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Abstract— We present an algorithm for providing a dynamic
model of sensor measurements. Rather than depending on a
model of the vehicle state and environment to capture the
distribution of possible sensor measurements, we provide an
approximation that allows the sensor model to depend on
the measurement itself. Building on previous work, we show
how the sensor model predictor can be learned from data
without access to ground truth labels of the vehicle state or
true underlying distribution, and we show our approach to
be a generalization of non-parametric kernel regressors. Our
algorithm is demonstrated in simulation and on real world
data for both laser-based scan matching odometry and RGB-D
camera odometry in an unknown map. The performance of our
algorithm is shown to quantitatively improve estimation, both
in terms of consistency and absolute accuracy, relative to other
algorithms and to fixed covariance models.

I. INTRODUCTION

Probabilistic methods have had substantial impact on
robotics in recent years; by explicitly reasoning about uncer-
tainty, robots are better equipped to make intelligent planning
and control decisions in the face of limited information.
These methods rely on accurate models of the system dy-
namics and sensors, which are usually parameterised in a
way that describes the uncertainty of the vehicle motion or
sensor model. For example, the commonly used linear Gaus-
sian sensor model describes sensor noise with a covariance
matrix. Identifying the parameters of the model is important
to ensuring accuracy, consistency, and robustness.

One common approach is to assume that the model pa-
rameters are constant throughout the operation of the vehicle,
and to use system identification techniques to learn the model
parameters from a collected dataset. This method may fail
to perform well in cases where the parameters depend on
changing external factors that are unavailable to the robot.
For example, as we will show in section III, laser scan
matching has a dramatically higher uncertainty in a corridor
environment than in a well-structured environment. We will
see that a Kalman filter based estimator that incorporates
motion estimates generated by a scan matcher suffers if it
assumes a constant model of uncertainty of these motion
estimates. Using a sensor model whose parameters vary
with the sensor data leads to dramatically improved state
estimation for navigating robots, such as the UAV shown in
fig. 1.

Rather than resorting to a sensor model that depends on
the full state of the vehicle and the environment, the sensor
measurement itself can provide accurate predictions of sensor
model parameters such as the covariance of the measurement
distribution. Figure 2a shows such an example, where a laser
range scan in a tightly constrained environment may provide
very accurate position information for a navigating robot.
On the other hand, fig. 2b shows an example of a laser scan
in a corridor, where the measurement strongly constrains the
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Fig. 1: Micro air vehicles like this one require accurate state esti-
mates to fly safely, but are limited in the sensing and computational
resources they can carry.

robot’s cross-range position in the corridor, but provides little
information about where along the corridor the robot might
be. Modelling the uncertainty in the position estimates of
these two scans using the same covariance will cause the
robot either to have insufficient confidence in its position
in fig. 2a, or overly confident about its position along the
corridor in fig. 2b.

In this paper, we show a way to estimate the parameters of
a sensor model directly from the measurements themselves.
We learn a predictive model of uncertainty from training
data. Because we predict the sensor model parameters from
the received measurements themselves, we can incorporate
sensor measurements directly into a state estimator without
access to an environmental model such as a map. This allows
our sensor model both to generalize across environments and
to be used inside an online mapping process.

In previous work [1] we presented a related method
for estimating these parameters when given access to the
true measurement errors at training time—a restriction re-
quiring access to the true state of the vehicle, which is
difficult to achieve in domains like mobile robotics. We
now develop a general graphical model incorporating varying
model parameters, and show how we can efficiently perform
approximate inference over this model. We then show the
connection between CELLO and kernel regression, and note
the method presented can be extended to a much wider
class of models. Finally, we demonstrate improvements to
estimator accuracy and consistency when using covariances
predicted by CELLO in an extended Kalman filter.

II. GENERALIZED PREDICTIVE ESTIMATION

Suppose we have a robot with state x, € R™= at time ¢,
with N, the dimensionality of the state vector. It is equipped
with a sensor providing noisy raw measurements ¢, € R™¢
at each time step; these measurements could be the pixel
values of a camera, for instance, or the ranges returned by
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(a) Corner

(b) Hallway

Fig. 2: Sequential laser scans can be matched to estimate the
velocity of a robot, but environmental degeneracy can lead to less
information in some directions. Near a corner, the robot can accu-
rately estimate changes in both heading and each position axis; in a
hallway, the robot can only estimate motion in the direction of the
walls.

a planar lidar unit, and as such the measurement dimension-
ality V. may be quite large. The raw sensor measurements
are dependent on both the (unobserved) robot state x; and
on the environment, described by (2. The structure of this
probabilistic model is shown in fig. 3a. Given a sensor model
with this structure, as well as a model of the state dynamics,
the history of measurements can be used to infer the state of
the robot as it moves.!

We can often simplify the process of inference by not
directly incorporating the raw sensor data . Instead, we first
compute some low-dimensional representation z, = z({,;)
of the information contained in the high-dimensional signal
available from sensors, such as a velocity vector computed
from optical flow on an image, or the relative displacement
of the vehicle computed from laser range scans. Consider
again the laser scans in fig. 2; the relative displacement of
the vehicle computed by a scan matching process can be

'Without loss of generality, we omit further discussion of the dynamics
model for clarity. We refer the reader to any standard text on Kalman
filtering for a reference on how to incorporate dynamics and process noise
into the estimate.

treated as a low-dimensional measurement of velocity with
some covariance, and then incorporated into a state estimator
such as a Kalman filter. This would provide the efficiency of
Kalman filtering while at the same time allowing the laser
data to be fused with other sensors such as an IMU, camera
or GPS. The low-dimensional representation is often chosen
to facilitate inference of the latent states x; commonly, we
choose a representation that makes the state x conditionally
independent of the raw measurement ¢ given the observation
z, with the distribution of z given x well-approximated by
a simple parametric form, such as a multivariate Gaussian.

p(z¢]x¢,0;) = N (h(x), Re(0y)) . (1)

Here, h(x) is a known deterministic measurement function,
and the parameters @; are some parameterization of the
%Nz (N, 4+ 1) free parameters of the measurement covari-
ance matrix R;. The problems of filtering, prediction, and
smoothing on such models are well-studied, and solved by
suitable variants on the Kalman filter if the measurement
covariance R; is known.

A. Approximate Inference and Graphical Model Structure

In general, the parameters @ are not known a priori, and
must be estimated from data in the problem domain. This
can be done using the Baum-Welch algorithm [2], which
finds the maximum likelihood parameters @ by alternately
evaluating the expected value of the latent states x and
choosing the maximum likelihood parameters 6 conditioned
on those expected states. This method relies only on the low-
dimensional measurement z and not on the high-dimensional
observation (.

However, due to features of the environment or stochas-
ticity in the sensor, the available information in the raw
sensor measurement ¢ may vary, leading the parameters of
the measurement distribution @ to vary as well. Instead of a
single, common node for the distribution parameters 6, we
now have a distinct node 8; for each measurement z;, as
shown in fig. 3c. In order to retain the efficiency gains made
by using the low-dimensional measurement z instead of the
observation ¢, we must develop a predictive model for these
measurement parameters 6;.

Given perfect knowledge of the state and the environment,
the distribution over measurements ¢ is fixed and thus
the distribution over observations z is likewise fixed. We
could then infer the maximum likelihood parameters of the
measurement distribution, for a particular state vector x; and
environment ). However, we cannot have perfect informa-
tion about the state and environment; even if we could, the
inferred parameter estimates could not be generalized to new
environments.

If we make the approximation that the parameters 6 are
well-modelled as a function of the observations ¢, we can
frame the choice of parameters as a learning problem. This
approximation allows us to generalize to new environments;
we capture the dependence of the observation z on the
environment {2 in the dependence of the parameters € on the
raw measurement . We may reduce the complexity of this
learning problem by introducing a low-dimensional vector of
predictor features ¢ derived from the raw sensor data . A

1908



(%) -
W ¢

™0

(a) True Model

A~
@

(b) Standard Approximation

® -0 00
RS

(c) CELLO Approximation

Fig. 3: The fixed-parameter model provides for efficient inference, but neglects the fact that sensor measurements are both a function of the
state and the environment ). The approximate model employed in CELLO captures that dependence without sacrificing the sparsity of the

hidden Markov model.

careful choice of predictors allows us to dramatically reduce
the dimensionality of the function we are trying to learn
without impeding the quality of the resulting predictions; as
we showed previously, an image of millions of pixels can be
reduced to a few statistics that are sufficient to estimate the
covariance of the output of a vision algorithm.

Our goal, then, is to learn a map RN — RMe from a
vector of predictors ¢ to the parameters 8 of low dimensional
measurements z. We have at our disposal a set of K raw
sensor observations {¢, V¢ € [1, K]}, from which we derive
pairs of vectors (z, ¢, ). The latent state variables {x; V¢ €
[1, K]} are not observable, but we assume they have known
dependence structure as in the models in fig. 3. The CELLO
probabilistic model creates an hierarchical conditional inde-
pendence structure on the distribution of the four random
vectors {x¢, Z¢, ¢y, 0+ }.

P (X¢,2¢, 01, ;) = p(2e]%4,01) p (04| P,) p () p (x¢) (2)

Given that distribution and the available data, we aim to
predict the expected values of the unobservable parameters
0. That is, we aim to evaluate

é((ﬁ) = /Otp (Xt,2¢,04, |¢;) dO dz dx 3)

B. Covariance Estimation

We initially restrict ourselves to learning the covariances
of zero-mean fixed-parameter multivariate Gaussian mea-
surement models, and later generalize, first to the case of
varying-parameters and later to the case of arbitrary mea-
surement models. A standard result in statistics is that given
a set of K independent samples from a multivariate Gaussian
distribution, the minimum variance unbiased estimate of the
covariance is the empirical covariance. That is, if v; ~

N (0,R),
1 K
el

where Tr(v) = vv ' is an estimator for R given the set of
samples {v;Vt € [1, K]}. For a linear Gaussian measure-
ment model, h(x;) = Hx; + v¢ with v ~ N (0,Ry), we
may generate samples v, = z, — Hx, if we have access to
both the measurements z and the states x. The minimum

B —E[WT=E[Tr()]=R @

T

variance estimator for the measurement covariance is then
the outer product.

E[Tr(x,z)]=E [(zt — Hx¢)(z: — th)T] =R; (5

Given a multivariate Gaussian distribution over the state

instead of a direct observation, x; ~ N (%;,X), we find
a similar relationship.

E [(z; — Hx)(z, — Hx,) "]
= /dx (2o — Hxy) (2o — Hx) ' N (5% N

= /dX (Zt — HXt)(Zt — HXt)TN ()A(t, 215) (6)

=R, + HSH"

Consequentially, we may form an unbiased estimator for R
given measurements z and distributions over the state x.

E [(zt — H%,)(z — Hx)" — Hﬁ]tHT} =R, (7

C. Kernel Estimation

We now permit the covariance R to vary with the predic-
tors ¢. Let the vector 6 represent the independent elements
of the matrix R, and the elements of the vector estimator
Ty (x,z) represent the corresponding elements of the matrix
estimator Tgr. Equation (7) remains true when conditioned
on the predictor vector ¢.

E[0:|9,] = /Btp (x¢, Zt, Oy, |p,) dOdzdx ()

B f@tp (x,2,0,¢,) d0dzdx

- [p(x,2,0,¢,) dOdzdx

BT (x,2)]p(6,6,) 40
p(0,¢,) do

The expectation in eq. (10) is taken over the latent states
x; the simplification exploits the conditional independence
relation of eq. (2). Given a set of observations

D= {z;, ¢, Viecl[l,N]}

(€))

(10)

(an

we may approximate that joint distribution using kernel
regression techniques.

1 N
p(0,0) =+ D ks (16— ¢ill) ko (116 = 6:]1)  (12)
i=1

1909



The kernel functions k, (||x||) are required only to be posi-
tive, normalized, and decreasing in ||x||, although typically
they will also be symmetric. The kernel scale p is a scalar
defining the size of the kernel, defined such that &, (||x||) =
pk1 (plix[))-

This approximation gives rise to an estimator for the
expectation in eq. (10).

o SUB[T (xiz) ke (64 — il
00 = = sl — i)

This is a Nadaraya-Watson estimator [3, 4], extended to
estimate an unobservable quantity in terms of the observable
statistic E[Tg (x,z)]. The kernel function allows us to
compute an expected covariance by averaging over a set
of nearby, but not identical, measurements in the data set.
However, the kernel functions themselves have parameters
defining the notion of ‘nearness’; we must choose these
parameters well to ensure good performance.

It is helpful to observe the asymptotic properties of the
kernel estimator, to demonstrate that there exist parameters
for which performance is guaranteed. We first define the
function 6(¢) = E[0|¢] for convenience. We denote the
kernel scale as p and assume the kernel metric to be of
generalized Euclidean form, with a metric tensor M:

16— ill = /(¢ — 6)TM($ — &)

This permits the definition of a local coordinate system ¢ =
L(¢ — ¢,), where M = pL "L, such that

/dgopk(cp) :/d¢kp(¢—¢i)-

With these assumptions, it can be shown that, in the limit
of many samples and small scale, the estimator is unbiased
to first order.

lim E[0(¢) - 0(0)]

p—0
Np—o0

— (5(@) + Tiowp (@) M7V0(0) ) e (16

13)

(14)

15)

Here, V3,0;(¢) = tr[VV'6;(¢)M~'] is the Laplacian
under the metric M, and ¢, = [ ¢?k(p)de is the second
moment of any element under the kernel, since each element
is treated identically. In the special case of the Euclidean
metric, where M = 1, and uniform sampling density, this
can be reduced further.

. ; g 2
lin, B [6(¢) ~ 6(¢)| = 5V*6i(d)p'ex  (17)
Np—oc0
The same assumptions give an asymptotic variance.
. dx
lim V|0(¢)| = ————V [0i|¢® (18)
ry [6()] ORI

Here, d; = [k(¢)*de. As N increases, the variance of
the estimate will asymptotically approach zero; provided the
kernel scale p decreases in N the estimator bias likewise
becomes zero. Thus, given a sufficiently large dataset D, we
have obtained a consistent estimator for E [0]|¢].

D. CELLO-EM

Given a set of data and an appropriate choice of kernel
parameters, we can predict the covariance of any future
measurement from the sum of outer products of the previous
measurements, weighted by a similarity measure. Measure-
ments that are close together in feature space will more
strongly influence the covariance prediction than measure-
ments far apart in feature space. To make predictions using
any fixed data set, we must choose kernel parameters {p, M }
appropriately. Choosing analytically optimal {p, M} is infea-
sible as we do not know the underlying parameter function
0(¢). Instead, we parameterize the metric and scale by a
vector of hyperparameters o and choose the hyperparameters
which maximize the likelihood of the dataset.

N
a® = argmax Hp(zj,, 0(¢,;), )
(a7

i=1

N
= argmax H /p(xi, z;,0(p;), a)dxy ... dxy (20)
=1

19)

This optimization may be efficiently evaluated through the
use of the Expectation-Maximization algorithm [5]. We iter-
ate through two steps; first, we evaluate the expected latent
state sequence.

)Acgn) )25\7,1) =E [xl...xN|zi,é(¢i),aZ‘n)} 21
This expectation is well-studied and efficient solutions exist
for many models; the general solution for a hidden Markov
model is the forward-backward algorithm. We then evaluate
the maximum likelihood hyperparameters.

N
af, ) = argmax Hlogp(ign),zi,e(qsi),a) (22)
@ i=1
This optimization may be done using standard techniques,
such as stochastic gradient ascent. Iterating between these
steps will converge to a maximum of eq. (20).

E. General Parameter Estimation

The analysis of the previous section is not restricted to
multivariate Gaussian measurement models; any parametric
family may be used, provided there exists an unbiased esti-
mator for its parameters. That is, we may generate a consis-
tent estimator any measurement model z ~ p (z|x, 6) so long
as there exists a function Tg(z) such that E [Tg(z)] = f(0),
where f(-) is an invertible deterministic function. Every
member of the exponential family has such an estimator;
because we do not restrict the estimator to be a fixed-
size statistic, there may be viable distributions outside the
exponential family as well.

The procedure for generating a consistent estimator is
given explicitly in algorithm 1. We cycle between evaluating
the expected value of the estimator Tg(:) as in eq. (21),
and determining the maximum likelihood hyperparameters
as in eq. (22). Iterating between these steps will converge
to an optimal set of hyperparameters and a distribution over
the state sequence {x1,...,xx} of estimator values, which
may be used at run time to predict the parameters of new
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measurements. In practice, this convergence happens very
quickly, generally after just a few iterations.

Algorithm 1 Covariance estimation through Expectation
Maximization

Initialize R
repeat
{%} < EXPECTATION(D, R)
a* «+MAXIMIZE({x}, {z})
until convergence
function MAXIMIZE
Randomly initialize parameter vector o and set learn-
ing rate 7
repeat
I < SHUFFLE([1,...,N])
for i €I do
R; < PREDICTCOVARIANCE(¢,)
a+—a—nVL(a,D)
end for
until convergence
end function
function PREDICTCOVARIANCE(¢)

R < 0,xp

n <0

Ng < NEARESTNEIGHBORS(¢)

for i € Ng do

- R R+k(9,0,)((zi — h(%:))(zi — h(%:))T —
HYHT)

end for

R+ 1R

return R

end function

III. EXPERIMENTAL RESULTS

The expectation-maximizing learning process was first
validated in simulation on a toy problem representative of
target problem domains, and then validated on real-world
domains.

A. Simulation

We consider a fictional robot taking random steps, drawn
from a Gaussian distribution of known covariance, around a
room of varying brightness. After each step, the robot takes
a position measurement, which is corrupted by Gaussian
noise. The fictional position sensor performs well in the
light, but poorly in the darkness; as the robot wanders
around the room, it records both a noisy measurement of
position and a predictor vector consisting of the observed
brightness, and the direction of the nearest light source. This
is a linear Gaussian system, and therefore if we know the
measurement covariances we may exactly solve for the least-
squares optimal solution using a standard Kalman filter. This
exact solution is used as a baseline for comparison in all
simulation experiments, as it represents the best possible
estimate given the data available, and provides a lower bound
on for the possible filter error.

— « CELLO

0.64 —#— Baum-Welch
***** Optimal Estimate
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Fig. 4: Root mean squared error between the estimated and true
trajectories, using covariances generated by CELLO and the Baum-
Welch algorithm. Both algorithms converge after only a few itera-
tions, but due to the varying covariance Baum-Welch fails to achieve
optimality. CELLO converges to the optimum, and results in half the
mean error.

We process a simulated dataset as described in algorithm 1,
initializing the covariance to a fixed estimate and iteratively
improving that estimate through cycles of Kalman filtering
and CELLO maximization. We run the Baum-Welch algo-
rithm [2] on the same dataset, assuming a fixed measure-
ment covariance. The resulting mean squared error for each
algorithm is shown in fig. 4. Because we have access to
the true measurement covariance used to generate the data,
we may provide a lower bound on filter performance; the
measurement and transition distributions are linear Gaussian
and therefore the Kalman filter with the true covariances
yields the least-squares optimal solution. The resulting error
using both CELLO and Baum-Welch rapidly converges to a
minimum; however, the Baum-Welch model cannot capture
variations in covariance, and thus remains suboptimal even
after hundreds of iterations.

The trajectories estimated by CELLO, Baum-Welch, and
the initial fixed covariance are presented in fig. 6, and
compared to the optimal estimate. In the dark, both CELLO
and the fixed covariance estimate perform similarly, trusting
the dynamics model more than the sensor measurements,
resulting in very smooth trajectories. In the light regions,
however, CELLO is able to recover the random motions of
the vehicle from the sensor data, while the fixed covariance
estimator remains smooth, placing too much confidence in
the system dynamics model over the sensor measurements.

These trends are reflected in the absolute errors for each
estimate, presented in fig. 5. In the dark areas, CELLO,
Baum-Welch, and the optimal estimator perform comparably.
But the performance of the fixed covariance estimate fails to
improve in the regions of high information, resulting in large
peaks in the error.

B. Real-world performance

As previously observed [1, 6], environmental ambiguities
lead planar range-finding systems to suffer from widely
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Fig. 5: Comparison of estimation error magnitude using CELLO (blue) and Baum-Welch (green) in each dimension. Error is relative to
the optimal estimate; note that when there is little information available, all systems perform comparably, but when Baum-Welch fails to
incorporate information when it is available, leading to degraded performance relative to the optimum. CELLO performs comparably to the

optimal estimator regardless of information quality.

Fig. 6: Estimated trajectory using CELLO (blue), Baum-Welch
(green), and the true measurement covariances (white). Trajectories
are presented in front of the light field indicating sensor quality: the
sensor degrades in the dark. Note that using the true covariances
gives an upper bound on estimator performance; CELLO nearly
achieves this upper bound, while the Baum-Welch covariances fail
to do so, especially in the dark areas.

varying covariances. Such units are extremely common in
mobile robotics; they have been used to build maps [7], to
localize within a known map [8], o—by matching sequential
scans—for motion estimation via dead reckoning [9].

We demonstrate the benefits of an adaptive covariance
scheme through prediction of the covariances of the trans-
form parameters between matched sequential simulated laser
scans in a hallway environment. Our predictions were made
using a predictor vector composed of histograms of angles
returning viable ranges, and the angles formed by lines be-
tween sequential points. Sample predicted covariance ellipses
are drawn in fig. 7. The predictions consistently align the
covariance ellipse with the walls of the hallway whenever the
far walls are out of range, reflecting the lack of information
in the direction the scanner cannot see.

Figure 8 compares the predictions of our algorithm to

Fig. 7: Predicted covariances for laser scan-matching odometry in a
hallway. Note that environmental ambiguity creates large uncertainty
along the axis of the hallway

those of Bachrach et al. [9] and Andrea Censi [6], along
with hand-tuned and empirical fixed covariances. Although
all three algorithms agree on the direction of maximal uncer-
tainty and on the location of the regions of high uncertainty,
they vary widely in the estimated magnitude of uncertainty.
To evaluate which uncertainty estimates most closely mir-
ror the true uncertainty, we determine the vehicle trajectory
to high accuracy using a longer-range laser, capable of seeing
the ends of the hallways traversed. These longer-ranged laser
scans are processed by the SLAM algorithm presented in M.
Kaess et al. [10] to obtain accurate position estimates.
Table I compares filter performance using several metrics.
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Fig. 8: Comparison of the marginal covariances predicted by Bachrach et al. [9] (green), Andrea Censi [6] (blue), and CELLO (red). Note the
agreement across methods on the locations of regions of uncertainty, but the wide disparity in their magnitude. Using the smaller covariances
results in the high variance velocity estimates seen in fig. 9; in particular, note that the spikes in velocity variance using Bachrach’s covariance
scheme coincide with regions where the covariance increases, suggesting that only CELLO sufficiently increases the covariance.
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Fig. 9: Estimated velocity using covariances predicted by CELLO (red), Bachrach (green), Censi (blue), and fixed to hand-tuned values

(purple). Note the reduced variance when using CELLO.

Filters are evaluated for each covariance scheme, using both
a planar laser scan matcher and an RGB-D optical flow algo-
rithm for odometry. We additionally present filtering results
using just the optical flow and just the scan matcher. The
availability of both sensors reduces the mean error in each
case, as expected; however, it diminishes filter consistency, as
measured by the normalized estimation error and the dataset
likelihood. Using CELLO yields the smallest mean error, as
well as the highest consistency for either metric.

IV. RELATED WORK

The problem of estimating sensor covariances has at-
tracted attention for many years. One early attempt was the
adaptive Kalman filter [12], which modifies the elements
of the measurement noise covariance and the process noise
covariance on-line. This method relies purely on local noise
characteristics; as such, it can guarantee that the covariances
it generates are near the true covariances, but changes in
the noise parameters will always be delayed while adaption

occurs. This greatly reduces its effectiveness in cases of
abrupt dramatic changes, as in outlier rejection.

There have many attempts to learn the uncertainty of indi-
vidual perception and odometry algorithms. Andrea Censi [6]
developed a scheme based on information-theoretic analysis
for estimating the uncertainty of laser scan matching odom-
etry through the iterative closest point algorithm. Bachrach
et al. [9] developed an alternate scheme by fitting a covari-
ance ellipse to the three-dimensional transform likelihood
map. Brenna [13] presented extensive work on transform
covariance estimation for laser scan matching, while Huang
et al. [14] developed a prediction scheme for visual odometry.
These algorithms all share similar disadvantages. Because
they were designed to estimate the uncertainty in the output
of a single algorithm, they cannot be generalized to other
sensors. This implies that using different sensors, or different
algorithms to process sensor data, requires the generation
of entirely new uncertainty models, which represents a sub-
stantial investment in time and effort. In contrast, CELLO-
EM learns its uncertainty model from data, and integrating
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RMSE' [ MAE? NEES® NMEE? LL®
Fixed 0.0303 | 9.1797 347087 15950 | -11.0200
BSM 0.0595 | 18.3735 | 464.3963 51583 | -356.8034
CSM 0.0407 | 11.9108 | 7025.3429 | 33.0318 3.1346
FOVIS 0.2397 | 63.0931 | 14431.6146 | 29.2197 | -712.3076
BSM+FOVIS | 0.0199 | 6.4020 12343538 | 5.3928 | -620.1783
CSM+FOVIS | 0.0323 | 9.6486 | 6739.2444 | 25.8061 | -139.8690
CELLO 0.0179 | 6.0304 19.0661 0.9536 6.1715

TABLE I: Comparison of filter performance for a laser scan-
matcher and optical flow system. The filter was tested using
fixed covariances, using Bachrach’s scan matcher alone, using
Censi’s scan matcher alone, using the FOVIS optical flow system
alone, using Bachrach’s scan matcher in conjunction with FOVIS,
using Censi’s scan matcher in conjunction with FOVIS, and using
Bachrach’s scan matcher and FOVIS with covariances predicted
by CELLO. Using CELLO results in modest gains in terms of ab-
solute accuracy, but enormous gains in consistency and estimator
bias. All metrics are taken as specified in Bar-Shalom et al. [11]

1 1 K (g 2
Root mean squared error, \/? SR 1 (]kn —xn) T (Xn — xp). Low values
indicate an accurate estimator; lowe}‘v is better.

% Mean absolute error, % Zi{:l > |(i)n|. Low values indicate an accu-
rate estimator; lower is better.

° Normalized estimation error squared, K+NT 25:1 (%n —xn) T =7 (Rkn —
Xn ). A lower value indicates a more consistent estimator.

4 : : : 1 Ng K (Xi)n
Normalized mean estimation error, 2= >:'% n=1 =1)m
zero implies an unbiased estimator for all states; lower is better.

> Normalized log likelihood, -~ Zf;l logp (zi|Ri, Eo). High values indi-
cate a good measurement model; higher is better.

. A value of

a new sensor just requires collecting data and running
the algorithm. This generality comes at negligible cost, as
CELLO is competitive even with algorithms specialized to a
single sensor.

Various nonparametric estimation schemes have been de-
veloped in recent years, both within and without the robotics
community. Ko and Fox [15] employ Gaussian processes in
a filtering context to learn not just the uncertainty parameters
but the entire measurement model. Wilson and Ghahramani
[16] presented a non-parametric Bayesian method for volatil-
ity estimation, for use in quantitative finance. Melkumyan
and Ramos [17] describes a related method which uses
Gaussian processes to estimate uncertainty. Because the
methods of Wilson and Melkumyan require sampling to
generate posterior distributions, they are computationally
intractable in real-time domains; moreover, their formula-
tions are designed to scale for high-dimensional predictions,
rather for the high-dimensional feature vectors needed in
mobile robotics. An alternative class of methods, such as
that of Graham et al. [18], generates robustness to outliers
while avoiding explicitly modeling the covariance by instead
solving a convex optimization problem at each filtering step.

V. CONCLUSIONS

We have presented a method for predicting unobservable
model parameters applicable to arbitrary models. Applying
this method to the prediction of sensor measurement covari-
ances yields an extension to our previous work, allowing for
fast covariance predictions without access to ground truth.
The method presented outperforms both hand-tuned fixed
covariances and domain-specific algorithms, as measured
by several metrics; importantly, it improves both estimator
accuracy and consistency.

Although we only present results for the case of multivari-
ate Gaussian measurements, there are other useful models
that could benefit from this kind of analysis. In the context
of sensor estimation, learning the state transition covariance,
or process noise, could improve estimation fidelity in appli-
cations where there exists a good model which is known to
break down, such as flying vehicles near stall. This method
could also be applied to discrete estimation problems, if the
transition and emission probabilities are suspected to vary.
We believe it opens important avenues towards improving
estimation of both state and uncertainty, and promises to be
useful in many contexts.

REFERENCES

[1] W. Vega-Brown, A. Bachrach, A. Bry, J. Kelly, and N. Roy,
“CELLO: a fast algorithm for covariance estimation,” in Proc.
ICRA, Karlsruhe, Germany, 2013.

[2] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A max-
imization technique occurring in the statistical analysis of
probabilistic functions of markov chains,” The Annals of
Mathematical Statistics, vol. 41, no. 1, pp. 164-171, 1970.

[3] E. A. Nadaraya, “On estimating regression,” Theory of Prob-
ability and Its Applications, vol. 9, no. 1, pp. 141-142, 1964.

[4] G. S. Watson, “Smooth regression analysis,” Sankhy: The
Indian Journal of Statistics, Series A, p. 359372, 1964.

[5S] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Jour-
nal of the Royal Statistical Society, Series B, vol. 39, no. 1,
p- 138, 1977.

[6] Andrea Censi, “An accurate closed-form estimate of ICP’s
covariance.” in Proc. ICRA, Rome, Italy, 2007.

[7]1 H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista,
and S. Scheding, “A bayesian algorithm for simultaneous
localisation and map building,” in Robotics Research, ser.
Springer Tracts in Advanced Robotics.  Springer Berlin /
Heidelberg, 2003, vol. 6, pp. 49-60.

[8] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo
localization for mobile robots,” in Proc. ICRA, 1999.

[9]1 A. Bachrach, S. Prentice, R. He, and N. Roy, “RANGE -
robust autonomous navigation in GPS-denied environments,”
Journal of Field Robotics, vol. 28, no. 5, pp. 644-666, 2011.

[10] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: incre-
mental smoothing and mapping,” IEEE Trans. on Robotics,
TRO, vol. 24, no. 6, pp. 1365-1378, 2008.

[11] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation. John Wiley and
Sons, Inc, 2001.

[12] R. K. Mehra, “On the identification of variances and adaptive
kalman filtering,” IEEE Transactions on Automatic Control,
vol. AC-15, pp. 175-184, 1970.

[13] M. Brenna, “Scan matching covariance estimation and SLAM:
models and solutions for the scanSLAM algorithm,” Ph.D.
dissertation, Artificial Intelligence and Robotics Laboratory
Politecnico di Milano, 2009.

[14] A.S.Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana,
D. Fox, and N. Roy, “Visual odometry and mapping for
autonomous flight using an RGB-D camera,” in Proc. ICRA,
Flagstaff, AZ, 2011.

[15] J. Ko and D. Fox, “GP-BayesFilters: bayesian filtering using
gaussian process prediction and observation models,” Auton.
Robots, vol. 27, no. 1, p. 7590, 2009.

[16] A. G. Wilson and Z. Ghahramani, “Generalised wishart pro-
cesses,” Uncertainty in Artificial Intelligence, 2011.

[17] A. Melkumyan and F. Ramos, “Multi-kernel gaussian pro-
cesses,” Proc. JCAI, pp. 1408-1413, 2011.

[18] M. Graham, T. Steiner, and J. How, “Robust vision-aided
navigation in urban environments,” in Proc. AIAA GNC,
Boston, MA, 2013.

1914



