Bayesian Learning for Safe High-Speed Navigation in Unknown Environments

Abstract

In this work, we develop a planner for high-speed navigation in unknown environments, for example reaching a goal in an unknown building in minimum time, or flying as fast as possible through a forest. This planning task is challenging because the distribution over possible maps, which is needed to estimate the feasibility and cost of trajectories, is unknown and extremely hard to model for real-world environments. At the same time, the worst-case assumptions that a receding-horizon planner might make about the unknown regions of the map may be overly conservative, and may limit performance. Therefore, robots must make accurate predictions about what will happen beyond the map frontiers to navigate as fast as possible. To reason about uncertainty in the map, we model this problem as a POMDP and discuss why it is so difficult given that we have no accurate probability distribution over real-world environments. We then present a novel method of predicting collision probabilities based on training data, which compensates for the missing environment distribution and provides an approximate solution to the POMDP. Extending our previous work, the principal result of this paper is that by using a Bayesian non-parametric learning algorithm that encodes formal safety constraints as a prior over collision probabilities, our planner seamlessly reverts to safe behavior when it encounters a novel environment for which it has no relevant training data. This strategy generalizes our method across all environment types, including those for which we have training data as well as those for which we do not. In familiar environment types with dense training data, we show an 80% speed improvement compared to a planner that is constrained to guarantee safety. In experiments, our planner has reached over 8 m/s in unknown cluttered indoor spaces.

Publication
In International Symposium on Robotics Research (ISRR).
Date