
Accurate and Fast Approximate Graph Mining at Scale

by

Anna Arpaci-Dusseau

S.B., Computer Science and Engineering, Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Anna Arpaci-Dusseau. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Anna Arpaci-Dusseau
Department of Electrical Engineering and Computer Science
May 8, 2024

Certified by: Xuhao Chen
Research Scientist, MIT CSAIL, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Accurate and Fast Approximate Graph Mining at Scale

by

Anna Arpaci-Dusseau

Submitted to the Department of Electrical Engineering and Computer Science
on May 8, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Approximate graph pattern mining (A-GPM) is an important data analysis tool for
numerous graph-based applications. There exist sampling-based A-GPM systems to provide
automation and generalization over a wide variety of use cases. Despite improved usability,
there are two major obstacles that prevent existing A-GPM systems being adopted in practice.
First, the termination mechanism that decides when to terminate sampling lacks theoretical
backup on confidence, and performs significantly unstable and thus slow in practice. Second,
they particularly suffer poor performance when dealing with the “needle-in-the-hay” cases,
because a huge number of samples are required to converge, given the extremely low hit rate
of their lazy-pruning strategy and fixed sampling schemes.

We build ScaleGPM, an accurate and fast A-GPM system that removes the two
obstacles. First, we propose a novel on-the-fly convergence detection mechanism to achieve
stable termination and provide theoretical guarantee on the confidence, with negligible online
overhead. Second, we propose two techniques to deal with the “needle-in-the-hay” problem,
eager-verify and hybrid sampling. Our eager-verify method drastically improves sampling
hit rate by pruning unpromising candidates as early as possible. Hybrid sampling further
improves performance by automatically choosing the better scheme between fine-grained and
coarse-grained sampling schemes. Experiments show that our online convergence detection
mechanism can precisely detect convergence, and results in stable and rapid termination
with theoretically guaranteed confidence. We also show the effectiveness of eager-verify in
improving the hit rate, and the scheme-selection mechanism in correctly choosing the better
scheme for various cases. Overall, ScaleGPM achieves an geomean average of 565× (up to
610, 169×) speedup over the state-of-the-art A-GPM system, Arya. ScaleGPM is also four
orders of magnitude faster than state-of-the-art exact GPM system, GraphZero. In particular,
ScaleGPM handles billion-scale graphs in seconds, where existing systems either run out of
memory or fail to complete in hours.

Thesis supervisor: Xuhao Chen
Title: Research Scientist, MIT CSAIL

3

4

Acknowledgments

First, I would like to thank to my thesis advisor, Xuhao Chen for his continual advice and
support. I would also like to thank Zixiang Zhou for his insight and work on the proofs
behind the ScaleGPM project. I would also like to thank all the staff and professors in
the EECS department who have taught me over the past years for cultivating my interest in
performance engineering and computer systems. Additionally, I am thankful to my partner
who tirelessly listened to my thoughts on A-GPM problems as I completed my thesis. Finally,
I want to thank my parents and sister, for all the support and encouragement they have
provided over the years.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

List of Algorithms 13

1 Introduction 15

2 Background 19
2.1 Graph Pattern Mining (GPM) . 19
2.2 Approximate Graph Pattern Mining . 23
2.3 Sampling Schemes for GPM Problems . 24

2.3.1 Neighbor Sampling (NS) . 24
2.3.2 Subgraph Sampling . 25
2.3.3 Other Sampling Schemes . 26

2.4 Approximate GPM Systems . 28

3 Understanding Sampling Tradeoffs 29
3.1 Termination Condition and Confidence . 29
3.2 Characterizing Neighbor Sampling . 30
3.3 Coarse-grain vs. Fine-grain Sampling . 32

4 Proposed Mechanisms and Optimizations 35
4.1 Online Convergence Detection . 35
4.2 Eager Verify for Neighbor Sampling . 37
4.3 Cost Model for Neighbor Sampling . 40
4.4 Cost Model for Graph Sparsification . 41

7

5 System Design and Implementation 43
5.1 System Overview and Interface . 43
5.2 Tradeoff in the GS Engine . 44
5.3 Fast Profiling for Cost Models . 45
5.4 Parallel Implementation Details . 46

6 Evaluation 47
6.1 Sampling Performance vs. State-of-the-Art 48
6.2 Effectiveness of Convergence Detection . 51
6.3 Prediction Accuracy of Cost Models . 54
6.4 System Efficiency . 55

7 Future Work 57
7.1 Expanded Sampling Schemes . 57
7.2 Distribution and GPU Acceleration . 58

8 Conclusion 59

A Proofs 61
A.1 Proof for Online Convergence . 61
A.2 Lower Bound for Graph Sparsification . 62
A.3 Proof for Unbiasedness of NS-Prune . 63

B Artifact 65

References 67

8

List of Figures

2.1 graph pattern mining example [8]. The pattern P is a triangle, and 3 triangles
are found in the data graph G. 19

2.2 3-vertex (left) and 4-vertex (right) motifs [12]. 20
2.3 A search tree using vertex extension [8]. Vertex colors (not vertex labels)

show the matching between data vertices and pattern vertices. The matching
order is {u1 → u2 → u3 → u4}. The symmetry order is {va > vb, vc >

vd}. Subgraphs in grey are ruled out by symmetry breaking. × shows the
unnecessary extensions that are pruned by the matching order. ✓ shows the
matched subgraph. 21

2.4 Generating symmetry order for diamond [21]. 23

3.1 Three different runs (three curves) of Arya’s ELP prediction given the LiveJ
graph and triangle pattern. With an error bound of 10%, the curves give
dramatically different prediction on the number of samples Ns: 5,260, 26,510
and 121,210. This leads to a 25× performance difference in the sampling
execution phase. 29

3.2 Sample hits and misses in Arya, on Twitter40 (top) and Friendster

(bottom) graphs. The pattern is 4-clique for both. In total 108 samples
are drawn in both cases. Each green point is a hit sample, while each red
point is a miss sample. For Twitter40, there are 7,033 hits with a hit rate
of 7× 10−5. For Friendster, there are only 5 hits with a 5× 10−8 hit rate
(i.e. needle in the hay). 31

3.3 Execution time variance of Neighbor Sampling (NS) and Graph Sparsification
(GS), under the same error bounds. 32

4.1 The normal distribution of the means of sampled counts (i.e. our predicted
counts) using neighbor sampling (NS). We ran NS to collect 106 samples on
LiveJ, 4-clique. We obtained a predicted count by taking the mean of a
random subset of 100 of these underlying samples. We simulated 1000 of these
predicted counts. Although the underlying distribution of the sampled counts
(green bars) is not a normal distribution, their means (purple bars), which are
our predicted counts, do follow a normal distribution (dashed red line). . . . 37

9

4.2 Comparing the hit rate of NS-prune with NS-base, with the 4-clique pattern
on various graphs. [71] . 40

4.3 The execution time for 6clique-Friendster using Color Sparsification
under different numbers of colors. Each point is one run. Red region is the
stabilization window. 41

5.1 ScaleGPM system overview. The three red boxes are our proposed novel
techniques: online convergence detection, early pruning and hybrid sampling.
NS: neighbor sampling. GS: graph sparsification. The system execution flow
is ① fast profiler estimates input parameters (e.g., #colors, #samples), ②

cost models predict performance and select from NS and GS sampling schemes,
and ③ the selected (NS or GS) engine is invoked to conduct sampling. . . . 44

6.1 Comparing ScaleGPM-NS’s estimated errors (black curves) with actual errors
(red and blue curves). We do two runs of 4-clique counting on two graphs
Fr and Tw. [71] . 52

6.2 Trends in error and conversion with NS-Online. 53
6.3 The reduction on the number of samples. 53
6.4 Trends in predicted error with NS-Online. 54
6.5 The quality of performance prediction for ScaleGPM’s GS Engine. The red

lines are our predictions, while blue dots are actual time. 55
6.6 The quality of performance prediction for ScaleGPM’s NS Engine. The red

lines are our predictions, while blue dots are actual time. 55
6.7 End-to-end time breakdown of ScaleGPM. 55
6.8 ScaleGPM speedup scaling over single-thread. 56

10

List of Tables

6.1 Data graphs (symmetric, no loops or duplicate edges). Maximum degrees are smaller
when orientation is applied for cliques. 48

6.2 k-clique performance (10% error). TO: timed out. Arya uses ELP. ×: ELP does not
converge. Fastest time in bold. 48

6.3 Non-clique pattern performance (10% error). TO: timed out. ×: ELP does not
converge. * GS is selected by our hybrid method. 49

6.4 Motif counting running time (sec) with 10% error. TO: timed out. 50
6.5 Running time (sec) on huge graphs. TO: timed out. ×: ELP does not converge. *

the true count is unknown, so accuracy is not verified. 50
6.6 Comparing running time of ScaleGPM-NS and ScaleGPM-GS when ScaleGPM-

HY selects GS (using the cost models). 51
6.7 Running time (sec) when adjusting Error Bounds from 10%-1%. ScaleGPM uses

NS-online mode. 51

11

12

List of Algorithms

1 Exact 4-cycle counting in GraphZero [14] 23
2 Neighbor Sampling . 25
3 Edge Sparsification . 25
4 NS-online convergence detection . 38
5 NS-base for 4-cycle . 38
6 NS-prune for 4-cycle . 39

13

14

Chapter 1

Introduction

Graph Pattern Mining (GPM) [1]–[8], which searches for instances of small patterns (e.g.,

triangles) in a data graph, is a key building block in graph-based data mining. Despite

its wide adoption in real-world applications, GPM is hard to scale to large problem size

as it is computationally quite expensive [8]. Fortunately, many real-world use cases do not

require exact GPM solutions. For instance, to characterize network structures in biochemistry,

ecology and engineering [9], we need only to estimate the pattern (a.k.a motif) frequency

distribution, instead of exactly counting motifs. Therefore we only need Approximate GPM

(A-GPM), which trades accuracy for speed, as long as some error bound is met in a given

application context.

There have been A-GPM systems, e.g., ASAP [10] and Arya [11], that are built to simplify

programming and improve usability. The system responsibility is two fold. First, they provide

generalized sampling techniques for arbitrary patterns and programming APIs to support

a wide variety of use cases. Second, they provide automated mechanisms to determine key

sampling parameters, e.g., how many samples required to draw for a given error bound.

However, existing A-GPM systems have two major limitations that prevent them from

being adopted in practice. First, the automated termination mechanism to determine when

it is confident enough to terminate sampling, does not have strong theoretical backup on

15

confidence, and thus is significantly unstable and slow in practice (see Section 3.1 for detail).

In existing systems, sampling is terminated when the predicted number of samples Ns have

been drawn. They predict Ns based on an offline error-latency profiling (ELP) procedure

before launching the sampling. However, the ELP prediction of Ns is dependent on the true

count, which is supposed to be estimated on the Ns samples, creating a circular dependency.

Therefore, the ELP cannot theoretically guarantee confidence in bounding the error. Also,

the ELP returns unstable predictions, i.e., huge variances or even failures in predicting Ns,

which leads to poor performance.

The second limitation is the poor performance when dealing with the extremely sparse,

a.k.a, needle-in-the-hay cases, where only a small number of matches of the pattern exist in a

big graph (see Fig. 3.2). In this case, neighbor sampling (NS), the sampling scheme used in

ASAP and Arya, fails to hit a match in most of the samples, leading to a very low sampling

hit rate, e.g., 0.0000017%. This results in slow convergence as a huge number of samples are

required to meet the error bound. In some extreme cases, we observe that Arya can be even

slower than exact GPM solutions.

To address the unstable termination problem, we propose a novel on-the-fly convergence

detection method for NS. Instead of offline predicting the termination condition before

execution, our online method dynamically collects statistics and predicts errors during the

sampling execution, until convergence. The convergence is detected when the predicted error

is below the user specified error bound. We prove formally in Theorem 1 that the probability

of the true error being smaller than our predicted error is 1− δ, for a given confidence 1− δ.

This provides us theoretical guarantee in confidence, which prior systems lack. Meanwhile,

our detected termination points are stable across different runs while the ELP method in

prior systems is highly unstable. Therefore, our online method can significantly accelerate the

execution, because it needs much fewer samples than prior systems, while causing negligible

online overhead as statistics can be trivially collected.

As for the low hit rate problem in NS, we find that the root cause is the delayed check on

16

pattern closure in prior systems, which we call lazy-verify. We then introduce eager-verify

that applying pruning at its earliest possible point to avoid unpromising candidates and thus

improve hit rates. We prove theoretically that eager-verify is unbiased, and show that it

drastically improves the sampling hit rate, which in turn significantly accelerate convergence.

Furthermore, for extremely sparse cases where the fine-grained NS sampling scheme can not

handle, we propose a hybrid sampling method by adaptively selecting the better sampling

scheme, between NS and a coarse-grained scheme, graph sparsification (GS), for various

graphs and patterns. For scheme selection, we build a cost model for each sampling scheme

to estimate the execution time. With our models, hybrid sampling manages to always select

the cheaper one from NS and GS for a wide variety of test cases.

We then build ScaleGPM, an accurate and fast A-GPM system that incorporates

our proposed mechanisms: online convergence detection, eager-verify and hybrid sampling.

ScaleGPM efficiently leverages parallel hardware and provides flexible modes to meet

various accuracy requirements with confidence. Our experiments on a multicore CPU show

that, with orders-of-magnitude reduction in required samples and improvement in hit rates,

ScaleGPM achieves an average of 565× (up to 610, 169×) speedup over the state-of-the-art

A-GPM system, Arya. The hybrid method further improves performance by 61× on extremely

hard (i.e. sparse) cases. Compared to the state-of-the-art exact GPM system, GraphZero,

ScaleGPM is also four orders of magnitude faster. Particularly, ScaleGPM handles

billion-scale graphs in seconds where previous frameworks either run out of memory or fail to

complete in hours. This paper makes the following contributions:

• We conduct analysis and empirical study on sampling schemes, and identify the two

major limitations and their root causes in existing A-GPM systems.

• We propose a novel on-the-fly convergence detection method for the NS sampling scheme,

which is the first to provide theoretical guarantee on confidence.

• We introduce the eager-verify mechanism to improve hit rate of the NS scheme and

17

thus achieve faster convergence speed.

• We propose hybrid sampling to further improve performance, by adaptively selecting a

better scheme based on cost models.

• We build ScaleGPM that incorporates the above novel mechanisms, and evaluation

shows that it significantly outperforms the state-of-the-art system, and efficiently

handles huge graphs.

18

Chapter 2

Background

2.1 Graph Pattern Mining (GPM)

Graph Pattern Mining (GPM) finds subgraphs that match given pattern(s) P in a given data

graph G. There exist explicit GPM tasks like subgraph counting (SC) and motif counting

(MC), and implicit tasks like frequent subgraph mining (FSM) [12]. GPM has numerous

applications in AI and big-data [8], including bioinformatics, chemical engineering, fraud

detection, social network analysis, recommender systems, etc.

3 4

5 6

1

3

21

5 6

3 3 4

6

Pattern PData Graph G Matched subgraphs
2

Figure 2.1: graph pattern mining example [8]. The pattern P is a triangle, and 3 triangles are found
in the data graph G.

We follow [8] to introduce the Graph Pattern Mining problem. Let G (V, E) be an

undirected graph with V as the vertex and E as the edge set. Given a vertex v ∈ V, the

neighbor set of v is N (v), the degree dv of v is |N (v)| and ∆ is the maximum degree in G.

A graph G′(W,F) is said to be a subgraph of G if W ⊆ V and F ⊆ E . G′ is a vertex-induced

subgraph of G if F contains all the edges in E whose endpoints are in W . G′ is an edge-induced

19

subgraph of G if W contains all the vertices in V which are the endpoints of edges in F .

wedge triangle 3-star 4-path 4-cliquetailed
triangle

4-cycle diamond

3 motifs 4 motifs

Figure 2.2: 3-vertex (left) and 4-vertex (right) motifs [12].

Definition of GPM. Given an undirected graph G and a set of patterns Sp={P1, P2, ...}

by the user, GPM finds vertex-induced or edge-induced subgraphs in G that are isomorphic

to any P in Sp. If the cardinality of Sp is 1, we call it a single-pattern problem. Otherwise, it

is a multi-pattern problem.

A pattern P is a small graph that can be defined explicitly or implicitly. An explicit

definition specifies the vertices and edges of P, whereas an implicit definition specifies the

desired properties of P. For explicit-pattern problems, the solver finds matches of P in Sp.

For implicit-pattern problems, Sp is not known in advance. Therefore, the solver must find

the patterns as well as their matches during the search.

To avoid confusion, we call a vertex in the pattern P as a pattern vertex and denote it as

ui, and a vertex in the data graph G as a data vertex and denote it as vi. Below are typical

GPM problems from the literature [1], [5], [8], [12]:

• k-clique counting (k-CC): It counts the number of k-cliques in G (k ≥ 3). A k-clique is

a k-vertex graph whose every pair of vertices are connected by an edge. A triangle is a

3-clique.

• Subgraph counting (SC). It counts the number of edge-induced subgraphs of G that are

isomorphic to a pattern P .

• k-motif counting (k-MC): It counts the number of occurrences of all possible k-vertex

patterns. Each pattern is called a motif [9], [13]. Fig. 2.2 shows all 3-motifs and 4-motifs.

20

This is also an example of a multi-pattern problem because we have to find all the

subgraphs that are isomorphic to any pattern in a given set of patterns.

• k-frequent subgraph mining (k-FSM): Given k and a threshold σmin, this problem

considers all patterns with fewer than k edges and lists a pattern P if the support σ

of P is greater than σmin. This is called a frequent pattern. If k is not specified, it is

set to ∞, meaning that it is necessary to consider all possible values of k. In k-FSM,

vertices in G have application-specific labels.

Our work focuses on CC, SC and MC. For k-CC, vertex-induced and edge-induced

subgraphs are the same. SC and FSM find edge-induced subgraphs, while k-MC looks for

vertex-induced subgraphs. All problems seek to find explicit pattern(s) except FSM which

finds implicit patterns. k-MC and FSM are multi-pattern problems, while the others are

single-pattern problems.

✘✓

1 2 3 4

1 2 1 3 2 1 2 3 3 1 3 2 3 4

2 1

3

2 1

4

3 1

2

3 2

4 5

3 2

4 1

1 2

3 4

data graph G

5

5

3 1

4

2 4

3 2

1

3 2

4

... ...

2 1

3 4

✘ ✘

Level 0

Level 1

Level 2

Level 3

Level 4
3 1

2 4

3 2

1 4

u1

u2u3
pattern P

u4

Maching u1

Maching u2

Maching u3

Maching u4

Figure 2.3: A search tree using vertex extension [8]. Vertex colors (not vertex labels) show the
matching between data vertices and pattern vertices. The matching order is {u1 → u2 → u3 → u4}.
The symmetry order is {va > vb, vc > vd}. Subgraphs in grey are ruled out by symmetry breaking.
× shows the unnecessary extensions that are pruned by the matching order. ✓ shows the matched
subgraph.

21

Exact GPM is solved by enumerating subgraphs in the data graph and searching for

matches. The search space can be defined as a subgraph tree: each node in the tree is a

subgraph of the data graph G. A subgraph H in level l of the tree have l vertices. The root

(level 0) is an empty subgraph. A parent node H at level i can be extended to a child node

H ′, by adding a vertex/edge in H’s neighborhood in G, i.e., H ′ = H + {v}, v ∈ N (H). Each

leaf of the tree is a candidate of match, which is then compared with the pattern P , to test

if it is a match. Pruning schemes, e.g., matching order [3], [4], [8], symmetry breaking [7],

[12], [14] and decomposition [15], [16], are applied to reduce the search space (i.e., prune

the subgraph tree). Nevertheless, this search is extremely expensive, as the computational

complexity increases exponentially in the size of the pattern.

The efficiency of a GPM algorithm depends heavily on how much we can prue the search

tree. State-of-the-art GPM frameworks [3], [4] use pattern-aware search plans that leverage

the properties of the pattern to prune the tree. A pattern-aware search plan consists of a

matching order and symmetry order. We use the definitions from [8] below to introduce them.

Matching order is a total order that defines how the data vertices are matched to

pattern vertices. This order is used to eliminate irrelevant subgraphs on-the-fly. As shown

in Fig. 2.3, to find the diamond pattern, we use a matching order among pattern vertices:

{u1 → u2 → u3 → u4}, meaning that each vertex v1 added at level 1 is matched to u1; each

vertex v2 added at level 2 are matched to u2, and so on. To search for matching candidates,

there are connectivity constraints for the data vertices. For example, in diamond, since u3

is connected to both u1 and u2, candidate vertices of v3 must be found in the intersection of

v1 and v2’s neighborhoods, i.e., v3 ∈ N (v1) ∩ N (v2). The same constraint should also be

applied to v4. For a given pattern P , there exist multiple valid matching orders. To choose

the best performing matching order, prior works [3], [4], [6], [14], [17]–[20] have proposed

various cost models to predict the performance of matching orders, and choose the one with

the highest expected performance.

Symmetry order is a partial order enforced among data vertices for symmetry breaking,

22

v1 v2
v1

v3 v2

v1

v3 v2

v4u1

u3 u2

u4

(a) Matching Order

(b) Step 1: add
partial order

between v1 and v2 (c) Step 2: no op (d) Step 3: add
partial order

between v3 and v4
Figure 2.4: Generating symmetry order for diamond [21].

which removes redundant subgraph enumerations (a.k.a automorphism [12]), and thus guar-

antees that any match of P in G is found only once. For example, for diamond, we enforce

that vertices added at level 1 must have larger ids than vertices added at level 2, i.e., v1 > v2.

Thus, in level 2 of the tree in Fig. 2.3, the subgraph {2, 1} is selected to be extended further,

but subgraph {1, 2} is pruned. Similarly we add a constraint that v3 > v4. So the symmetry

order for diamond is {v1 > v2, v3 > v4}.

Algorithm 1 shows the pseudo code for exact 4-cycle counting, which uses matching

order and symmetry order.

Algorithm 1 Exact 4-cycle counting in GraphZero [14]
1: for each vertex v1 ∈ V do ▷ match v1 to u1

2: for each vertex v2 ∈ N (v1) do ▷ match v2 to u2

3: if v2 ≥ v1 then break; ▷ symmetry breaking
4: for each vertex v3 ∈ N (v1) do ▷ match v3 to u3

5: if v3 ≥ v2 then break; ▷ symmetry breaking
6: for each vertex v4 ∈ N (v1) ∩ N (v2) do ▷ match v4 to u4

7: if v4 ≥ v0 then break; ▷ symmetry breaking
8: else count ++; ▷ do the counting

2.2 Approximate Graph Pattern Mining

Many real-world use cases do not require exact GPM solutions. For example, when we use

motif (a.k.a graphlet) distribution as a “signature” (e.g., graph similarity) for social network

analysis or fraud detection, it is quite sufficient to just provide approximate counts of the

motifs. Also in FSM the users only want to find those frequent patterns whose occurrences

are above some user specified threshold, or simply top-K most frequent patterns, where

estimated counts would be sufficient to give high quality solutions. Therefore, for all these

23

use cases, we can perform Approximate GPM (A-GPM) instead to substantially reduce the

total amount of computation.

In this paper we focus on sampling based A-GPM approaches. Generally, such an

approach first samples a portion of the graph, searches for match in the sample, and makes

the estimation by scaling the sampled result. This process can be repeated multiple times to

improve the confidence of estimation. Formally, given G and P, an A-GPM solver aims to

use a randomized (ϵ, δ)-approximation scheme, which estimates the number of (non-induced

or induced) occurrences of P in G within a factor of (1± ϵ), with probability at least 1− δ,

where ϵ and δ are user defined parameters. There are a large volume of studies on A-GPM

applications, such as triangle counting [22]–[30], clique/cycle counting [29], [31], [32], motif

counting [33]–[43], butterfly counting [44], frequent subgraph mining [45]–[49]. They all

use sampling to reduce computation, though their sampling schemes are customized for the

specific problems. These custom implementations do not offer system support, like automated

termination, generic APIs, or choices in speed and error trade-off.

2.3 Sampling Schemes for GPM Problems

2.3.1 Neighbor Sampling (NS)

Algorithm 2 shows how neighbor sampling works. For each sample, it starts with sampling

one edge from G uniformly at random (Line 3), and then repetitively samples one more edge

from the neighborhood of the currently sampled edges (Line 5), until the size (number of

sampled vertices) is the same as the pattern. It then does closure check (Line 7), i.e., check

in G the existence of the closing edges, which form a match of the pattern together with

existing edges. We can draw multiple samples (Line 1) in parallel, and average them for

improved accuracy (Line 8).

For a given match M̂ where ê1 is the first edge, Pr[M̂] = 1

m·
∏k−1

2 cj
, where cj = |N (Hj−1)|,

Hj−1 is the Ej−1 induced subgraph, and N (H) is the neighbor set of H. So the count is scaled

24

Algorithm 2 Neighbor Sampling
1: for each sampler i ∈ [1, Ns] do
2: Ci ← 0, α← m
3: Sample an edge e1 from E , let E1 ← {e1}
4: for j in [2, k − 1] do
5: Sample a neighboring edge ej from Ej−1’s neighborhood
6: Ej ← Ej−1

⋃
{ej}, α← α× cj ▷ cj is the neighborhood size

7: if closing edges for (Ek−1, P) exist in G then Ci ← α ▷ closure check
8: C ′ =

∑
Ci/Ns is the estimated count

by α = m ·
∏k−1

2 cj (Line 6). Apparently α varies in different samples, meaning matches

are not equally likely to be sampled. Thus α is maintained for each sample and used for

normalization.

NS has been widely used in A-GPM applications [26], [27], [40], [50] with customized

optimizations. In NS, each time an arbitrary neighbor is sampled from Hi’s neighborhood,

which may lead to a high failure rate in the closure check. Therefore, restrictions are added

to make the sampled subgraph more likely be a match. For example, if P is a cycle, we can

sample a path [34], i.e., restrict the next neighbor to be from the two endpoints’ neighborhood.

For an arbitrary pattern P, we can do neighbor sampling following P’s spanning tree [37].

Furthermore, automorphism check can be added to avoid redundant subgraphs [51]. More

generally, we can sample multiple neighbors each time, instead of a single neighbor [51].

Algorithm 3 Edge Sparsification
1: Randomly select a subset E′ of p×m edges from E, m = |E|, 0 < p ≤ 1
2: Generate an induced subgraph G′ = (V , E′)
3: C ′ += ExactCounting(G′, P) ▷ Exact counting on G′
4: C = C ′ × p−l is the estimated count in G ▷ l is # of edges in P

2.3.2 Subgraph Sampling

The idea of subgraph sampling is to sample a subset of vertices or edges from G with some

probability p, to form a subgraph G′, and then do exact search in G′, and finally scale the

count based on p. One popular way to sample a subgraph is to use the graph sparsification

(GS) technique [52]–[56], which sparsifies G by randomly removing some edges. Bernoulli

25

Edge Sparsification (BES) [25] is such an example, as shown in Algorithm 3. For each edge

in G, include it with probability p (Line 1) to get graph G′ (Line 2). For each match M of P

in G, the probability that M exists in G′ is pl, hence the expected count in G′ is C ′ = pl ×C.

BES is simple and easy to implement, and can be trivially parallelized.

Color Sparsification [23] (CS), another GS approach, sparsifies G by first randomly

assigning a color from {1, 2, · · · , c} to each vertex and then only preserving edges whose

two endpoints are in the same color. The probability of choosing an edge is p = 1/c, and the

probability of choosing a match is pl−1. Hence the expected count in G′ is C ′ = pl−1 × C.

Apparently, the probability of preserving a match of P is higher than that in BES. In other

words, it could meet the same error bound with more edges removed, thus less computation.

The downside is that different edges are not independent of each other any more, which

means potentially higher variance. Usually a single sampler is used for sparsification, though

more samplers can be used to improve confidence.

Another way to sample a subgraph is Egonet Sampling [44], [57], in which an element

(vertex or edge) of G is sampled and the egonet, i.e., the local neighborhood, of this element

is extracted as a subgraph. It often requires many samplers.

One advantage of subgraph sampling is that a state-of-the-art exact counting algorithm

can be applied on the sampled subgraph. But the cost is extra time and space to extract the

subgraph(s), and the time complexity is still exponential in the size of pattern k. Subgraph

sampling has only been used in A-GPM applications for specific patterns [23]–[25], [32], [44],

[57], [58].

2.3.3 Other Sampling Schemes

There exist many sampling methods other than neighbor sampling and graph sparsification.

We discuss some of the typical methods in the following. We do not compare with them in

Chapter 6 because they do not provide either generalization or automated termination (with

confidence). However, they can potentially be used to replace the GS engine in ScaleGPM.

26

We leave it as a future work.

Color Coding. It first colors each vertex in G using a color randomly chosen from

{1,2,. . . ,c} (c ≥ k), and then counts colorful matches, i.e., every vertex in the matched

subgraph has a unique color. The requirement of distinct colors allows for heavy pruning:

the number of colorful matches Z can be naturally determined by a dynamic programming

based counting routine [35]. Color-coding is originally for finding paths or cycles [59], [60],

and is then adapted for motif counting [42], [43], [61]. There also exist many parallel and

distributed implementations [35], [62]–[64]. In addition, the colorful matches can be further

sampled [37]–[39], instead of exactly counted, to reduce computation. Like GS, color-coding

is also a coarse-grain scheme, which can be included in ScaleGPM.

Loop Perforation. SampleMine [51] proposed to perforate the nested for loops in

GPM programs, with a certain probability pi for the i-th loop. The count is then scaled

based on the pi. SampleMine can be thought of as a generalization of the vanilla NS scheme,

as it collectively samples multiple candidates, instead of a single one, at a time. Although

it has larger sampling granularity than the vanilla NS, its granularity is still limited by the

egonet of a vertex or edge, similar to Egonet Sampling [57]. More importantly, SampleMine

does not provide a systematic way for sampling termination, which is instead hand-tuned by

executing the sampling procedure multiple times and manually observing convergence (i.e.

small variance).

Other Schemes and Approaches. Monte Carlo Markov Chain (MCMC) [28], [36],

[41], [65] defines a random walk over the set of subgraphs until it reaches stationarity. MCMC

has been used for motif counting. However, it has been shown that MCMC can be extremely

inefficient as the random walk may take a huge amount of steps to reach stationarity [37]–[39].

27

2.4 Approximate GPM Systems

A-GPM systems, such as ASAP [10] and Arya [11], have been proposed to simplify A-GPM

programming. These systems provide APIs to the users for them to easily compose various

A-GPM applications. As opposed to those case-by-case customized implementations, an

A-GPM system provides a generalized, sampling-based approximation method, for arbitrary

patterns. Moreover, instead of hand tuning the key sampling parameters, e.g., the number of

samples, in hand-implemented applications, these systems provide the Error-Latency Profile

(ELP) method to automatically choose the values of the sampling parameters for each specific

case, e.g., input data graph and pattern, to meet the user specified error bound.

Nevertheless, all the prior systems use fixed sampling schemes to make approximation.

For example, ASAP uses the NS scheme, and implements NS in the edge streaming fashion

[66]–[70] where edges are streamed in as a sequence, instead of loaded all at once, to save

memory space. Arya is also based on NS, but adds pattern decomposition on top of ASAP,

to reduce the amount of work in each sample for large, easy-to-decompose patterns. Since

both ASAP and Arya are based on NS, they both suffer the shortcomings of NS, which are

discussed in detail next.

28

Chapter 3

Understanding Sampling Tradeoffs

3.1 Termination Condition and Confidence

A major responsibility of an A-GPM system is to decide when the sampling can be terminated

with enough confidence to meet the error bound. Existing A-GPM systems use error-latency

profile (ELP), before the execution of the sampling procedure, to pre-determine the number

of samples Ns required. The execution is then terminated simply when Ns samples have

been drawn. However, we observe that the value of Ns that ELP predicts vary dramatically

across different runs of ELP. Fig. 3.1 shows the results of three runs of ELP. Each curve

represents the prediction of one ELP run. We get predictions of Ns as 5,260, 26,510 and

0 50000 100000 150000
Number of Samples

0

50

100

Er
ro

r (
%

)

5260 12121026510

Figure 3.1: Three different runs (three curves) of Arya’s ELP prediction given the LiveJ graph and
triangle pattern. With an error bound of 10%, the curves give dramatically different prediction
on the number of samples Ns: 5,260, 26,510 and 121,210. This leads to a 25× performance difference
in the sampling execution phase.

29

121,210, respectively. This huge prediction difference leads to a 25× performance difference

in the sampling execution phase.

More importantly, the ELP method for termination condition adds an indirection between

the error estimation and the confidence. Originally, the required number of samples Ns is

derived from the Chernoff bound in ASAP [10] or Chebyshev’s inequality in Arya [11]. For

example, given ϵ and δ, the lower bound in Arya is Ns ≥ K·m·ρ
C·ϵ2δ , where K is a constant,

m = |E|, ρ is a pattern specific constant, and C is the true count. The problem is, this bound

contains the true count C, which is the output that is supposed to be estimated. Therefore,

what ELP does is to essentially first estimate C without theoretical confidence-error (δ-ϵ)

guarantees, then feed it into the lower bound to get Ns. Ns is then used to do sampling and

estimate a more accurate C. Note that ELP estimates C by sampling in a sparsified graph

and iteratively updating the parameters and the estimates until convergence. Although the

bound inequation used to calculate Ns contains δ, estimating C by ELP has no involvement

of δ. It means the estimation of Ns loses connection to the confidence. The root cause is

the circular dependency between C and Ns, i.e., C is used to estimate Ns, and Ns is used to

estimate C, which is fundamentally unavoidable in the ELP based approach.

Due to the circular dependency, ELP provides only a heuristic rather than a strong

theoretical bound. Another limitation of ELP is its own convergence speed. We observe that

in some cases, ELP fails to converge within 10 hours (see details in Table 6.2).

3.2 Characterizing Neighbor Sampling

For the sampling based approximation approach, the estimation difficulty depends on the

density and distribution of the matches of P in the graph G. When there are plenty of

matches, defined as the dense case, it is easier to make estimation than the sparse case, where

there exist only a few matches. This is because it is more likely to draw a successful sample

(i.e., find a match) if there are more matches, and the confidence to meet an error bound

30

Figure 3.2: Sample hits and misses in Arya, on Twitter40 (top) and Friendster (bottom)
graphs. The pattern is 4-clique for both. In total 108 samples are drawn in both cases. Each
green point is a hit sample, while each red point is a miss sample. For Twitter40, there are 7,033
hits with a hit rate of 7× 10−5. For Friendster, there are only 5 hits with a 5× 10−8 hit rate
(i.e. needle in the hay).

depends on seeing enough number of successful samples. Note that the extremely sparse case

is known as finding the needle in the hay.

We call a sample that finds a match a hit, otherwise a miss. Fig. 3.2 shows how the hits

and misses are distributed in 1× 108 samples drawn by Arya [11], for the 4-clique pattern

on graphs Twitter (top) and Friendster (bottom). The two graphs have similar sizes

but quite different degree distribution (see maximum degree in Table 6.1), and thus different

hit rates. There are 7,033 hits in Twitter (7× 10−5 hit rate), while only 5 hits appeared

in Friendster (5 × 10−8 hit rate) which is a typical needle-in-the-hay case. Since the

execution time is roughly linear in Ns, this difference in hit rates would result in a ∼700×

execution time difference in practice, assuming the same average time per sample.

It is known that NS works poorly in the sparse case, for example, when P is dense and G

is sparse, and particularly in the case of needle in the hay [11]. One can expect that in this

case, the closure check fails frequently, which means a large number of samples Ns is required

to meet a certain error bound. Moreover, dense patterns are particularly problematic for

31

R
un

ni
ng

 ti
m

e
(s

ec
)

0

25

50

75

100

125

GS NS
(a) house on fr with 0.1% error

0

0.5

1

1.5

2

2.5

GS NS
(b) 5path on livej with 2% error

Figure 3.3: Execution time variance of Neighbor Sampling (NS) and Graph Sparsification (GS),
under the same error bounds.

Arya [11] which decomposes the pattern into sub-patterns, as a dense pattern would be split

with many edgecuts, and checking closure is quite expensive. Arya thus suffers significant

slowdown in those cases, and in some extreme cases it is even slower than the exact solution.

3.3 Coarse-grain vs. Fine-grain Sampling

A key difference between NS and GS is the granularity of each sample. Since each sample

contains at most one match, we classify NS to be a fine-grain sampling scheme, as opposite

to coarse-grain sampling schemes, each of whose samples can contain multiple matches. For

NS, each sample is in the size of the pattern size k, and each sample task is lightweight. But

we need a lot of samples, i.e., Ns ≫ 1, to get a meaningful estimation, since each sample

contains at most one match. In contrast, subgraph sampling schemes, including GS, are

coarse grained. In GS, a sample is a sparsified graph, which could potentially contain many

matches in it. As the sample granularity in GS is much larger, it performs better than NS

when given a sparse case, as it is more likely to hit matches in a big region of the graph.

However, this advantage comes at the cost of several drawbacks. First, each sample in GS

is a much larger computational task, and the complexity is exponential in the pattern size.

Second, as multiple matches appear in the same sample, GS may yield worse variance than

32

NS in the worst case.

To summarize, given the distinct characteristics in the input data (graph and pattern),

none of these sampling schemes can always be the best solution. Fig. 3.3 compares the

running time of NS with GS, when given the same error bound. On the left we mine the

house pattern on the Friendster graph with an error bound of 0.1%, where GS is 6.7×

faster than NS. On the right we mine the 5-path pattern in the Livej graph with an

error bound of 2%, where GS is 10× slower than NS.

33

34

Chapter 4

Proposed Mechanisms and Optimizations

To achieve stable termination with confidence, we propose a novel on-the-fly convergence

detection mechanism in Section 4.1 that is fundamentally different from the existing ELP

approach. To improve hit rate in NS, we introduce eager-verify and prove it unbiased in

Section 4.2. To further improve performance in handling needle-in-the-hay cases, we propose

a hybrid method that adaptively selects the best-performing sampling scheme. For scheme

selection, we establish cost models (a.k.a. performance models) for the NS (Section 4.3) and

GS (Section 4.4) scheme to estimate their execution time, and select the faster one. We only

focus on the two schemes, but this hybrid method can be extended to include other schemes

in the future.

4.1 Online Convergence Detection

Due to the circular dependency issue (Section 3.1), the ELP method breaks the theoretical

guarantee on confidence. Also, it is fundamentally hard for ELP to establish confidence

because it is done before execution, and there is little information we can leverage. Therefore,

we propose an on-the-fly approach to establish confidence. This is based on our observation in

NS sampling procedures, that the estimation errors tend to converge over time (see Fig. 6.2b).

Instead of predetermining the required number of samples offline (i.e. before execution), we

35

detect online if the estimates have converged, and then terminate the execution subsequently.

However, convergence detection is not trivial. A straightforward method is to check if the

difference of the error curve is small enough, i.e., within a fixed threshold. But this does not

work because the termination point depends on the user defined confidence and error bound.

The key challenge is then how to decide termination to meet error bound with confidence.

To address it, we propose to predict the error online periodically with confidence, and

terminate when the predicted error is below the error bound. To make predictions with

confidence, we collect online statistics during execution, which allows us to formally derive

predicted errors based on the probability theory. Our key insight is that confidence can be

established by the normal distribution of sampled means (formally proved in Theorem 1), as

shown in Fig. 4.1. Specifically, we keep track of the mean µ of the estimated counts and the

standard deviation σ of the means, and then use µ, σ and δ to compute a relative error ϵ̂

using Eq. (4.1), where Φ−1 is inverse of the cumulative distribution function of the standard

normal. Note that µ is also used as the estimate of the true count C.

ϵ̂ =
Φ−1(1− δ

2
)σ

µ
(4.1)

When we detect that ϵ̂ is below the user specified error bound ϵ, according to Theorem 1,

we can safely terminate the sampling, and conclude that µ is an estimate of C, under an

error bound ϵ with a confidence of 1− δ. We refer our approach as NS-online.

Theorem 1. Given δ, n samples X1, . . . , Xn drawn by using the NS sampling scheme, and

the mean of sampled counts µ = 1
n

∑n
i=1Xi, let C be the true count and ϵ̂ be the estimated

error computed by Eq. (4.1). As n→∞, the probability of the true relative error being smaller

than the estimated relative error is IP
(

|µ−C|
C

< ϵ̂
)
= 1− δ.

The proof of the above theorem is provided by Zixiang Zhou in our paper [71] (see

Appendix A.1).

Algorithm 4 shows the NS-online algorithm. Each time we draw a sample (Line 4), the

36

0.0 0.2 0.4 0.6 0.8 1.0
Count 1e16

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Fr
eq

ue
nc

y

1e 15
Distribution of Individual Samples
Distribution of Predicted Counts

Figure 4.1: The normal distribution of the means of sampled counts (i.e. our predicted counts) using
neighbor sampling (NS). We ran NS to collect 106 samples on LiveJ, 4-clique. We obtained a
predicted count by taking the mean of a random subset of 100 of these underlying samples. We
simulated 1000 of these predicted counts. Although the underlying distribution of the sampled
counts (green bars) is not a normal distribution, their means (purple bars), which are our predicted
counts, do follow a normal distribution (dashed red line).

only information we need to keep track of is the accumulated sum
∑n

i=1 Xi (Line 5) and the

accumulated squared sum
∑n

i=1X
2
i (Line 6). At the end of each interval (i.e. W samples in

Line 3), we compute the standard deviation σ (Line 10) and predict the error ϵ̂ (Line 11). If

ϵ̂ is below the user’s error bound (Line 2), sampling is then terminated and it reports the

estimated count µ.

4.2 Eager Verify for Neighbor Sampling

A major drawback of NS in prior systems is the low hit rate in dealing with sparse cases. By

looking at individual samples, we find that most of these samples fail to pass the closure

check (Line 7 in Algorithm 2). Therefore we looked deeper into the failures (i.e. missed

samples). Our key observation is that many of the failures have been unpromising candidates

even at the early stage of the sampling. For example, if we search for 6-cliques, and the

37

Algorithm 4 NS-online convergence detection
1: sum ← 0, squaredSum ← 0, n = 0, W ← Nmin

2: while ϵ̂ > ϵ do
3: for each sampler i ∈ [1, W] do ▷ W is the window size
4: Xi ← DrawASample() ▷ Xi is the i-th sampled count
5: sum ← sum +Xi ▷

∑n
i=1 Xi

6: squaredSum ← squaredSum +Xi ∗Xi ▷
∑n

i=1 X
2
i

7: n← n+ 1

8: µ← sum / n ▷ mean of sampled counts
9: var ← squaredSum / n− µ ∗ µ ▷ variance of sampled counts

10: σ ← sqrt(var/n) ▷ standard deviation
11: ϵ̂← Φ−1(1− δ

2) ∗ σ/µ ▷ predicted error

first four vertices in the sample does not form a 4-clique, this sample is impossible to

form a 6-clique. Therefore, in general, the low hit rate in ASAP and Arya is because the

closure check is delayed to the very last step, which we refer to as lazy-verify. Based on this

understanding, we propose a eager-verify approach to improve NS performance. The key idea

is to sample from promising candidates by verifying the pattern’s connectivity constraints

as early as possible. This strategy has two advantages. First, since unpromising candidates

are pruned at early stage, and we only sample from promising candidates, each sample is

more likely to succeed, i.e., hit a match. Second, if a sample starts from an edge whose

neighborhood contains no or very few matches (unlikely to hit), eager-verify can minimize

the work as this sample would fail at its early stage, while lazy-verify will have to proceed

until the end and fail.

Algorithm 5 NS-base for 4-cycle
1: for each sampler i ∈ [1, Ns] do
2: e(v0, v1)← sample(E) , α← 0 ▷ sample an edge (v0, v1)
3: A← N(v0) ∪N(v1) - {v0, v1} ▷ set union and difference
4: if |A| = 0 then break
5: v2 ← sample(A) ▷ sample node v2 from set A
6: B ← N(v0) ∪N(v2) - {v0, v1, v2} ▷ set union and difference
7: if |B| = 0 then break
8: v3 ← sample(B) ▷ sample node v3 from set B
9: if edge (v0, v3) exist in G then ▷ check closure

10: α← m ∗ |A| ∗ |B|/16 ▷ scaling factor

The challenge in implementing eager-verify is how to avoid unpromising candidates but

still retain unbiasedness in sampling. Based on the subgraph tree abstraction (Section 2.2),

38

Algorithm 6 NS-prune for 4-cycle
1: for each sampler i ∈ [1, Ns] do
2: e(v0, v1)← sample(E) , α← 0 ▷ sample an edge (v0, v1)
3: A← N(v1) - {v0, v1}, bound by v0 ▷ set difference
4: if |A| = 0 then break
5: v2 ← sample(A) ▷ sample node v2 from set A
6: B ← N(v0) & N(v2), bound by v1 ▷ set intersection
7: if |B| = 0 then break
8: v3 ← sample(B) ▷ sample node v3 from set B
9: Xi ← m ∗ |A| ∗ |B| ▷ sampled count

our key finding is that each leaf in the tree corresponds to a unique path. As long as the

pruning does not change this one-to-one mapping, we can prove that the sampler is unbiased.

We find that two typical pruning techniques, symmetry breaking [14] and matching order [8],

meet this requirement. There exist other pruning schemes in the literature [16], [72], which

could be applied as well, but we leave this as a future work. We refer NS used in ASAP as

NS-base, and NS with the two pruning techniques as NS-prune. We first give an example

to show how pruning avoids unpromising candidates, and then prove NS-prune an unbiased

estimator in Appendix A.3. Algorithm 5 and Algorithm 6 show the pseudo code for finding

4-cycle using NS =base and NS-prune respectively. In Line 6 we compute a set intersection

N(v0) & N(v2) which is the candidate set of the third vertex v3, because v3 is a common

neighbor of v0 and v2 in the 4-cycle pattern. In contrast, in NS-base, because both v0’s

and v2’s neighbors are possible candidates, v3 is sampled from set union N(v0) ∪N(v2), and

in the final step it checks closure between v3 and v2 if v3 is from v0’s neighborhood, otherwise

it checks closure between v3 with v0. If the closure check fails, it is a miss. However, in

NS-prune the closure check is unnecessary because v3 is guaranteed to be connected to v0

and v2, and thus much more likely to hit a match.

The proof that NS-prune is an unbiased estimator is provided by Zixiang Zhou in our

paper [71] (see Appendix A.3).

Note that the scaling factor in NS-prune tends to be much smaller than that in NS-base,

because it involves the sizes of intersection instead of union sets. This results in lower

variances and more stable and faster convergence, as we will show in Chapter 6.

39

T e x t

H

it
 R

at
e(

%
)

Figure 4.2: Comparing the hit rate of NS-prune with NS-base, with the 4-clique pattern on various
graphs. [71]

4.3 Cost Model for Neighbor Sampling

In NS, the total work is
∑Ns

i=1Wi, where Wi is the work of the i-th sample si. Given that

Ns ≫ 1 in the NS scheme, it is reasonable to assume that the NS execution time is linear in the

number of samples Ns. So we can predict the execution time as ttot = tavg ∗Ns = c∗Wavg ∗Ns,

where Wavg is the average work per sample, and c is a hardware specific constant factor

to translate work to time. We estimate Ns by profiling Section 5.3. As this is only used

for performance prediction, it does not affect error and confidence. To estimate c, a simple

profiler can be run on each hardware machine to determine this constant scale factor. This

profiling overhead is negligible, as it can be determined by running only once per machine or

once per graph on only a small number of points.

The challenge, however, is to estimate Wavg for the given G and P, as Wi varies for

different samples. In fact Wi depends on the local neighborhood structure of si. More

specifically, the task of each sample is a sequence of set operations and sample operations,

for example, see Algorithm 6. Given a specific pattern P , this sequence of operations is fixed,

but each set operation in the sequence may take different (worse-case) time depending on the

cardinality of the input sets, which overall depends on the structure of G. So it is difficult

to get an accurate estimation of Wavg, i.e., the slope the linear relationship, without really

40

0 20 40 60 80 100
Number of Colors

0

200

400

Ti
m

e

Figure 4.3: The execution time for 6clique-Friendster using Color Sparsification under different
numbers of colors. Each point is one run. Red region is the stabilization window.

running NS.

At each break point (e.g., Line 4 in Algorithm 5), we must consider the possibility of

an early-exit from the sampling procedure. Each break point is triggered based on the

probability of being empty based on the candidate set size. However, it can be hard to predict

this probability in practice, as certain graphs have many dense clustered areas, when sampled

in few breakpoints occur, whereas others frequently terminate early. To address this, we

model the performance as a performance cone (see example in Fig. 6.6) consisting of two

slopes instead of one, where the performance is upper bounded by none of the breakpoints

triggering (completing the full work of the sampling procedure) and lower bounded by the

first break point.

4.4 Cost Model for Graph Sparsification

GS running time contains two parts, one is the preprocessing time to generate the sparsified

graph G′, the other is the time spent on exact search in the sparsified graph G′.

Preprocessing involves looping over every edge in order to remove edges. Therefore, the

total work is |E| · (w1 + p× w2), where p is the probability that an edge is kept, w1 is the

work on every edge, w2 is the work on kept edges. In our implementation w1 is one read

operation, w2 is one write operation.

41

For exact search in G′, our estimation is again based on set operations. But instead

of a sequence of operations in NS, the work in GS consists of nested loops, each of which

corresponds to one vertex in the pattern and iterates over the candidates of that vertex.

The candidate vertex set is computed by set operations. If we describe a GPM algorithm

as a sequence of nested for loops M = (X1, . . . , Xn), which refine the candidate set to a

possible match. Each nested loop can be described as Xj = (oj, ij). Where oi is the number

of operations performed in the inner body of that loop to refine the candidate set. ij is the

number of iterations for the jth loop. ij = |Zi|, the size of the candidate set at the jth level.

oi is the work of the operations to generate the candidate set |Zi+1|. Then the total work can

be described as
∏ij

j oj =
∏|Zj |

j oj. To estimate ij and oj, we need to estimate the cardinality

of each candidate set Z.

If Z = A−B, i.e., set difference, |Z| is bounded by |A|, which can be simply estimated

as the average degree, |V |/|E|. If Z = A ∩ B, i.e., set intersection, |Z| is bounded by

min(|A|, |B|). To get a better bound, we can use the method in GraphPi [6] and estimate

|Z| as |V | · p1 · pn−1
2 , where p1 =

2·|E|
|V |2 , p2 = T ·|V |

2·|E|2 and T is the triangle count in G. Intuitively,

p1 is the probability of any pair of vertices being neighbors. p2 is the probability of any pair

of vertices in a neighborhood being directly connected to each other. To use this estimation

for GS, we need to make the following adjustments. Note that in a sparsified graph G′,

|V ′| = |V | and |E ′| = |E| × p, and we have T ′ = T × p2 as discussed in Section 2.3.2. Then if

Z = A−B, |Z| is estimated as |V |
|E|·p . If Z = A ∩B, |Z| is estimated as |V | · p1 · pn−1

2 , where

p1 =
2·|E|·p
|V |2 , p2 =

T ·|V |
2·|E|2·p4 .

42

Chapter 5

System Design and Implementation

We give an overview of the ScaleGPM system in Section 5.1, describe details of the GS engine

in Section 5.2 and our proposed profiling mechanism in Section 5.3, and other implementation

details in Section 5.4.

5.1 System Overview and Interface

Fig. 5.1 illustrates the major components in our system. ScaleGPM is composed of a

fast profiler, two cost models and two execution engines for NS and and GS respectively.

The cost models have been described in Section 4.3 and Section 4.4 respectively. The NS

engine is enhanced with our novel convergence detection mechanism (Section 4.1) and is

significantly improved by our proven unbiased optimizations (Section 4.2). Our GS engine

is the first generalized color sparsification for arbitrary patterns, as all prior GS-based work

are customized for specific patterns, e.g., triangle. To generalize the GS approach for an

arbitrary pattern P, we need to (1) generate a pattern specific exact search program, (2)

determine the scaling factor for P and (3) determine the values of its key parameter, i.e.,

the sparsify probability p or the number of colors c (c = 1
p
). For (1) we can leverage the

state-of-art compiler based approach [14]. For (2) we explain in Section 5.2. For (3) our fast

profiler in Section 5.3 determines it.

43

NS engine
Hybrid Sampling Method

GS engine
3

G = (V, E)

user defined ϵ,δ

Pattern

Cost
Model
NS

Cost
Model
GS

Fast
Profiler

1

2

2

Early Verify

Online Conv.
Detection

3

Figure 5.1: ScaleGPM system overview. The three red boxes are our proposed novel techniques:
online convergence detection, early pruning and hybrid sampling. NS: neighbor sampling. GS:
graph sparsification. The system execution flow is ① fast profiler estimates input parameters (e.g.,
#colors, #samples), ② cost models predict performance and select from NS and GS sampling
schemes, and ③ the selected (NS or GS) engine is invoked to conduct sampling.

To meet various accuracy requirements in applications, ScaleGPM provides two modes

for the user to choose, strict mode (default) and loose mode. The strict mode uses only the

NS engine with online convergence detection to guarantee high confidence. In this mode the

fast profiling and cost models are bypassed. The loose mode, however, employs our proposed

hybrid approach. It uses the fast profiler and cost models to determine if the GS or NS

engine is used. When comparing the predicted performance of NS and GS, ScaleGPM uses

a thresholding mechanism to check if the predicted performance of GS overlaps with the

performance cone of NS, i.e., it is either entirely above or entirely below the cone. If not,

ScaleGPM chooses the faster one and activates the corresponding engine. Otherwise, the

two schemes should perform similarly well, hence ScaleGPM chooses NS to guarantee high

confidence.

5.2 Tradeoff in the GS Engine

For simplicity, we discuss edge sparsification, while color sparsification is similar. The

estimated count is Ĉ = Y · p−l, where the random variable Y denotes the number of matches

in the sampled graph G′, which is sparsified from G with probability p. For each match M

44

in G, the probability that M exists in G′ is pl, hence the expected number of matches in G′

is E[Y] = plC, i.e., E[Y · p−l] = C, so we have E[Ĉ] = C. Although the edges are sampled

independently, the matches are not. Consider an edge e shared between two matches Mi and

Mj of P. When e gets removed during sparsification, necessarily both Mi and Mj will not

be counted. So the Chernoff bounds do not apply directly for GS. We can use Chebyshev’s

bounds instead. Var[Ĉ] = C · (p−l− 1) +Cov, where Cov =
∑k−1

z=2 tz · (p1−z − 1) and tz is the

number of pairs of matches that share z vertices. The variance depends on both the number

of matches C in G and the number of pairs of matches that share one or more edges.

Apparently, the key knob to tune accuracy is p. As we increase p, the variance decreases

and accuracy increases. Since GS speed is insensitive to the number of colors c = 1
p

within a

wide stabilization window (Fig. 4.3), we can pick a large p to achieve better accuracy. Note

that the variance increases exponentially in the pattern size k. This means larger patterns

are more difficult to estimate accurately, and so we may need a larger p, to guarantee the

same error bound.

5.3 Fast Profiling for Cost Models

To predict performance in our cost models, we need the number of samples Ns for NS and

the number of colors c for GS. Our fast profiler is used to quickly determine the values

of these parameters. Note that Ns here is only used in the NS cost model, not used for

NS sampling (as our NS-online does not need to predict Ns). The profiler first generates

a sparsified graph G′, e.g., 10% of the original graph. Then, it runs our NS-online engine

with an internal error bound (50%) and confidence (99%). By detecting convergence, we can

determine Ns =
No·ϵ̂·µ·ρ(P,G)

S·ϵ2·ρ(P,G′)
, where No is the number of samples NS-online converged with, µ

is the count returned by NS-online, S is the scaled count from G′ to G (see 2.3.2), ϵ̂ is the

final predicted error by NS-online, ρ(P,G) is the probability of sampling pattern P in G,

which is used in prior systems [10], [11], and determined by properties of G, e.g., ∆ and |E|.

45

5.4 Parallel Implementation Details

Our NS and GS engines are both parallelized. In GS, because sparsification creates non-

overlapping subgraph partitions, each partition can be searched independently. Within

each partition, we further parallelize it over each vertex in the subgraph, which provides

enough parallelism. In NS, as each sample is an independent task, it can be embarrassingly

parallelized across samples. Note that our NS-online requires a barrier synchronization at the

end of each interval W (Line 3 in Algorithm 4). If W is too small, we have limited parallelism

and too much synchronization overhead. But if W is too large, we may end up with drawing

more samples than necessary. Thus, we want W to be large enough to maximize parallelism

and minimize synchronization overhead, and small enough to minimize redundant work. We

set W to be a fixed percent of the estimate of Ns returned from the fast profiler (e.g. 10% of

Ns).

46

Chapter 6

Evaluation

We implement ScaleGPM in C++ and OpenMP for parallelization. We use ScaleGPM-

NS, ScaleGPM-GS, ScaleGPM-HY to represent the NS, GS, and hybrid mode of our

system respectively. In this evaluation we focus on comparing with prior A-GPM systems

that provide both generalization and automation (see Section 2.3.3 for discussion on non-

systematic solutions). We compare ScaleGPM with the state-of-the-art A-GPM system,

Arya [11], and exact GPM system, GraphZero [14]. We do not include ASAP since Arya

always outperforms ASAP. We test on a 3.0 GHz, 48-core (2-sockets, 24 cores per socket) Intel

CPU without hyperthreading, with up to 1TB of memory. Table 6.1 shows the graphs used in

our experiments, which are representative real-world graphs with varying sizes and topology

characteristics. In ScaleGPM, graphs are represented in the Compressed Sparse Row (CSR)

format. We evaluate two types of GPM tasks: subgraph counting (edge-induced) and motif

counting (vertex-induced). For subgraph counting, we test on patterns including k-cliques,

5-path, house, and dumbbell. We do not include even larger non-clique patterns, because

we can not verify the errors as their exact counts are unknown for most of the graphs. In

all the experiments, we time out at 10 hours. We then conservatively use 10 hours for the

timed-out cases when calculating speedups.

We first compare the overall performance of ScaleGPM with state-of-the-art systems in

47

Graph Source |V| |E| Avg deg. Max deg.
lj liveJournal [73] 4.8M 43M 17.7 20,333
tw twitter40 [74] 42M 2.4B 57.7 2,997,487
fr friendster [75] 66M 3.6B 55.1 5,214
uk uk2007 [76] 106M 6.6B 62.4 975,419
gsh gsh-2015 [77] 988M 51B 52.0 58,860,305
cw clueweb12 [77] 978M 75B 76.4 75,611,696

Table 6.1: Data graphs (symmetric, no loops or duplicate edges). Maximum degrees are smaller
when orientation is applied for cliques.

Pattern 3-clique (triangle) 4-clique 6-clique
Graph Lj Tw Fr Lj Tw Fr Lj Tw Fr

time (sec) 0.001 0.046 0.026 0.003 0.068 0.090 0.059 0.707 1.132
ScaleGPM-NS hit rate 18% 55% 53% 7.3% 46% 31% 6.4% 46% 16%

samples 1e4 2e4 1e4 8e4 2e5 5e4 2.1e6 4.1e6 7.7e7
time (sec) 0.014 1.193 0.017 94.2 9656.9 2057.7 TO TO TO

Arya hit rate 10.6% 3.9% 2.9% 3.2e-3% 2.7e-3% 1.7e-6% – – –
samples 4.3e4 6.3e4 4.6e4 3.3e8 2.6e8 5.1e9 × × ×

GraphZero time (sec) 0.434 58.0 83.0 2.1 4004.5 73.1 2502.5 TO 160.4

Table 6.2: k-clique performance (10% error). TO: timed out. Arya uses ELP. ×: ELP does not
converge. Fastest time in bold.

Section 6.1. We show how our convergence detection performs in Section 6.2, and the accuracy

the NS and GS cost models in Section 6.3. We discuss system efficiency in Section 6.4.

6.1 Sampling Performance vs. State-of-the-Art

We compare sampling performance with Arya and GraphZero. For the hybrid mode we

discuss its profiling time in Section 6.4. For ScaleGPM-GS, we do include the preprocessing

time spent on sparsifying the data graph. We use an error bound of 10% and confidence of

99%, which is the common practice in ASAP and Arya.

Table 6.2 compares the k-clique (k=3,4,6) running time of ScaleGPM with Arya and

GraphZero. Overall cliques, ScaleGPM achieves a geomean average speedup of 2747× (up

to 610, 169×) against Arya, and 4, 045× over (up to 65, 525×) GraphZero respectively. In

general, the speedup of ScaleGPM-NS over Arya comes from two parts. First, our online

convergence detection gives stable and precise termination condition (demonstrated later

in Fig. 6.1 and Fig. 6.2a), while ELP in Arya could suggest very conservative termination

48

Pattern 5-path 5-house 6-dumbbell
Graph Lj Tw Fr Lj Tw Fr Lj Tw Fr

time (sec) 0.004 0.91 0.10 0.008 944.6* 0.159 0.017 159.3 0.331
ScaleGPM-NS hit rate 29% 99% 90% 43% 43% 15% 16% 43% 32%

samples 3e4 1e4 2e4 5e4 1.9e7 3.3e5 1.5e5 1.6e7 6.9e5
time (sec) 4.422 13.78 77.93 395.6 1297.4 TO 346.2 4644.4 TO

Arya hit rate 0.04% 5.8e-03% 1.7% 2.6e-3% 0.02% – 0.04% 2.2e-3% –
samples 1.1e7 1.4e7 3.4e5 1.5e9 6.8e7 × 2.1e8 1.1e9 ×

GraphZero time (sec) 262.1 TO TO TO TO TO TO TO TO

Table 6.3: Non-clique pattern performance (10% error). TO: timed out. ×: ELP does not converge.
* GS is selected by our hybrid method.

conditions that do way more samples than necessary (see Fig. 6.3). Second, our NS-prune

approach dramatically improves the hit rate over NS-base and thus the total number of samples

is reduced. This is evidenced in Fig. 4.2 and further confirmed in Fig. 6.2b. The significant

speedups over Arya are expected because (1) Arya is based on pattern decomposition and

cliques are hard to decompose, (2) cliques are more likely to fall in the needle-in-the-hay cases

which Arya handles poorly. The speedups are further evidenced by the hit rate and number

of samples Ns used. In particular, for 4-clique, Arya requires 3 to 5 orders of magnitude

more samples, while its hit rates are extremely low, e.g., 1.7×10−6% for Fr. Notably, Arya is

28× slower than GraphZero for the sparse case 4-clique on Fr. Moreover, Arya’s ELP can

not converge within 10 hours for the even more sparse case, 6-clique on Fr, emphasizing

the limitation of ELP. For triangle on Fr, ScaleGPM-NS is slightly slower than Arya

due to synchronization overhead.

Table 6.3 compares performance on large, non-clique patterns, including 5-path, 5-house

and 6-dumbbell. Note that it is well known that for exact GPM solvers (e.g. GraphZero)

it is much more expensive to search for these patterns than cliques, as they are sparser and

their sizes are beyond 4. We observe that GraphZero is timed out for most of the cases, which

shows that it is critical to use approximation for large (sparse) patterns. Arya enjoys fairly

good speedups over GraphZero. This is because, compared to cliques, these patterns are

easier to decompose, which is the case that favors Arya. However, for Fr, Arya still suffers

extremely high Ns and low hit rate, and hence runs more than 10 hours for 5-house and

49

Pattern 3-motif 4-motif
Graph Lj Tw Fr Lj Tw Fr

ScaleGPM-NS 0.004 0.5 0.14 0.06 82.7 0.2
Arya 0.020 1.9 0.08 231.63 13180.2 6157.9

GraphZero 1.283 16316.2 242.62 1927.27 TO TO

Table 6.4: Motif counting running time (sec) with 10% error. TO: timed out.

Pattern triangle 4-clique 5-path*
Graph uk gsh cw uk gsh cw uk gsh cw

ScaleGPM-NS 0.09 0.28 0.19 0.11 0.88 1.09 0.1 11.2 156.0
Arya 0.2 0.7 OoM 175.5 × OoM 4.2 × OoM

GraphZero 73.3 153.6 198.2 TO TO TO TO TO TO

Table 6.5: Running time (sec) on huge graphs. TO: timed out. ×: ELP does not converge. * the
true count is unknown, so accuracy is not verified.

6-dumbbell. In all these cases, ScaleGPM significantly improves hit rates and reduces

Ns, which lead to fast convergence speed. Across these patterns, ScaleGPM achieves an

geomean average of 599× and 27, 641× speedup against Arya and GraphZero respectively.

Note that for Tw on house, as shown in Table 6.6, ScaleGPM-HY selects the GS engine

in this case, since GS is predicted to be faster, based on our prediction on the number of

samples and time per sample.

Table 6.4 reports the motif counting performance. Note that in motif counting, we look for

vertex-induced subgraphs, unlike cases in Table 6.3 which search for edge-induced subgraphs.

The key difference in computation is that we need both set intersection and set difference to

find vertex-induced subgraphs, but only set intersection is needed for edge-induced subgraphs.

Despite more computation needed, ScaleGPM is still significantly faster than Arya. Across

motifs, ScaleGPM achieves a geomean speedup of 125× speedup against Arya, and 10563×

speedup over GraphZero.

Table 6.5 compares performance on huge graphs, i.e., uk2007 (uk) gsh-2015 (gsh) and

clueweb12 (cw). Note that Arya mostly runs out of memory for cw because (1) it has to

maintain the set union results (for each of the parallel threads) in memory, and (2) its internal

representation of the graph stream is implemented in COO-like format, which is less compact

than CSR. ScaleGPM achieves a geomean average 130× compared to Arya and a 7, 245×

50

Pattern 8-clique 9-clique 5-house
Graph lj fr lj fr tw

ScaleGPM- NS 3.0 1663.6 17.4 8358.0 944.6
ScaleGPM- GS 0.7 43.4 2.1 134.9 200.1

Table 6.6: Comparing running time of ScaleGPM-NS and ScaleGPM-GS when ScaleGPM-HY
selects GS (using the cost models).

Graph & Pattern Livej – house Twitter – 4-clique
Error bound 10% 5% 2% 1% 10% 5% 2% 1%
ScaleGPM-NS 0.008 0.05 0.31 1.14 0.07 0.13 0.69 2.68

Arya 395.56 1639.59 9873.81 TO 9656.85 TO TO TO

Table 6.7: Running time (sec) when adjusting Error Bounds from 10%-1%. ScaleGPM uses
NS-online mode.

speedup compared to GraphZero.

Table 6.6 shows the cases where ScaleGPM-HY selects the GS mode. Notably, for Fr

and k = 9 (sparse graph and big dense pattern) which is a needle-in-the-hay case for NS,

ScaleGPM successfully choose to use GS instead of NS. This switch from NS to GS brings

us a 61× performance improvement. Over all the cases where the GS engine is selected, the

GS engine leads to a geomean average 13× speedup over the NS engine.

Table 6.7 shows Arya and ScaleGPM running time with varied error bounds. We

observe that the performance gap between Arya and ScaleGPM remains huge (ranging

from 31 to 49 thousand times) as we decrease the error bound.

Overall, we achieve 565× speedup over Arya, and four orders of magnitude speedup over

GraphZero.

6.2 Effectiveness of Convergence Detection

Fig. 6.1 compares the error predicted by ScaleGPM-NS with the actual error throughout

the sampling procedure, to show the effectiveness of ScaleGPM-NS’s online convergence

detection. We illustrate two cases here, but we have verified the same trend for all our test

cases in the evaluation. In Fig. 6.1 we observe that for both cases, the predicted error curves

51

0.0 0.5 1.0
Number of Samples 1e7

0

5

10

Er
ro

r (
%

)

4clique-friendster Run 1

0.0 0.5 1.0
Number of Samples 1e7

0

5

10

Er
ro

r (
%

)

4clique-friendster Run 2

0.0 0.5 1.0
Number of Samples 1e7

0

10

20

30

Er
ro

r (
%

)

4clique-twitter40 Run 1

0.0 0.5 1.0
Number of Samples 1e7

0

10

20

Er
ro

r (
%

)

4clique-twitter40 Run 2

Figure 6.1: Comparing ScaleGPM-NS’s estimated errors (black curves) with actual errors (red and
blue curves). We do two runs of 4-clique counting on two graphs Fr and Tw. [71]

strictly bound the actual error, which verifies the high confidence that our method achieves.

In addition to our theoretical proof in Section 4.1, this empirical study further demonstrates

that our method provides strong guarantee on confidence, which is critical in applications

where users want to have strict accuracy requirement.

Fig. 6.2a shows the stability of the error estimation method in ScaleGPM-NS. We do

three repeated runs on the 4-clique pattern and Lj graph. Figures Fig. 6.4a and Fig. 6.4b

show the predicted errors in our convergence detection mechanism on Fr and Tw respectively

when the pattern is 4-clique. In contrast to the unstable predictions (Fig. 3.1) given by

ELP in prior systems, our estimated errors are almost the same across three independent

runs. Moreover, our online mechanism never fails, while ELP suffers convergence issue that

may lead to endless preprocessing (e.g., for 6-clique in Table 6.2). We observe the same

trend in stability on other graphs and patterns. This experiment further demonstrates that

our method is highly reliable and can be adopted in practice.

Fig. 6.2b compares the convergence rate of NS-prune and NS-base, both under our online

detection framework. We observe that our proposed early-pruning mechanism employed in

52

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e6

5

10

15

Es
tim

at
ed

 E
rro

r (
%

)

(a) Predicted errors in our convergence detection mech-
anism across three different runs (4-clique on Lj)
are extremely stable. [71]

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e7

0

10

20

30

40

50

60

Er
ro

r (
%

)

NS-Base Actual Error
NS-Base Predicted Error
NS-Prune Actual Error
NS-Prune Predicted Error

(b) Comparison between the convergence rate of NS-
prune and NS-base. The same formula (with two stan-
dard deviations of confidence) was used to generate
the error estimate curves. [71]

Figure 6.2: Trends in error and conversion with NS-Online.

house-livej 4clique-twitter40
105

106

107

108

109

Nu
m

be
r o

f S
am

pl
es Arya (ELP)

NS-Online
NS-Online-Prune

Figure 6.3: The reduction on the number of samples.

NS-prune result in roughly an order of magnitude lower error for the same number of samples.

Therefore, with pruning, our system can converge much faster that ASAP and Arya, which is

the other major reason why ScaleGPM achieves much better performance.

Fig. 6.3 shows the reduction on the number of samples Ns, by incrementally applying

online convergence detection (orange) and eager-verify (green), against ELP in Arya (blue).

Note that in Table 6.2 and Table 6.3 we report Ns only for NS-online-prune, but here we

breakdown the contributions of online detection and pruning. We observe that our online

method reduces Ns sharply over Arya. Applying pruning in eager-verify further reduces Ns

by a significant amount. Together, we can meet the same error bound with much few samples,

and more importantly, with confidence.

53

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e6

2

4

6

8

10

12

Es
tim

at
ed

 E
rro

r (
%

)

(a) Predicted errors in our convergence detection mech-
anism across three different runs (4-clique on Fr)
are extremely stable. [71]

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples 1e6

5

10

15

20

25

Es
tim

at
ed

 E
rro

r (
%

)

(b) Predicted errors in our convergence detection mech-
anism across three different runs (4-clique on Tw)
are extremely stable. [71]

Figure 6.4: Trends in predicted error with NS-Online.

6.3 Prediction Accuracy of Cost Models

Fig. 6.5 shows the effectiveness of our cost model in predicting the running time of the GS

engine in ScaleGPM. As we increase the number of colors c = 1
p

used in GS, the total

work is exponentially decreased. Thus, the GS execution time rapidly becomes dominated

by the preprocessing time spent on sparsifying the graph. For 4clique and house on Lj

and Fr, we see that the cost model precisely captures the exponential trend, as well as the

stabilization window of the GS engine that we discussed in Fig. 4.3. Note that when c is

extremely small, e.g., c < 5, it is hard to accurately model the performance due to the steep

slope in that curve. However, in this case (which is a needle-in-the-hay case) we would favor

the use of NS or even exact counting, as GS with a small c won’t be much faster than exact

counting.

Fig. 6.6 shows the effectiveness of our NS cost model. We see that our proposed performance

cone correctly captures the running time of the NS engine at varying numbers of samples.

Note that for Fr, a relatively sparse graph, the execution time approaches the bottom of the

performance cone as expected. We find in practice, that GS and NS are often predicted to

have very distinct performance, so the width of the cone is not an obstacle in making the

54

0 50 100
Number of Colors

0

5

10

15

Ti
m

e
4clique-livej

0 50 100
Number of Colors

0

1000

2000

Ti
m

e

house-livej

0 50 100
Number of Colors

50

100

150

Ti
m

e

4clique-friendster

0 50 100
Number of Colors

0

5000

10000

Ti
m

e

house-friendster

Figure 6.5: The quality of performance prediction for ScaleGPM’s GS Engine. The red lines are
our predictions, while blue dots are actual time.

0.0 0.5 1.0
Number of Samples 1e9

0.0

0.2

0.4

Ti
m

e

4clique-livej

0 2 4
Number of Samples 1e8

0.0

0.5

1.0

Ti
m

e

house-livej

0.0 0.5 1.0
Number of Samples 1e9

0.0

0.5

1.0

Ti
m

e

4clique-friendster

0.0 0.5 1.0
Number of Samples 1e9

0

2

4

6

8

Ti
m

e

house-friendster

Figure 6.6: The quality of performance prediction for ScaleGPM’s NS Engine. The red lines are
our predictions, while blue dots are actual time.

correct choice. The fluctuation in the sparse case 4clique-Fr is also expected, as sample

hits are less frequent and thus more randomness is involved.

6.4 System Efficiency

Timing Breakdown. Fig. 6.7 shows the breakdown of the execution time spent on different

components of ScaleGPM. We consider the profiling time, the GS preprocessing time,

GS NS
0

1

2

3

Ti
m

e
(s

)

LiveJ-8clique

GS NS
0

2

4

6
Friendster-dumbell

Profiling Time
Sparsification Time
Sampling Time

Figure 6.7: End-to-end time breakdown of ScaleGPM.

55

and the sampling time (either exact counting in GS or drawing samples in NS). We see

that profiling remains a low percentage of the overall runtime. As for the sampling time,

Lj-8clique requires less time using the GS engine, while Fr-dumbbell is processed faster

using the NS engine, which aligns with our cost model prediction and thus ScaleGPM-HY

makes the correct thresholding decision.

0 10 20 30 40 50
Cores

0

10

20

30

40

50

Sp
ee

du
p

5Path LiveJ NS
8Clique Friendster GS
Linear

Figure 6.8: ScaleGPM speedup scaling over single-thread.

Scalability. Fig. 6.8 shows how the performance of GS engine and NS engine in

ScaleGPM (error bound of 10%) scales in response to the increase of parallel cores (i.e.,

the number of threads). We evaluate the NS engine on 5path-Lj which is a case that favors

the use of the NS engine (i.e., NS is faster than GS). GS is evaluated on 8clique-Fr as

8-clique is a dense pattern and is rare in Fr, preferably executed in GS. In both cases, we

observe strong scaling that the execution time of both engines increases linearly as we range

the number of cores from 1 to 48.

56

Chapter 7

Future Work

7.1 Expanded Sampling Schemes

Currently, ScaleGPM employs two complementing sampling schemes, ScaleGPM-GS and

ScaleGPM-NS for it’s hybrid model. However, as mentioned in Section 2.3.3, any number

of different sampling schemes could be fit into the framework and be compared with a cost

model.

For example, ScaleGPM-NS could be expanded to include a pattern-decomposition

sampling scheme similar to Arya in addition to it’s pruning optimization. ScaleGPM-NS

could then estimate the performance of any decomposition or further sampling optimizations

for that pattern and graph combination. Future work could adapt the cost model to calculate

the trade-offs between different sampling optimizations. Then, we may find specific graphs

and patterns where a particular decomposition would be helpful.

Future work could also expand ScaleGPM-GS to include loop perforation [51] and color-

coding [35], [37]–[39], [42], [43], [59]–[64]. We could expand the cost model to encompass

these methods, comparing the time of perforating each loop, creating a graph coloring for

colorful matches, or sparsifying the graph. Then, ScaleGPM could adapt to select the best

method for coarse grained sampling.

57

In the future, we imagine a multitude of sampling modes could abstractly be described to

the cost model. This would allow for the best sampling scheme for any graph or pattern to

be dynamically selected.

7.2 Distribution and GPU Acceleration

Currently, ScaleGPM is limited to multi-threaded single-machine mining on CPUs.

A promising area of work would be expanding ScaleGPM to a distributed setting for

further performance improvements.

ScaleGPM-GS lends itself to distributed computation since each colored partition is

independent and can be counted on independent workers.

However, in ScaleGPM-NS, there would need to be communication between workers

about the current estimated error to determine the online stopping condition. Future work

could involve designing a distributed protocol for calculating the current estimated error and

disseminating the termination condition to all workers. Furthermore, if we can not hold an

entire graph on one machine, we would have account for the additional error introduced by

partitioning the graph with color sparsification, or include a message-passing scheme to cover

broken edges.

We also imagine performing A-GPM on GPUs [12], [78]–[80] could allow for further

speed-ups of ScaleGPM.

58

Chapter 8

Conclusion

Approximate graph pattern mining (A-GPM) systems are the backbone to support numerous

real-world graph data analytics applications, including financial security, social network

analysis, chemical engineering, bio-medicine. On very large graphs, an approximate strategy

allows us to mine patterns where exact counting fails to terminate.

However, two key obstacles prevent A-GPM systems from being adopted in practice. The

first limitation is a the lack of stable, confident termination mechanism. Previous systems

rely on an ELP stage, which suffers a circular dependency issue in it’s design, resulted in

unstable performance. The second obstacle is the even worse performance and scalability

when dealing with the hard “needle-in-the-hay” cases. When a pattern has a very low hit

rate, existing systems require a huge number of samples to meet the error bound.

In the work, we present ScaleGPM, an accurate, high-performance and scalable A-GPM

system. ScaleGPM involves two key innovations that remove the above obstacles.

First, we propose a novel online convergence detection mechanism, which can provide

theoretical guarantee on prediction confidence and also yield stable termination condition.

Our online method collects statistics about the samples during the sampling execution and

uses the measured samples’ variance to strongly bound error. Our online error detection

drastically reduces the number of samples required, which leads to the 3 orders of magnitude

59

speedups over state-of-the-art A-GPM.

Second, we propose the eager-verify mechanism, which introduces pruning techniques

into sampling to significantly improve the hit rate of our sampling procedure, and thus

further reduce the number of samples needed, particularly in “needle-in-the-hay” cases. We

also propose the hybrid sampling method to adaptively select the best-performing sampling

scheme from two complementary schemes, based on our proposed cost models. Our hybrid

sampling method uses cost models to estimate the performance of the fine-grained NS and

coarse-grained GS sampling schemes, and adaptively switches to the GS scheme for the

“needle-in-the-hay” cases that NS is incapable to handle.

The resulting system, ScaleGPM, achieves an average of 565× (up to 610,169×) speedup

over the state-of-the-art A-GPM system, Arya, and is four orders of magnitude faster than

state-of-the-art exact GPM system, GraphZero. In particular, ScaleGPM manages to

rapidly mine billion-scale graphs, for which previous frameworks either run out of memory or

fail to complete in hours.

60

Appendix A

Proofs

A.1 Proof for Online Convergence

Theorem 1. Given δ, n samples X1, . . . , Xn drawn by using the NS sampling scheme, and

the mean of sampled counts µ = 1
n

∑n
i=1Xi, let C be the true count and ϵ̂ be the estimated

error computed by Eq. (4.1). As n→∞, the probability of the true relative error being smaller

than the estimated relative error is IP
(

|µ−C|
C

< ϵ̂
)
= 1− δ.

Proof. Let D be the distribution X1, . . . , Xn are sampled from. Since the NS estimator is

unbiased, the true count C is the mean of the distribution D. Our estimator of C is µ :=

1
n

∑n
i=1 Xi. This estimator satisfies E[µ] = E[1

n

∑n
i=1Xi] =

1
n

∑n
i=1 E[Xi] =

1
n

∑n
i=1C = C

and Var[µ] = Var[1
n

∑n
i=1Xi] =

1
n2

∑n
i=1Var[Xi] =

1
n
Var[X1]. Because µ is the average of n

samples from a distribution D (which clearly has finite mean and variance), the central limit

theorem (CLT) applies, so µ follows the normal distribution. Formally, µ−E[µ]√
Var[µ]

converges in

distribution to a standard normal as n→∞.

By the law of large numbers, as n→∞, the sample variance 1
n

∑n
i=1X

2
i − µ2 converges

in probability to Var[X1]. Letting σ2 := 1
n

(
1
n

∑n
i=1 X

2
i − µ2

)
, this means that Var[µ]

σ2 =
1
n
Var[X1]

1
n(

1
n

∑n
i=1 X

2
i −µ2)

= Var[X1]

(1
n

∑n
i=1 X

2
i −µ2)

converges in probability to 1. Additionally, µ converges

in probability to C, so µ
C

converges in probability to 1. Therefore, by Slutsky’s Theorem,

61

µ−E[µ]√
Var[µ]

·
√

Var[µ]
σ2 · µC = µ−C

C
· µ
σ

converges in distribution to a standard normal. This means

that for any fixed x, we have

IP
(
µ− C

C
· µ
σ
< x

)
→ Φ(x) as n→∞.

This implies that

IP
(∣∣∣∣µ− C

C
· µ
σ

∣∣∣∣ < x

)
→ 2Φ(x)− 1 as n→∞.

Plugging in x = Φ−1(1− δ
2
), we get

IP
(∣∣∣∣µ− C

C
· µ
σ

∣∣∣∣ < Φ−1(1− δ

2
)

)
→ 2Φ

(
Φ−1(1− δ

2
)

)
− 1 as n→∞.

Rearranging terms and simplifying yields

IP

(∣∣∣∣µ− C

C

∣∣∣∣ < Φ−1(1− δ
2
)σ

µ

)
→ 2

(
1− δ

2

)
− 1 as n→∞

=⇒ IP
(∣∣∣∣µ− C

C

∣∣∣∣ < ϵ̂

)
→ 1− δ as n→∞.

A.2 Lower Bound for Graph Sparsification

Theorem 2. Given a data graph G and a pattern P, p ≥ −3·ln(δ/2)γ
ϵ2·C obtains an ϵ-δ estimation

of C, the number of matches of P in G.

Proof. Formally, let Y1 . . . YC be the random variables that represent the existence of matches,

where Yi = 1 if the match Mi was preserved in the sparsified graph and Yi = 0 if any of the

edges within the match were removed. As Yi is not independent, this means that we can not

use the standard Chernoff bound to tightly bound error. We could use Chebyshev bound but

this is not a tight enough bound to be useful in practice.

62

We use the ‘read-k’ extension of Chernoff bounds [81]. The key idea is to map the

dependent random variables Yi to a set of independent random variables Xi, and derive a

bound from them. The ‘read-k’ extension gives the same bound as that of the standard

Chernoff bound, except that the exponent is divided by k, where k is the maximum number

of Yi mapped to any Xj.

In our case, the edges are removed randomly. Let X1 . . . Xm be random variables for each

of the m edges in G, where Xi = 1 if the edge was preserved and Xi = 0 if the edge was

removed. We can see each edge has the probability p̂ of being preserved and this probability

is independent of any other edge, Xj, even if they may share one endpoint. Then Yi is

dependent on exactly l of the X1 . . . Xm edges, which are the specific edges that make up

that match Mi. We define γ as the maximum number of matches (of P) incident to an edge.

Thus, we can apply the ‘read-k’ extension with k = γ, which gives the following theorem.

So in order to determine a good value for p, we need to estimate C and γ, which is done

by the fast profiling Section 5.3 on the graph G. We assume that p̂ is not very sensitive to C

and γ. So we don’t need a very accurate estimation of C and γ in this profiling.

A.3 Proof for Unbiasedness of NS-Prune

Lemma 3. NS-prune is an unbiased estimator.

Proof. Let (v0, . . . , vk−1) be the vertices of an occurrence, i.e., a match, of the pattern

P in the matching order (e.g. for 4-cycle, (v0, v1), (v1, v2), (v2, v3), (v3, v0) ∈ E). Each

match corresponds to a unique k-tuple (v0, . . . , vk−1), e.g., for 4-cycle, we enforce v0 =

max(v0, v1, v2, v3) and v3 < v1. During the execution of NS-prune, the probability that v0

and v1 are chosen is 1/m (see Line 2 in Algorithm 6), as all edges are equally likely. The

probability that v2 is chosen (see Line 5) is 1/|A| as v2 ∈ A. In general, the probability

that vi is chosen is 1/|Si|, where Si is the candidate set that vi is drawn from. Therefore

63

the probability that this particular match is sampled by NS-prune is the product of these

probabilities (e.g. 1/(m · |A| · |B|) for 4-cycle). The scaling factor α is the inverse of this

probability, so the expected contribution of this match to the estimated count for one sampler

is 1
α
· α = 1. Let C be the true count of P in G, and let Xij = α = (m · |S2| · · · |Sk−1|) if

the ith sample hits the jth match of P, otherwise Xij = 0, where 1 ≤ i ≤ Ns, 1 ≤ j ≤ C.

The estimated count is E
(

1
Ns

∑
i,j Xij

)
= 1

Ns

(∑
i,j E(Xij)

)
= 1

Ns

∑
i,j 1 = C. Therefore

NS-prune is an unbiased estimator.

64

Appendix B

Artifact

Abstract

This artifact appendix helps the readers reproduce the main evaluation results of ScaleGPM.

Scope

The artifact can be used for evaluating and reproducing the main results of the thesis,

including Table 6.2, Table 6.3, Table 6.4, Table 6.5, Table 6.5, Table 6.7, Fig. 6.7, Fig. 6.5,

Fig. 6.6, Fig. 6.3 in Chapter 6.

Contents

The details of the contained code and how to run ScaleGPM are described:

https://anonymous.4open.science/r/scale-gpm-B987/experiments.md.

65

https://anonymous.4open.science/r/scale-gpm-B987/experiments.md

Hosting

The source code of this artifact can be found at https://anonymous.4open.science/r/scale-

gpm-B987/.

Requirements

Hardware dependencies

This artifact depends on a 3.0 GHz, 48-core (2-sockets, 24 cores per socket) Intel CPU

without hyperthreading, with up to 1TB of memory

Software dependencies

This artifact requires OpenMP and GCC 8 or greater.

66

https://anonymous.4open.science/r/scale-gpm-B987/
https://anonymous.4open.science/r/scale-gpm-B987/

References

[1] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboulnaga,
“Arabesque: A system for distributed graph mining,” in Proceedings of the 25th Sym-
posium on Operating Systems Principles, ser. SOSP ’15, Monterey, California: ACM,
2015, pp. 425–440, isbn: 978-1-4503-3834-9. doi: 10 .1145/2815400.2815410. url:
http://doi.acm.org/10.1145/2815400.2815410.

[2] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu, “Rstream: Marrying relational
algebra with streaming for efficient graph mining on a single machine,” in Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’18, Carlsbad, CA, USA: USENIX Association, 2018, pp. 763–782, isbn:
978-1-931971-47-8. url: http://dl.acm.org/citation.cfm?id=3291168.3291225.

[3] K. Jamshidi, R. Mahadasa, and K. Vora, “Peregrine: A pattern-aware graph mining
system,” in Proceedings of the Fifteenth EuroSys Conference, ser. EuroSys ’20, 2020.

[4] D. Mawhirter and B. Wu, “Automine: Harmonizing high-level abstraction and high
performance for graph mining,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, ser. SOSP ’19, Huntsville, Ontario, Canada: ACM, 2019, pp. 509–
523, isbn: 978-1-4503-6873-5. doi: 10.1145/3341301.3359633. url: http://doi.acm.org/
10.1145/3341301.3359633.

[5] V. Dias, C. H. C. Teixeira, D. Guedes, W. Meira, and S. Parthasarathy, “Fractal: A
general-purpose graph pattern mining system,” in Proceedings of the 2019 International
Conference on Management of Data, ser. SIGMOD ’19, Amsterdam, Netherlands: ACM,
2019, pp. 1357–1374, isbn: 978-1-4503-5643-5. doi: 10.1145/3299869.3319875. url:
http://doi.acm.org/10.1145/3299869.3319875.

[6] T. Shi, M. Zhai, Y. Xu, and J. Zhai, “Graphpi: High performance graph pattern
matching through effective redundancy elimination,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC
’20, Atlanta, Georgia: IEEE Press, 2020, isbn: 9781728199986.

[7] X. Chen, R. Dathathri, G. Gill, L. Hoang, and K. Pingali, “Sandslash: A Two-Level
Framework for Efficient Graph Pattern Mining,” in Proceedings of the 35th ACM
International Conference on Supercomputing, ser. ICS ’21, 2021.

[8] Xuhao Chen and Arvind, “Efficient and Scalable Graph Pattern Mining on GPUs,”
in Proceedings of the 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2022 [pdf].

67

https://doi.org/10.1145/2815400.2815410
http://doi.acm.org/10.1145/2815400.2815410
http://dl.acm.org/citation.cfm?id=3291168.3291225
https://doi.org/10.1145/3341301.3359633
http://doi.acm.org/10.1145/3341301.3359633
http://doi.acm.org/10.1145/3341301.3359633
https://doi.org/10.1145/3299869.3319875
http://doi.acm.org/10.1145/3299869.3319875
https://arxiv.org/pdf/2112.09761.pdf

[9] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network
motifs: Simple building blocks of complex networks,” Science, vol. 298, no. 5594,
pp. 824–827, 2002, issn: 0036-8075. doi: 10 . 1126 / science . 298 . 5594 . 824. eprint:
https://science.sciencemag.org/content/298/5594/824.full.pdf. url: https://science.
sciencemag.org/content/298/5594/824.

[10] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica, “Asap:
Fast, approximate graph pattern mining at scale,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’18, Carlsbad,
CA, USA: USENIX Association, 2018, pp. 745–761, isbn: 978-1-931971-47-8. url:
http://dl.acm.org/citation.cfm?id=3291168.3291224.

[11] Z. Zhu, K. Wu, and Z. Liu, “Arya: Arbitrary graph pattern mining with decomposition-
based sampling,” in Proceedings of the 20th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’23, 2023.

[12] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An efficient and flexible
graph mining system on cpu and gpu,” Proc. VLDB Endow., vol. 13, no. 8, Aug. 2020,
issn: 2150-8097. doi: 10.14778/3389133.3389137.

[13] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization of complex
networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016, issn: 0036-8075. doi: 10.1126/
science.aad9029. eprint: https://science.sciencemag.org/content/353/6295/163.full.pdf.
url: https://science.sciencemag.org/content/353/6295/163.

[14] D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu, “Graphzero: A high-
performance subgraph matching system,” SIGOPS Oper. Syst. Rev., vol. 55, no. 1,
pp. 21–37, Jun. 2021, issn: 0163-5980. doi: 10.1145/3469379.3469383. url: https:
//doi.org/10.1145/3469379.3469383.

[15] A. Pinar, C. Seshadhri, and V. Vishal, “Escape: Efficiently counting all 5-vertex sub-
graphs,” in Proceedings of the 26th International Conference on World Wide Web,
ser. WWW ’17, Perth, Australia: International World Wide Web Conferences Steering
Committee, 2017, pp. 1431–1440, isbn: 978-1-4503-4913-0. doi: 10.1145/3038912.
3052597. url: https://doi.org/10.1145/3038912.3052597.

[16] J. Chen and X. Qian, “Decomine: A compilation-based graph pattern mining system
with pattern decomposition,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume
1, ser. ASPLOS 2023, Vancouver, BC, Canada: Association for Computing Machinery,
2022, pp. 47–61, isbn: 9781450399159. doi: 10.1145/3567955.3567956. url: https:
//doi.org/10.1145/3567955.3567956.

[17] J. Chen and X. Qian, Kudu: An efficient and scalable distributed graph pattern mining
engine, 2021. arXiv: 2105.03789 [cs.DC].

[18] J. Chen and X. Qian, Dwarvesgraph: A high-performance graph mining system with
pattern decomposition, 2021. arXiv: 2008.09682 [cs.DC].

68

https://doi.org/10.1126/science.298.5594.824
https://science.sciencemag.org/content/298/5594/824.full.pdf
https://science.sciencemag.org/content/298/5594/824
https://science.sciencemag.org/content/298/5594/824
http://dl.acm.org/citation.cfm?id=3291168.3291224
https://doi.org/10.14778/3389133.3389137
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1126/science.aad9029
https://science.sciencemag.org/content/353/6295/163.full.pdf
https://science.sciencemag.org/content/353/6295/163
https://doi.org/10.1145/3469379.3469383
https://doi.org/10.1145/3469379.3469383
https://doi.org/10.1145/3469379.3469383
https://doi.org/10.1145/3038912.3052597
https://doi.org/10.1145/3038912.3052597
https://doi.org/10.1145/3038912.3052597
https://doi.org/10.1145/3567955.3567956
https://doi.org/10.1145/3567955.3567956
https://doi.org/10.1145/3567955.3567956
https://arxiv.org/abs/2105.03789
https://arxiv.org/abs/2008.09682

[19] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H. Jarrah, “DUALSIM:
Parallel subgraph enumeration in a massive graph on a single machine,” in Proceedings
of the 2016 International Conference on Management of Data, ser. SIGMOD ’16, San
Francisco, California, USA: ACM, 2016, pp. 1231–1245, isbn: 978-1-4503-3531-7. doi:
10.1145/2882903.2915209. url: http://doi.acm.org/10.1145/2882903.2915209.

[20] K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar, “Distributed evaluation of
subgraph queries using worst-case optimal low-memory dataflows,” Proc. VLDB Endow.,
vol. 11, no. 6, pp. 691–704, Feb. 2018, issn: 2150-8097. doi: 10.14778/3184470.3184473.
url: https://doi.org/10.14778/3184470.3184473.

[21] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and Arvind, “Flexminer: A pattern-
aware accelerator for graph pattern mining,” in Proceedings of the International Sympo-
sium on Computer Architecture, 2021.

[22] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler, “Count-
ing triangles in data streams,” in Proceedings of the Twenty-Fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, ser. PODS ’06,
Chicago, IL, USA: Association for Computing Machinery, 2006, pp. 253–262, isbn:
1595933182. doi: 10.1145/1142351.1142388. url: https://doi.org/10.1145/1142351.
1142388.

[23] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a mapreduce implemen-
tation,” Inf. Process. Lett., vol. 112, no. 7, pp. 277–281, Mar. 2012, issn: 0020-0190.
doi: 10.1016/j.ipl.2011.12.007. url: https://doi.org/10.1016/j.ipl.2011.12.007.

[24] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos, “Spectral count-
ing of triangles via element-wise sparsification and triangle-based link recommendation,”
Social Network Analysis and Mining, vol. 1, pp. 75–81, 2011.

[25] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion: Counting triangles
in massive graphs with a coin,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’09, Paris, France:
Association for Computing Machinery, 2009, pp. 837–846, isbn: 9781605584959. doi:
10.1145/1557019.1557111. url: https://doi.org/10.1145/1557019.1557111.

[26] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting and sampling
triangles from a graph stream,” Proc. VLDB Endow., vol. 6, no. 14, pp. 1870–1881, Sep.
2013, issn: 2150-8097. doi: 10.14778/2556549.2556569. url: https://doi.org/10.14778/
2556549.2556569.

[27] A. Turk and D. Turkoglu, “Revisiting wedge sampling for triangle counting,” in The
World Wide Web Conference, ser. WWW ’19, San Francisco, CA, USA: Association
for Computing Machinery, 2019, pp. 1875–1885, isbn: 9781450366748. doi: 10.1145/
3308558.3313534. url: https://doi.org/10.1145/3308558.3313534.

[28] S. K. Bera and C. Seshadhri, “How to count triangles, without seeing the whole graph,”
in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ser. KDD ’20, Virtual Event, CA, USA: Association for
Computing Machinery, 2020, pp. 306–316, isbn: 9781450379984. doi: 10.1145/3394486.
3403073. url: https://doi.org/10.1145/3394486.3403073.

69

https://doi.org/10.1145/2882903.2915209
http://doi.acm.org/10.1145/2882903.2915209
https://doi.org/10.14778/3184470.3184473
https://doi.org/10.14778/3184470.3184473
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1016/j.ipl.2011.12.007
https://doi.org/10.1016/j.ipl.2011.12.007
https://doi.org/10.1145/1557019.1557111
https://doi.org/10.1145/1557019.1557111
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.1145/3308558.3313534
https://doi.org/10.1145/3308558.3313534
https://doi.org/10.1145/3308558.3313534
https://doi.org/10.1145/3394486.3403073
https://doi.org/10.1145/3394486.3403073
https://doi.org/10.1145/3394486.3403073

[29] J. Y. Chen, T. Eden, P. Indyk, H. Lin, S. Narayanan, R. Rubinfeld, S. Silwal, T. Wagner,
D. Woodruff, and M. Zhang, “Triangle and four cycle counting with predictions in
graph streams,” in International Conference on Learning Representations, 2022. url:
https://openreview.net/forum?id=8in_5gN9I0.

[30] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample and hold:
A framework for big-graph analytics,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD ’14, New
York, New York, USA: Association for Computing Machinery, 2014, pp. 1446–1455,
isbn: 9781450329569. doi: 10.1145/2623330.2623757. url: https://doi.org/10.1145/
2623330.2623757.

[31] X. Ye, R.-H. Li, Q. Dai, H. Chen, and G. Wang, “Lightning fast and space efficient
k-clique counting,” in Proceedings of the ACM Web Conference 2022, ser. WWW ’22,
Virtual Event, Lyon, France: Association for Computing Machinery, 2022, pp. 1191–
1202, isbn: 9781450390965. doi: 10.1145/3485447.3512167. url: https://doi.org/10.
1145/3485447.3512167.

[32] J. Shi, L. R. Huang, and J. Shun, “Parallel five-cycle counting algorithms,” ACM J.
Exp. Algorithmics, vol. 27, Oct. 2022, issn: 1084-6654. doi: 10.1145/3556541. url:
https://doi.org/10.1145/3556541.

[33] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Dimakis, “Beyond triangles:
A distributed framework for estimating 3-profiles of large graphs,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’15, Sydney, NSW, Australia: ACM, 2015, pp. 229–238, isbn: 978-1-4503-3664-
2. doi: 10.1145/2783258.2783413. url: http://doi.acm.org/10.1145/2783258.2783413.

[34] M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and provable method
for estimating 4-vertex subgraph counts,” in Proceedings of the 24th International
Conference on World Wide Web, ser. WWW ’15, Florence, Italy: International World
Wide Web Conferences Steering Committee, 2015, pp. 495–505, isbn: 978-1-4503-3469-3.
doi: 10.1145/2736277.2741101. url: https://doi.org/10.1145/2736277.2741101.

[35] G. M. Slota and K. Madduri, “Fast approximate subgraph counting and enumeration,”
in 2013 42nd International Conference on Parallel Processing, 2013, pp. 210–219. doi:
10.1109/ICPP.2013.30.

[36] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan, “Guise: Uniform sampling
of graphlets for large graph analysis,” in 2012 IEEE 12th International Conference on
Data Mining, 2012, pp. 91–100. doi: 10.1109/ICDM.2012.87.

[37] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi, “Motif counting
beyond five nodes,” ACM Trans. Knowl. Discov. Data, vol. 12, no. 4, 48:1–48:25, Apr.
2018, issn: 1556-4681. doi: 10.1145/3186586. url: http://doi.acm.org/10.1145/3186586.

[38] M. Bressan, S. Leucci, and A. Panconesi, “Motivo: Fast motif counting via succinct color
coding and adaptive sampling,” Proc. VLDB Endow., vol. 12, no. 11, pp. 1651–1663,
Jul. 2019, issn: 2150-8097. doi: 10.14778/3342263.3342640. url: https://doi.org/10.
14778/3342263.3342640.

70

https://openreview.net/forum?id=8in_5gN9I0
https://doi.org/10.1145/2623330.2623757
https://doi.org/10.1145/2623330.2623757
https://doi.org/10.1145/2623330.2623757
https://doi.org/10.1145/3485447.3512167
https://doi.org/10.1145/3485447.3512167
https://doi.org/10.1145/3485447.3512167
https://doi.org/10.1145/3556541
https://doi.org/10.1145/3556541
https://doi.org/10.1145/2783258.2783413
http://doi.acm.org/10.1145/2783258.2783413
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1109/ICPP.2013.30
https://doi.org/10.1109/ICDM.2012.87
https://doi.org/10.1145/3186586
http://doi.acm.org/10.1145/3186586
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.14778/3342263.3342640

[39] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi, “Counting graphlets:
Space vs time,” in Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, ser. WSDM ’17, Cambridge, United Kingdom: ACM, 2017,
pp. 557–566, isbn: 978-1-4503-4675-7. doi: 10 .1145/3018661.3018732. url: http:
//doi.acm.org/10.1145/3018661.3018732.

[40] K. Paramonov, D. Shemetov, and J. Sharpnack, “Estimating graphlet statistics via lift-
ing,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ser. KDD ’19, Anchorage, AK, USA: Association for Comput-
ing Machinery, 2019, pp. 587–595, isbn: 9781450362016. doi: 10.1145/3292500.3330995.
url: https://doi.org/10.1145/3292500.3330995.

[41] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan, “Efficiently
estimating motif statistics of large networks,” ACM Trans. Knowl. Discov. Data, vol. 9,
no. 2, Sep. 2014, issn: 1556-4681. doi: 10.1145/2629564. url: https://doi.org/10.1145/
2629564.

[42] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe, “Subgraph enumeration in
large social contact networks using parallel color coding and streaming,” in 2010 39th
International Conference on Parallel Processing, 2010, pp. 594–603. doi: 10.1109/ICPP.
2010.67.

[43] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp, “Biomolecular
network motif counting and discovery by color coding,” Bioinformatics, vol. 24, no. 13,
pp. i241–i249, 2008.

[44] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura, “Butterfly counting in bipar-
tite networks,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD ’18, London, United Kingdom:
Association for Computing Machinery, 2018, pp. 2150–2159, isbn: 9781450355520. doi:
10.1145/3219819.3220097. url: https://doi.org/10.1145/3219819.3220097.

[45] M. Kuramochi and G. Karypis, “Grew-a scalable frequent subgraph discovery algorithm,”
in Proceedings of the Fourth IEEE International Conference on Data Mining, ser. ICDM
’04, USA: IEEE Computer Society, 2004, pp. 439–442, isbn: 0769521428.

[46] G. Preti, G. De Francisci Morales, and M. Riondato, “Maniacs: Approximate mining
of frequent subgraph patterns through sampling,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, ser. KDD ’21, Virtual
Event, Singapore: Association for Computing Machinery, 2021, pp. 1348–1358, isbn:
9781450383325. doi: 10.1145/3447548.3467344. url: https://doi.org/10.1145/3447548.
3467344.

[47] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour, “Scalemine:
Scalable parallel frequent subgraph mining in a single large graph,” in Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’16, Salt Lake City, Utah: IEEE Press, 2016, 61:1–61:12, isbn:
978-1-4673-8815-3. url: http://dl.acm.org/citation.cfm?id=3014904.3014986.

71

https://doi.org/10.1145/3018661.3018732
http://doi.acm.org/10.1145/3018661.3018732
http://doi.acm.org/10.1145/3018661.3018732
https://doi.org/10.1145/3292500.3330995
https://doi.org/10.1145/3292500.3330995
https://doi.org/10.1145/2629564
https://doi.org/10.1145/2629564
https://doi.org/10.1145/2629564
https://doi.org/10.1109/ICPP.2010.67
https://doi.org/10.1109/ICPP.2010.67
https://doi.org/10.1145/3219819.3220097
https://doi.org/10.1145/3219819.3220097
https://doi.org/10.1145/3447548.3467344
https://doi.org/10.1145/3447548.3467344
https://doi.org/10.1145/3447548.3467344
http://dl.acm.org/citation.cfm?id=3014904.3014986

[48] V. Bhatia and R. Rani, “Ap-fsm: A parallel algorithm for approximate frequent subgraph
mining using pregel,” Expert Systems with Applications, vol. 106, pp. 217–232, 2018,
issn: 0957-4174. doi: https ://doi .org/10.1016/j .eswa.2018.04.010. url: https :
//www.sciencedirect.com/science/article/pii/S0957417418302409.

[49] S. Purohit, S. Choudhury, and L. B. Holder, “Application-specific graph sampling
for frequent subgraph mining and community detection,” in 2017 IEEE International
Conference on Big Data (Big Data), 2017, pp. 1000–1005. doi: 10.1109/BigData.2017.
8258022.

[50] M. Bressan, “Efficient and near-optimal algorithms for sampling connected subgraphs,”
in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
ser. STOC 2021, Virtual, Italy: Association for Computing Machinery, 2021, pp. 1132–
1143, isbn: 9781450380539. doi: 10.1145/3406325.3451042. url: https://doi.org/10.
1145/3406325.3451042.

[51] P. Jiang, Y. Wei, J. Su, R. Wang, and B. Wu, “Samplemine: A framework for applying
random sampling to subgraph pattern mining through loop perforation,” in Proceedings
of the International Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ’22, Chicago, Illinois: Association for Computing Machinery, 2023, pp. 185–
197, isbn: 9781450398688. doi: 10.1145/3559009.3569658. url: https://doi.org/10.
1145/3559009.3569658.

[52] A. A. Benczúr and D. R. Karger, “Approximating s-t minimum cuts in õ(n2) time,” in
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
ser. STOC ’96, Philadelphia, Pennsylvania, USA: Association for Computing Machinery,
1996, pp. 47–55, isbn: 0897917855. doi: 10.1145/237814.237827. url: https://doi.org/
10.1145/237814.237827.

[53] W. S. Fung, R. Hariharan, N. J. Harvey, and D. Panigrahi, “A general framework
for graph sparsification,” in Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing, ser. STOC ’11, San Jose, California, USA: Association for
Computing Machinery, 2011, pp. 71–80, isbn: 9781450306911. doi: 10.1145/1993636.
1993647. url: https://doi.org/10.1145/1993636.1993647.

[54] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems,” in Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, 2004, pp. 81–90.

[55] D. A. Spielman and N. Srivastava, “Graph sparsification by effective resistances,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1913–1926, 2011. doi: 10.1137/080734029.
eprint: https://doi.org/10.1137/080734029. url: https://doi.org/10.1137/080734029.

[56] D. A. Spielman and S.-H. Teng, “Spectral sparsification of graphs,” SIAM Journal on
Computing, vol. 40, no. 4, pp. 981–1025, 2011.

[57] R. A. Rossi, R. Zhou, and N. K. Ahmed, “Estimation of graphlet counts in massive
networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 1,
pp. 44–57, 2019. doi: 10.1109/TNNLS.2018.2826529.

[58] J. Shi, L. Dhulipala, and J. Shun, “Parallel clique counting and peeling algorithms,” in
Conference on Applied and Computational Discrete Algorithms, 2020.

72

https://doi.org/https://doi.org/10.1016/j.eswa.2018.04.010
https://www.sciencedirect.com/science/article/pii/S0957417418302409
https://www.sciencedirect.com/science/article/pii/S0957417418302409
https://doi.org/10.1109/BigData.2017.8258022
https://doi.org/10.1109/BigData.2017.8258022
https://doi.org/10.1145/3406325.3451042
https://doi.org/10.1145/3406325.3451042
https://doi.org/10.1145/3406325.3451042
https://doi.org/10.1145/3559009.3569658
https://doi.org/10.1145/3559009.3569658
https://doi.org/10.1145/3559009.3569658
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/237814.237827
https://doi.org/10.1145/1993636.1993647
https://doi.org/10.1145/1993636.1993647
https://doi.org/10.1145/1993636.1993647
https://doi.org/10.1137/080734029
https://doi.org/10.1137/080734029
https://doi.org/10.1137/080734029
https://doi.org/10.1109/TNNLS.2018.2826529

[59] N. Alon, R. Yuster, and U. Zwick, “Color-coding: A new method for finding simple paths,
cycles and other small subgraphs within large graphs,” in Proceedings of the Twenty-sixth
Annual ACM Symposium on Theory of Computing, ser. STOC ’94, Montreal, Quebec,
Canada: ACM, 1994, pp. 326–335, isbn: 0-89791-663-8. doi: 10.1145/195058.195179.
url: http://doi.acm.org/10.1145/195058.195179.

[60] N. Alon, R. Yuster, and U. Zwick, “Color-coding,” J. ACM, vol. 42, no. 4, pp. 844–856,
Jul. 1995, issn: 0004-5411. doi: 10.1145/210332.210337. url: https://doi.org/10.1145/
210332.210337.

[61] F. Hüffner, S. Wernicke, and T. Zichner, “Algorithm engineering for color-coding with
applications to signaling pathway detection,” Algorithmica, vol. 52, pp. 114–132, 2008.

[62] G. M. Slota and K. Madduri, “Parallel color-coding,” Parallel Computing, vol. 47,
pp. 51–69, 2015, Graph analysis for scientific discovery, issn: 0167-8191. doi: https:
//doi.org/10.1016/j.parco.2015.02.004. url: https://www.sciencedirect.com/science/
article/pii/S0167819115000423.

[63] V. T. Chakaravarthy, M. Kapralov, P. Murali, F. Petrini, X. Que, Y. Sabharwal, and B.
Schieber, “Subgraph counting: Color coding beyond trees,” in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Los Alamitos, CA, USA:
IEEE Computer Society, May 2016, pp. 2–11. doi: 10.1109/IPDPS.2016.122. url:
https://doi.ieeecomputersociety.org/10.1109/IPDPS.2016.122.

[64] Z. Zhao, G. Wang, A. R. Butt, M. Khan, V. A. Kumar, and M. V. Marathe, “Sahad:
Subgraph analysis in massive networks using hadoop,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, 2012, pp. 390–401. doi: 10.1109/IPDPS.
2012.44.

[65] X. Chen, Y. Li, P. Wang, and J. C. S. Lui, “A general framework for estimating graphlet
statistics via random walk,” Proc. VLDB Endow., vol. 10, no. 3, pp. 253–264, Nov.
2016, issn: 2150-8097. doi: 10.14778/3021924.3021940. url: https://doi.org/10.14778/
3021924.3021940.

[66] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in streaming algorithms,
with an application to counting triangles in graphs,” in Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’02, San Francisco,
California: Society for Industrial and Applied Mathematics, 2002, pp. 623–632, isbn:
089871513X.

[67] J. Kallaugher, A. McGregor, E. Price, and S. Vorotnikova, “The complexity of count-
ing cycles in the adjacency list streaming model,” in Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, ser. PODS
’19, Amsterdam, Netherlands: Association for Computing Machinery, 2019, pp. 119–133,
isbn: 9781450362276. doi: 10.1145/3294052.3319706. url: https://doi.org/10.1145/
3294052.3319706.

[68] M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Rubinfeld, and A. Yodpinya-
nee, “Sublinear-time algorithms for counting star subgraphs via edge sampling,” Algo-
rithmica, vol. 80, no. 2, pp. 668–697, Feb. 2018, issn: 0178-4617. doi: 10.1007/s00453-
017-0287-3. url: https://doi.org/10.1007/s00453-017-0287-3.

73

https://doi.org/10.1145/195058.195179
http://doi.acm.org/10.1145/195058.195179
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/https://doi.org/10.1016/j.parco.2015.02.004
https://doi.org/https://doi.org/10.1016/j.parco.2015.02.004
https://www.sciencedirect.com/science/article/pii/S0167819115000423
https://www.sciencedirect.com/science/article/pii/S0167819115000423
https://doi.org/10.1109/IPDPS.2016.122
https://doi.ieeecomputersociety.org/10.1109/IPDPS.2016.122
https://doi.org/10.1109/IPDPS.2012.44
https://doi.org/10.1109/IPDPS.2012.44
https://doi.org/10.14778/3021924.3021940
https://doi.org/10.14778/3021924.3021940
https://doi.org/10.14778/3021924.3021940
https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1007/s00453-017-0287-3
https://doi.org/10.1007/s00453-017-0287-3
https://doi.org/10.1007/s00453-017-0287-3

[69] S. Assadi, M. Kapralov, and S. Khanna, “A simple sublinear-time algorithm for counting
arbitrary subgraphs via edge sampling,” in Information Technology Convergence and
Services, 2018.

[70] J. Chen, T. Eden, P. Indyk, S. Narayanan, R. Rubinfeld, S. Silwal, D. Woodruff,
and M. Zhang, “Triangle and four cycle counting with predictions in graph streams,”
Tenth International Conference on Learning Representations (ICLR 2022), url: https:
//par.nsf.gov/biblio/10338743.

[71] A. Arpaci-Dusseau, Z. Zhou, and X. Chen, Accurate and fast approximate graph pattern
mining at scale, 2024. arXiv: 2405.03488 [cs.PF].

[72] A. Mhedhbi and S. Salihoglu, “Optimizing subgraph queries by combining binary and
worst-case optimal joins,” Proc. VLDB Endow., vol. 12, no. 11, pp. 1692–1704, Jul.
2019, issn: 2150-8097. doi: 10.14778/3342263.3342643. url: https://doi.org/10.14778/
3342263.3342643.

[73] J. Leskovec, Snap: Stanford network analysis platform, 2013. url: http://snap.stanford.
edu/data/index.html.

[74] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or a
news media?” In Proceedings of the 19th International Conference on World Wide
Web, ser. WWW ’10, Raleigh, North Carolina, USA: ACM, 2010, pp. 591–600, isbn:
978-1-60558-799-8. doi: 10.1145/1772690.1772751. url: http://doi.acm.org/10.1145/
1772690.1772751.

[75] J. Yang and J. Leskovec, “Defining and evaluating network communities based on
ground-truth,” CoRR, vol. abs/1205.6233, 2012. arXiv: 1205.6233. url: http://arxiv.
org/abs/1205.6233.

[76] P. Boldi, M. Santini, and S. Vigna, “A large time-aware graph,” SIGIR Forum, vol. 42,
no. 2, pp. 33–38, 2008.

[77] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression Techniques,” in
Proceedings of the 13th International Conference on World Wide Web, ser. WWW ’04,
New York, NY, USA: ACM, 2004, pp. 595–602, isbn: 1-58113-844-X. doi: 10.1145/
988672.988752. url: http://doi.acm.org/10.1145/988672.988752.

[78] W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan, “Gpu-accelerated subgraph
enumeration on partitioned graphs,” in Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data, ser. SIGMOD ’20, Portland, OR, USA:
Association for Computing Machinery, 2020, pp. 1067–1082, isbn: 9781450367356. doi:
10.1145/3318464.3389699. url: https://doi.org/10.1145/3318464.3389699.

[79] M. Almasri, I. E. Hajj, R. Nagi, J. Xiong, and W.-m. Hwu, “K-clique counting on gpus,”
arXiv preprint arXiv:2104.13209, 2021. url: https://arxiv.org/abs/2104.13209.

[80] A. Chatterjee, S. Radhakrishnan, and J. K. Antonio, “Counting problems on graphs:
Gpu storage and parallel computing techniques,” in 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops PhD Forum, 2012, pp. 804–
812. doi: 10.1109/IPDPSW.2012.99.

74

https://par.nsf.gov/biblio/10338743
https://par.nsf.gov/biblio/10338743
https://arxiv.org/abs/2405.03488
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.14778/3342263.3342643
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
https://doi.org/10.1145/1772690.1772751
http://doi.acm.org/10.1145/1772690.1772751
http://doi.acm.org/10.1145/1772690.1772751
https://arxiv.org/abs/1205.6233
http://arxiv.org/abs/1205.6233
http://arxiv.org/abs/1205.6233
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/988672.988752
http://doi.acm.org/10.1145/988672.988752
https://doi.org/10.1145/3318464.3389699
https://doi.org/10.1145/3318464.3389699
https://arxiv.org/abs/2104.13209
https://doi.org/10.1109/IPDPSW.2012.99

[81] D. Gavinsky, S. Lovett, M. Saks, and S. Srinivasan, A tail bound for read-k families of
functions, 2012. arXiv: 1205.1478 [cs.DM].

75

https://arxiv.org/abs/1205.1478

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	2 Background
	2.1 Graph Pattern Mining (GPM)
	2.2 Approximate Graph Pattern Mining
	2.3 Sampling Schemes for GPM Problems
	2.3.1 Neighbor Sampling (NS)
	2.3.2 Subgraph Sampling
	2.3.3 Other Sampling Schemes

	2.4 Approximate GPM Systems

	3 Understanding Sampling Tradeoffs
	3.1 Termination Condition and Confidence
	3.2 Characterizing Neighbor Sampling
	3.3 Coarse-grain vs. Fine-grain Sampling

	4 Proposed Mechanisms and Optimizations
	4.1 Online Convergence Detection
	4.2 Eager Verify for Neighbor Sampling
	4.3 Cost Model for Neighbor Sampling
	4.4 Cost Model for Graph Sparsification

	5 System Design and Implementation
	5.1 System Overview and Interface
	5.2 Tradeoff in the GS Engine
	5.3 Fast Profiling for Cost Models
	5.4 Parallel Implementation Details

	6 Evaluation
	6.1 Sampling Performance vs. State-of-the-Art
	6.2 Effectiveness of Convergence Detection
	6.3 Prediction Accuracy of Cost Models
	6.4 System Efficiency

	7 Future Work
	7.1 Expanded Sampling Schemes
	7.2 Distribution and GPU Acceleration

	8 Conclusion
	A Proofs
	A.1 Proof for Online Convergence
	A.2 Lower Bound for Graph Sparsification
	A.3 Proof for Unbiasedness of NS-Prune

	B Artifact
	References

