The following POMDP tuple, (S,A,T,R,O,Ω),
applies to an RC car equipped with a planar LIDAR being used for this research:

States S: {Q×M}. Q is the set of vehicle configurations: q = [x,y,ψ,k,v], rep-
resenting position, heading, curvature (steering angle) and forward speed, respec-
tively. M is the set of n-cell occupancy maps: m = [m0,m1, . . . ,mn] ∈ {0,1}n, where
mi represents the ith cell in the map. For a given problem instance, the true under-
lying map, m, is fixed, while the configuration, q, changes at each time step as the
robot moves. We assume that q is fully observable, while m is partially observable
since only a subset of the map can be observed from a given location. We also as-
sume that n is fixed and known.

4 Charles Richter, William Vega-Brown, and Nicholas Roy

Actions A: A is a pre-computed discrete action library spanning the vehicle’s
maneuvering capabilities. Several examples are illustrated in Figure 2. All actions
reach a planning horizon of 2 meters, but differ in their time duration as a function
of their speeds. Due to space constraints, we refer the reader to Howard et al. for a
discussion of discrete action sets for dynamic vehicles [13].

(a) (b) (c) (d)

Fig. 2: Examples of pre-computed action sets from 1 m/s (a), 4 m/s (b), and 8 m/s
(c) with zero initial curvature, and from 4 m/s with non-zero initial curvature (d).

We define several deterministic functions related to transition dynamics. The col-
lision function C(s,a) : S×A 7→ {0,1} indicates whether taking action a from state
s would result in a collision. The state-transition function F(s,a) : S×A 7→ S re-
turns the state reached by taking action a from state s according to the dynamics. In
F , the map portion of the state remains fixed at its true value. If a collision would
occur along trajectory a (i.e., if C(s,a) = 1), then F(s,a) clamps the configura-
tion to its last feasible value along a and sets the velocity to zero. The function
ICS(s) : S 7→ {0,1} indicates whether state s is an inevitable collision state [3], i.e.,
if there exists no infinite-horizon sequence of actions 〈a0,a1, . . .〉 from s that will
avoid collision with the environment.

Conditional Transition Probabilities T : We assume deterministic vehicle dy-
namics and a fixed map, p(st+1|st ,at)= 1 for st+1 =F(st ,at) and 0 otherwise. While
actions have different time durations, we use the subscript t +1 to indicate the dis-
crete “time” after completing action at .

Observations Ω : Each observation consists of a perfect measurement of qt and
the partial map of cells visible to the robot from st . This partial map consists of
occupied cells at locations ri,xy corresponding to each LIDAR range measurement
ri, and unoccupied cells along the ray from qt to each ri,xy.

Conditional Observation Probabilities O: We assume a noiseless sensor, so
p(ot+1|st+1,at) = 1 for the partial map corresponding to the map geometry visible
from state st+1, along with a perfect measurement of qt+1, and 0 otherwise.

Cost Function R: We use a minimum-time cost function and denote the time
duration of action a as Ja(a). Let SG denote the set of goal states. R(s,a) = 0 for
s ∈ SG. For s /∈ SG, R(s,a) = Ja(a) if C(s,a) = 0 and adds an additional collision
penalty, Jc, if the action results in a collision: R(s,a) = Ja(a)+ Jc if C(s,a) = 1.

Bayesian Learning for Safe High-Speed Navigation in Unknown Environments 5

2.1 Missing prior distribution over environments

A POMDP agent maintains a belief over its state b(st) = P(qt ,m), and has a state
estimator, which computes a posterior belief that results from taking an action and
then receiving an observation, given a current belief: b(st+1) = P(st+1|bt ,at ,ot+1).
If the agent’s current belief, bt , assigns uniform probability to all possible maps with
independence between map cells (a very unrealistic distribution), then an observa-
tion and subsequent inference over the map distribution simply eliminates those
maps that are not consistent with the observation and raises the uniform probability
of the remaining possible maps. If, on the other hand, the prior belief correctly as-
signs high probability to a small set of realistic maps with common structures such
as hallways, rooms, doors, etc., and low probability to the unrealistic maps, then
this belief update may help to infer useful information about unobserved regions
of the map. For instance, it might infer that the straight parallel walls of a hallway
are likely to continue out into the unobserved regions of the map. All of this prior
knowledge about the distribution of environments enters the problem through the
agent’s initial belief b0, which we must somehow provide.

Unfortunately, as we noted in Section 1, modeling the distribution over real-
world environments would be extremely difficult. We have little choice but to ini-
tialize the robot believing that all maps are equally likely and that map cells are inde-
pendent from each other. To compensate for this missing environment distribution,
our approach is to learn a much more specific distribution representing the proba-
bility of collision associated with a given planning scenario. This learned function
enables the agent to drive at high speed as if it had an accurate prior over environ-
ments enabling reasonable inferences about the unknown. In the following sections,
we will derive our learned model from the POMDP and describe how we can effi-
ciently train and use this model in place of an accurate prior over environments.

2.2 Approximations to the POMDP

Let Vπ(s) = ∑
∞
t=0 R(st ,π(st)) be the infinite-horizon cost associated with some pol-

icy π mapping states st to actions at . The optimal cost-to-go, V ∗(s) could then, in
principle, be computed recursively using the Bellman equation. Having computed
V ∗(s) for all states, we could then recover the optimal action for a given belief1:

a∗t (bt) =argmin
at

{
∑
st

b(st)R(st ,at)+

∑
st

b(st) ∑
st+1

P(st+1|st ,at) ∑
ot+1

P(ot+1|st+1,at)V ∗(st+1)

} (1)

The summations over st and ot+1 perform a state-estimation update, resulting in a
posterior distribution over future states st+1 from all possible current states in our
current belief bt , given our choice of action at . We can rewrite (1) as:

1 Since we use a discrete set of actions, there is a finite number of configurations that can be reached
from an initial configuration. Therefore, we can sum over future states rather than integrating.

6 Charles Richter, William Vega-Brown, and Nicholas Roy

a∗t (bt) = argmin
at

{
∑
st

b(st)R(st ,at)+ ∑
st+1

P(st+1|bt ,at)V ∗(st+1)

}
(2)

Since our cost function R(s,a) applies separate penalties for time and collision, we
can split V ∗(s) into two terms, V ∗(s) =V ∗T (s)+V ∗C (s), where T and C refer to “time”
and “collision”. V ∗T (s), gives the optimal time-to-go from s, regardless of whether
a collision occurs between s and the goal. We assume that if a collision occurs, the
robot can recover and proceed to the goal. Furthermore, we assume that the optimal
trajectory from s to the goal will avoid collision if possible. But there will be some
states s for which collision is inevitable (ICS(s) = 1) since the robot’s abilities to
brake or turn are limited to finite, realistic values. Since we assume that collisions
only occur from inevitable collision states, we can rewrite the total cost-to-go as:
V ∗(s) =V ∗T (s)+ Jc · ICS(s). Substituting this expression, we can rewrite (2) as:

a∗t (bt) =argmin
at

{
∑
st

b(st)R(st ,at)+

∑
st+1

P(st+1|bt ,at)V ∗T (st+1)+ Jc ·∑
st+1

P(st+1|bt ,at)ICS(st+1)

} (3)

The first term in equation (3) is the expected immediate cost of the current action, at .
We assume no collisions occur along at since the robot performs collision checking
with respect to observed obstacles, and it nearly always perceives obstacles in the
immediate vicinity. This term simply reduces to Ja(at), the time duration of at .

The second and third terms of (3) are expected values with respect to the possible
future states, given at and bt . However, as we have observed in Section 2.1, our
initial uniform belief over maps means that bt will be very unhelpful (and indeed
misleading) if we use it to take an expectation over future states, since the true
distribution over maps is surely far from uniform. The lack of meaningful prior
knowledge over the distribution of environments, combined with the extremely large
number of possible future states st+1, means that we must approximate these terms.

For the expected time-to-go, we use a simple heuristic function:

h(bt ,at)≈ ∑
st+1

P(st+1|bt ,at)V ∗T (st+1), (4)

which performs a 2D grid search using Dijkstra’s algorithm (ignoring dynamics)
from the end of action at to the goal, respecting the observed obstacles in bt , assum-
ing unknown space is traversable and that the current speed is maintained. The use of
a lower-dimensional search to provide global guidance to a local planner is closely
related to graduated-density methods [12]. While other heuristics could be devised,
we instead focus our efforts in this paper on modeling the collision probability.

The third term in equation (3), Jc ·∑st+1
P(st+1|bt ,at)ICS(st+1), is the expected

future collision penalty given our current belief bt and action at . As we noted in
Section 2.1, the fundamental problem is that our belief bt does not accurately capture
which map structures are likely to be encountered in the unknown portions of the

Bayesian Learning for Safe High-Speed Navigation in Unknown Environments 7

environment. Correctly predicting whether a hallway will continue around a blind
corner, for instance, is impossible based on the belief alone. We instead turn to
machine learning to approximate this important quantity from training data:

fc(φ(bt ,at))≈ ∑
st+1

P(st+1|bt ,at)ICS(st+1) (5)

The model, fc(φ(bt ,at)), approximates the probability that a collision will occur in
the future if we execute action at given belief bt . It is computed from some features
φ(bt ,at) that summarize the relevant information contained in bt and at , for example
vehicle speed, distance to observed obstacles along at , etc. With the approximations
of all three terms in equation (3), we arrive at our receding-horizon control law:

a∗t (bt) = argmin
at

{
Ja(at)+h(bt ,at)+ Jc · fc(φ(bt ,at))

}
(6)

At each time step, we select a∗t minimizing (6) given the current belief bt . We be-
gin to execute a∗t while incorporating new sensor data and re-planning. Next, we
describe how we collect data and build a model to predict collision probabilities.

3 Predicting Future Collisions

In this section, we focus on learning to predict the probability of collision associ-
ated with a given planning scenario, represented as a point in feature space, Φ . We
assume that for a given vehicle or dynamical system, there exists some true underly-
ing probability of collision that is independent of the map and robot configuration,
given features, φ . In other words, P(“collision”|φ ,q,m) = P(“collision”|φ). Under
this assumption, we can build a data set by training in any environments we wish,
and the data will be equally valid in other environments that populate the same re-
gions of feature space. If two data sets gathered from two different environments
do not share the same output distribution where they overlap in feature space, we
assume that our features are simply not rich enough to capture the difference.

This assumption also implies that if an environment is fundamentally different
from our training environments with respect to collision probabilities, it will popu-
late a different region of feature space. If the robot encounters an environment for
which it has no relevant training data nearby in feature space, it should infer that
this environment is unfamiliar and react appropriately. In these cases, we require
that our learning algorithm somehow provide a safe prediction of collision probabil-
ity rather than naı̈vely extrapolating the data from other environments. Our features
must therefore be sufficiently descriptive to predict collisions as well as differentiate
between qualitatively different environment types.

Quantifying a planning scenario using a set of descriptive functions of belief-
action pairs currently relies on the domain knowledge of the feature designer. For
this paper, our features are four hand-coded functions: (a) minimum distance to
the nearest known obstacle along the action; (b) mean range to obstacle or frontier
in the 60◦ cone ahead of the robot, averaged over several points along the action;

8 Charles Richter, William Vega-Brown, and Nicholas Roy

(c) length of the straight free path directly ahead of the robot, averaged over several
points along the action; and (d) speed at the end of the action. While these features
work adequately, our method is extensible to arbitrary numbers of continuous- and
discrete-valued features from a variety of different sources, including features that
operate on a history of past measurements. We expect that additional features will
enable more intelligent and subtle navigation behaviors.

3.1 Training procedure

To predict collision probabilities, we collect training data D= {(φ1,y1),. . . ,(φN ,yN)}.
Labels yi are binary indicators (“collision”, “non-collision”) associated with belief-
action pairs, represented as points φi in feature space. To efficiently collect a large
data set, we use a simulator capable of generating realistic LIDAR scans and vehi-
cle motions within arbitrary maps. The training procedure aims to generate scenar-
ios that accurately emulate beliefs the planner may have at runtime, and accurately
represent the risk of actions given those beliefs. While at runtime, the planner will
use a map built from a history of scans, we make the simplifying assumption that a
single measurement taken from configuration qt is enough to build a realistic map
of the area around qt , similar to one the planner might actually observe. With this
assumption, we can generate training data based on individual sampled robot con-
figurations, rather than sampling extended state-measurement histories, which not
only results in more efficient training, but also eliminates the need for any sort of
planner or random process to sample state histories.

We generate each data point by randomly sampling a feasible configuration, qt ,
within a training map, and simulating the sensor from qt to generate a map estimate,
and hence a belief bt . We then randomly select one of the actions, at , that is feasible
given the known obstacles in bt . Recall from equation (5) that our learned function
models the probability that a collision will occur somewhere after completing the
immediate chosen action at , i.e., the probability that state st+1 (with configuration
qt+1) is an inevitable collision state. Therefore, to label this belief-action pair, we
run a resolution-complete training planner from configuration qt+1 at the end of at .
If there exists any feasible trajectory starting from qt+1 that avoids collision with the
true hidden map (to some horizon), then ynew = 0, otherwise ynew = 1. Finally, we
compute features φnew(bt ,at) of this belief-action pair and insert (φnew,ynew) into D.

We use a horizon of three actions (6 m) for our training planner because if a
collision is inevitable for our dynamics model, it will nearly always occur within
this horizon. We have explored other settings for this horizon and found the results
to be comparable, although if the horizon is too short, some inevitable collision
states will be mis-labeled as “non-collision”.

Figure 3 illustrates “collision” and “non-collision” training instances. In 3a, the
hidden map includes a sharp hairpin turn, which is infeasible for our dynamics
model, given that the car begins toward the inside of the turn at a relatively high
speed (≈ 8 m/s). Therefore, the training planner fails to find a trajectory to the de-
sired horizon and each partial path results in a dead-end (red dot) because the robot
is moving too fast to complete the hairpin turn. On the other hand, the hidden map

Bayesian Learning for Safe High-Speed Navigation in Unknown Environments 9

(a) (b)

Fig. 3: Examples of “collision” (a) and “non-collision” (b) training events. One of
the immediate actions (black) is chosen for labeling. The training planner deter-
mines whether the end of this action (purple dot) is an inevitable collision state with
respect to the hidden map (shown in light gray). Feasible partial paths are shown in
blue. Nodes successfully expanded by the training planner are green, and nodes for
which no collision-free outgoing action exists are red. In (a), all partial paths dead-
end (red nodes) before reaching the desired three-action horizon because the vehicle
speed is too great to complete the turn given curvature and cuvature rate limits. In
(b), the training planner successfully finds a sequence of three actions.

in 3b has a straight hallway rather than a sharp turn, and the training planner suc-
ceeds in finding a feasible trajectory to the three-action horizon, aided by the car’s
initial configuration toward the outside of the turn. The empirical distribution of
“collision” and “non-collision” labels collected from these sampled scenarios there-
fore implicitly captures the relevant environmental characteristics of the true hidden
map distribution, and the way they interact with our dynamics model, in a much
more efficient way than modeling the complex, high-dimensional map distribution
explicitly. Our training procedure captures sensible patterns, for instance that it is
safe to drive at high speeds in wide open areas and long straight hallways, but that
slower speeds are safer when approaching a wall or navigating dense clutter.

3.2 Learning algorithm

We use a non-parametric Bayesian inference model developed by Vega-Brown et
al., which generalizes local kernel estimation to the context of Bayesian inference
for exponential family distributions [29]. The Bayesian nature of this model will
enable us to provide prior knowledge to make safe (though perhaps conservative)
predictions in environments where we have no training data. We model collision as a
Bernoulli-distributed random event with beta-distributed parameter θ ∼Beta(α,β),
where α and β are prior pseudo-counts of collision and non-collision events, re-
spectively. Using the inference model from Vega-Brown et al., we can efficiently

10 Charles Richter, William Vega-Brown, and Nicholas Roy

compute the posterior probability of collision given a query point φ and data D:

fc(φ) = P(y = “collision”|φ ,D) =
α(φ)+∑

N
i=1 k(φ ,φi)yi

α(φ)+β (φ)+∑
N
i=1 k(φ ,φi)

, (7)

where k(φ ,φi) is a kernel function measuring proximity in feature space between our
query, φ , and each φi in D. We use a polynomial approximation to a Gaussian ker-
nel with finite support. We write prior pseudo-counts as functions α(φ) and β (φ),
since they may vary across the feature space. We use the effective number of nearby
training data points, Neff. = ∑

N
i=1 k(φ ,φi), as a measure of data density. The prior

contributes Npr. pseudo data points to each prediction, where Npr. = α(φ)+β (φ).
The ratio Neff./(Neff.+Npr.) determines the relative influence of the training data and
the prior in each prediction. For data sets with 5×104 points in total, Neff. tends to
be 102 or greater when the testing environment is similar to the training map, and
Neff.� 1 when the testing environment is fundamentally different (i.e., office build-
ing vs. natural forest). For this paper, we used Npr. = 5, and results are insensitive to
the exact value of Npr. as long as Neff.� Npr. or Neff.� Npr..

Machine learning algorithms should make good predictions for query points near
their training data in input space. However, predictions that extrapolate beyond the
domain of the training data may be arbitrarily bad. For navigation tasks, we want
our planner to recognize when it has no relevant training data, and automatically
revert to safe behaviors rather than making reckless, uninformed predictions. For
instance, if the agent moves from a well-known building into the outdoors, where it
has not trained, we still want the learning algorithm to guide it away from danger.

Fortunately, the inference model of equation (7) enables this capability through
the prior functions α(φ) and β (φ). If we query a feature point in a region of
high data density (Neff. � Npr.), fc(φ) will tend to a local weighted average of
neighbors and the prior will have little effect. However, if we query a point far
from the training data (Neff. � Npr.), the prior will dominate. By specifying pri-
ors α(φ) and β (φ) that are functions of our features, we can endow the planner
with domain knowledge and formal rules about which regions of feature space are
safe and dangerous. In this paper, we have designed our prior functions α(φ) and
β (φ) such that P(“collision”) = α(φ)/(α(φ)+ β (φ)) = 0 if there exists enough
free space for the robot to come safely to a stop from its current velocity, and
P(“collision”) =α(φ)/(α(φ)+β (φ))> 0 otherwise. Computing this prior uses the
information in features (c) and (d) described in Section 3. Therefore, as Neff. drops
to zero (and for sufficiently large values of Jc), the learning algorithm activates a
conventional stopping distance constraint, seamlessly turning our planner into one
with essentially the same characteristics as the baseline planner we compare against.

Another natural choice of learning algorithm in this domain would be a Gaus-
sian process (GP). However, classification with a GP requires approximate inference
techniques that would likely be too slow to run online, whereas the inference model
in equation (7) is an approximate model that allows efficient, analytical inference.

Bayesian Learning for Safe High-Speed Navigation in Unknown Environments 11

4 Results

We have obtained simulation results from randomly generated maps as well as ex-
perimental results on a real RC car navigating as fast as 8 m/s in laboratory, office
and large open atrium environments at MIT. Our simulation and experimental re-
sults both show that replacing safety constraints with a learned model of collision
probability can result in faster navigation without sacrificing empirical safety. The
results also show that when the planner departs a region of feature space for which
it has training data, our prior keeps the robot safe. Finally, our experiments demon-
strate that even within a single real-world environment, it is easy to encounter some
regions of feature space for which we have training data and others for which we do
not, thereby justifying our Bayesian approach and use of prior knowledge.

4.1 Simulation Results

In this section, we present simulation results from hallway and forest environments
that were randomly sampled from environment-generating distributions [21]. We
use a Markov chain to sample hallways with a width of 2.5 m and a turn frequency
of 0.4, and a Poisson process to sample 2D forests with an average obstacle rate
of 0.05 trees ·m−2 and tree radius of 1 m. Figure 5 shows a randomly sampled
hybrid environment composed of both hallway and forest segments. To measure the
benefit of our learned model, we compare against the baseline planner, illustrated
in Figures 1a-1b, that enforces a safety constraint. This planner navigates as fast as
is possible given that constraint, and represents the planner we would use if we did
not have a learned model of collision probability.

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

V
e
lo

c
it
y
 (

N
o
rm

a
liz

e
d
)

Cost of Collision: J
c

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Cost of Collision: J
c

F
ra

c
ti
o
n
 C

ra
s
h
e
d

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

C
o
n
s
tr

a
in

t
V

io
la

ti
o
n
 (

m
)

Cost of Collision: J
c

Data Only

Prior Only

Data + Prior

Fig. 4: Simulation results from 1600 simulations in 25 random hallway maps using
our learned model with dense data + prior (blue), data alone without a prior (red),
and prior alone without data (black). Velocities for each trial are normalized by the
speed of the baseline planner (described in Section 1) in the same map. The right
plot shows the average length by which a stopping-distance constraint was violated.

Figure 4 shows the performance of the planner using different data/prior con-
figurations (data + prior, data only, and prior only), for different Jc values, in 25

12 Charles Richter, William Vega-Brown, and Nicholas Roy

randomly sampled hallway environments. The training data set used for these trials
was collected in a separate hallway environment drawn from the same distribution.
For low values of Jc all three planners crash in every trial, but become safer as
Jc is increased. Above Jc = 0.25, all planners succeed in reaching the goal with-
out collision 100% of the time. At Jc = 0.25, our solution navigates approximately
80% faster than baseline using data + prior, or data alone. In these trials, the prior
contributes very little since the planner has dense training data from the same envi-
ronment type. The right plot illustrates average violation of a stopping-distance con-
straint. For Jc = 0.25, the planners using training data violate the stopping-distance
constraint by 5.75 m on average, indicating the degree to which this constraint is
overly conservative, given our collision probability model. The planner using the
prior alone chooses not to violate the stopping distance constraint by nearly as much,
and essentially converges to the baseline performance as Jc is increased.

0 100 200 300 400 500

10
−1

10
0

10
1

10
2

10
3

N
e

ff
. +

 N
p

r.
Data + Prior, N

pr.
 = 5

0 100 200 300 400 500
0

10

V
e
lo

c
it
y
 (

m
/s

)

Time Step

0 50 100 150 200

10
−1

10
0

10
1

10
2

10
3

Data Only, N
pr.

 << 1

N
e

ff
. +

 N
p

r.

0 50 100 150 200
0

10

V
e
lo

c
it
y
 (

m
/s

)

Time Step

Fig. 5: Simulations from a hybrid hallway-forest map with Jc = 0.5. One planner
uses hallway data alone with no prior (red), and another planner uses hallway data
combined with the prior (blue). Without a safe prior, the planner’s data density drops
to zero and the robot recklessly accelerates to full speed, crashing in the forest (red
‘×’). However, when guided by the prior while in the forest, the planner safely
reaches the goal. The forest regions on the four graphs are shaded in gray.

While results with dense training data make very little use of the prior, Figure 5
illustrates the important role of a prior when transitioning from a familiar environ-
ment type (hallway) to an unfamiliar one (forest) where no data are available. For
these simulation experiments, the planners had access to a training data set from a
hallway environment, but not from a forest environment. If the planner has no data
and no prior, the effective data density drops essentially to zero and it is unable to

Bayesian Learning for Safe High-Speed Navigation in Unknown Environments 13

distinguish between safe and risky behaviors2. Therefore the planner accelerates to
full speed resulting in a crash (red ‘×’). However, using our Bayesian approach, the
effective number of data points drops only as low as Npr. = 5 when the agent enters
the forest and the planner is safely guided by the information in the prior. In 25 trials
of random hallway-forest maps, 100% succeeded using the prior, while only 12%
succeeded without the prior.

4.2 Experimental Results

We conducted experiments on an RC car using a training dataset generated in sim-
ulation on a hallway-type environment. We performed state estimation by fusing a
planar LIDAR and an IMU in an extended Kalman filter (EKF) [7]. We use the
LIDAR to provide relative pose updates to the EKF using a scan-matching al-
gorithm [4]. We use a Hokuyo UTM-30LX LIDAR, a Microstrain 3DM-GX3-25
IMU and an Intel dual-core i7 computer with 16GB RAM. Video of our experi-
mental demonstrations, at speeds up to 8.2 m/s is available at: http://groups.
csail.mit.edu/rrg/bayesian_learning_high_speed_nav.

0 5 10 15 20 25

0

2

4

6

V
e
lo

c
ti
y
 (

m
/s

)

Time (s)

Baseline

Learned

Fig. 6: Experiment in which our planner (blue) reached its goal over 2x faster than
baseline (red). Velocity profiles and trajectories for each planner are shown.

We conducted tests to show that our planner can indeed navigate faster in cer-
tain real environments than the baseline planner. For the experiment shown here,
we chose a narrow path within a lab space with several sharp turns and many ob-
stacles. Figure 6 shows the trajectories and velocity profiles of both planners. The
baseline planner has difficulty navigating quickly in this environment because free
space is occluded from the sensor view by obstacles. Since the baseline planner must
enforce the existence of emergency-stopping trajectories lying within the observed
free space, it is forced to move very slowly. In the velocity profile, the baseline plan-
ner frequently applies the brakes to slow to about 1 m/s , whereas our planner uses
its training data from the simulated hallway environment to predict that it is safe to
travel up to about 3 m/s around most corners and therefore maintains a higher aver-

2 We implement the no-prior case by setting prior values of α and β each to 0.0005 to ensure the
solution is computable in regions of feature space with no data at all. The default prediction with
no data is therefore P(“collision”) = α/(α +β) = 0.5, rather than undefined if α = β = 0.

http://groups.csail.mit.edu/rrg/bayesian_learning_high_speed_nav
http://groups.csail.mit.edu/rrg/bayesian_learning_high_speed_nav

14 Charles Richter, William Vega-Brown, and Nicholas Roy

age speed. The baseline planner took 23.7 s to reach the goal in this case, whereas
our planner took 11.5 s, representing a factor of two improvement.

We also conducted experimental trials to show that in real-world environments,
the planner can safely navigate in unfamiliar regions where it has no relevant train-
ing data. Figure 7 shows an experimental trial in the Stata Center (MIT), which is
composed of straight hallways and larger unstructured regions. For this experiment,
training data were again provided from a simulated hallway environment, which
resembles the straight hallway segments, but looks very different from the open, un-
structured regions. The inset graph shows the effective data density. In the hallways,
the planner uses ≈102 effective data points per prediction. However, in the open
unstructured regions, Neff. drops to zero, and the only information available to the
planner is contributed by the prior. These open unstructured regions are marked with
purple and blue diamonds. In this experiment, the weight of the prior was Npr. = 5.

0 10 20 30
10

0

10
1

10
2

10
3

Data Density

Time (s)

N
e

ff
. +

 N
p

r.

Fig. 7: Trajectory through the Stata Center (MIT), traversing hallway and large un-
structured regions. Our planner was trained in a hallway environment, but not in a
large unstructured environment. Neff. drops to zero in the open unstructured regions
(purple and blue diamonds) and it must rely on the prior to navigate safely. The top
speed in this environment was 8.2 m/s in a separate successful trial.

5 Related Work

A large body of work has established techniques for safe planning in static and dy-
namic environments [3, 8, 9, 25]. Bekris and Kavraki have shown kinodynamic nav-
igation in unknown environments using safety constraints, without considering ac-
tions into the unknown [6]. Several examples use circling loiter maneuvers through
observed free space to guarantee safety [23, 2]. Our method differs from this body

Bayesian Learning for Safe High-Speed Navigation in Unknown Environments 15

of work by relaxing absolute safety constraints and replacing them with predictions
of collision probability, which can be viewed as a form of data-driven constraints.
Althoff et al. propose a collision probability concept similar to fc(φ(bt ,at)) for dy-
namic environments, but they assume a known distribution over the future behavior
of each moving agent, which we do not have in the case of unknown maps [1].

In the exploration literature, the primary objective is to build a map, and actions
may be taken to view unseen parts of the environment [30, 28]. Some exploration
work has balanced the objectives of information gain, navigation cost and localiza-
tion quality from a utility or decision-theory point of view [16, 26]. Unlike explo-
ration, our objective is to reach a goal in minimum time, which places emphasis on
collision probability and high-speed dynamics, rather than map information.

A natural way to reason about planning in an unknown map is through the
POMDP formalism [14]. Despite notorious complexity, various strategies have
grown the size of (approximately) solvable POMDPs [19, 15, 24]. However, we
cannot simply apply POMDP techniques since we assume no explicit knowledge
of the environment distribution, or black-box simulation capabilities to sample the
world at planning time. Instead, we must learn a function of this missing distribu-
tion offline. POMDPs have been used for aircraft collision avoidance [27, 5], where
a very large negative reward discourages collisions at nearly any cost. In contrast,
we use small collision penalties to drive aggressively, trading off risk and reward.

Learning has been applied to autonomous vehicle navigation in several con-
texts. One example from the DARPA LAGR program used deep learning to classify
traversable terrain up to 100 m away [11]. Neural networks and monocular depth
estimation coupled with policy search [18, 17], as well as human-pilot demonstra-
tions [22], have been used to learn high-speed reactive controllers to avoid obstacles,
however these systems map sensory input directly to actions. They are not decision-
theoretic planners, and do not trade off meaningfully between risk and reward.

6 Conclusion

We have shown that by using a Bayesian learning algorithm, with safety constraints
encoded as a prior over collision probabilities, our planner can detect when it lacks
the appropriate training data for its environment and seamlessly revert to safe be-
haviors. Our strategy offers a simple and elegant probabilistic method of merging
the performance benefits of training experience with the the reassurance of safety
constraints when faced with an unfamiliar environment. One of the main limitations
of this work is the difficulty of hand-coding feature functions that describe complex
planning scenarios. We plan to address this limitation by applying recent feature-
learning techniques to automatically generate feature functions from data, extending
our methods to handle different scenarios, map representations and sensor types.

References

1. D. Althoff et al. Safety assessment of robot trajectories for navigation in uncertain and dy-
namic environments. Autonomous Robots, 32(3):285-302, 2012.

16 Charles Richter, William Vega-Brown, and Nicholas Roy

2. S. Arora et al. A principled approach to enable safe and high performance maneuvers for
autonomous rotorcraft. American Helicopter Society 70th Annual Forum, 2014.

3. H. Asama and T. Fraichard. Inevitable collision states - a step towards safer robots. Advanced
Robotics, 18:1001–1024, 2004.

4. A. Bachrach et al. RANGE - robust autonomous navigation in GPS-denied environments.
Journal of Field Robotics, 28(5):644–666, 2011.

5. H. Bai et al. Unmanned aircraft collision avoidance using continuous-state POMDPs. In Proc.
Robotics: Science & Systems, 2011.

6. K. E. Bekris and L. E. Kavraki. Greedy but safe replanning under kinodynamic constraints.
In Proc. ICRA, 2007.

7. A. Bry et al. State estimation for aggressive flight in GPS-denied environments using onboard
sensing. In Proc. ICRA, 2012.

8. P. Fiorini and Z. Shiller. Motion planning in dynamic environments using velocity obstacles.
International Journal of Robotics Research, 17(7):760–772, 1998.

9. D. Fox et al. The dynamic window approach to collision avoidance. IEEE Robotics & Au-
tomation Magazine, 4(1):23–33, 1997.

10. T. Fraichard. A short paper about motion safety. In Proc. ICRA, 2007.
11. R. Hadsell, et al. Learning long-range vision for autonomous off-road driving. Journal of

Field Robotics, 26(2):120–144, 2009.
12. T. M. Howard et al. Model-Predictive Motion Planning: Several Key Developments for Au-

tonomous Mobile Robots. Robotics Automation Magazine, IEEE, 21(1):64–73, 2014.
13. T. M. Howard et al. State space sampling of feasible motions for high-performance mobile

robot navigation in complex environments. Journal of Field Robotics, 25(6-7):325–345, 2008.
14. L. P. Kaelbling et al. Planning and acting in partially observable stochastic domains. Artificial

intelligence, 101(1):99–134, 1998.
15. H. Kurniawati et al. SARSOP: Efficient point-based POMDP planning by approximating

optimally reachable belief spaces. In Proc. Robotics: Science & Systems, 2008.
16. A. A. Makarenko et al. An experiment in integrated exploration. In Proc. IROS, 2002.
17. J. Michels et al. High speed obstacle avoidance using monocular vision and reinforcement

learning. In Proc. ICML, 2005.
18. U. Muller et al. Off-road obstacle avoidance through end-to-end learning. In Proc. NIPS,

2005.
19. J. Pineau et al. Point-based value iteration: An anytime algorithm for POMDPs. In Proc.

IJCAI, 2003.
20. C. Richter et al. High-speed autonomous navigation of unknown environments using learned

probabilities of collision. In Proc. ICRA, 2014.
21. C. Richter et al. Markov chain hallway and Poisson forest environment generating distribu-

tions. Technical Report MIT-CSAIL-TR-2015-014, 2015.
22. S. Ross et al. Learning monocular reactive UAV control in cluttered natural environments. In

Proc. ICRA, 2013.
23. T. Schouwenaars et al. Receding horizon path planning with implicit safety guarantees. In

Proc. ACC, 2004.
24. D. Silver and J. Veness. Monte-carlo planning in large POMDPs. In Proc. NIPS, 2010.
25. R. Simmons. The curvature-velocity method for local obstacle avoidance. In Proc. ICRA,

1996.
26. C. Stachniss et al. Information gain-based exploration using Rao-Blackwellized particle fil-

ters. In Proc. Robotics: Science & Systems, 2005.
27. S. Temizer et al. Collision avoidance for unmanned aircraft using Markov decision processes.

In AIAA Guidance, Navigation, and Control Conference, 2010.
28. S. Thrun et al. Map learning and high-speed navigation in RHINO. AI-based Mobile Robots:

Case studies of successful robot systems. MIT Press, Cambridge, MA, 1998.
29. W. Vega-Brown et al. Nonparametric Bayesian inference on multivariate exponential families.

In Proc. NIPS, 2014.
30. B. Yamauchi. A frontier-based approach for autonomous exploration. In Proc. Computational

Intelligence in Robotics and Automation, 1997.

	Bayesian Learning for Safe High-Speed Navigation in Unknown Environments
	Charles Richter, William Vega-Brown, and Nicholas Roy
	Introduction
	POMDP Planning
	Missing prior distribution over environments
	Approximations to the POMDP

	Predicting Future Collisions
	Training procedure
	Learning algorithm

	Results
	Simulation Results
	Experimental Results

	Related Work
	Conclusion
	References

