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Abstract

The transformer architecture has been a significant driving force behind advancements
in deep learning, yet transformer-based models for graph representation learning have
not caught up to mainstream Graph Neural Network (GNN) variants. A major limi-
tation is the large O(𝑛2) memory consumption of graph transformers, where 𝑛 is the
number of nodes. Therefore, we develop a memory-efficient graph transformer for
node classification, capable of handling graphs with thousands of nodes while main-
taining accuracy. Specifically, we reduce the memory use in the attention mechanism
and add a random-walk positional encoding to improve upon the SAN graph trans-
former architecture. We evaluate our model on standard node classification bench-
marks: Cora, Citeseer, and Chameleon. Unlike SAN, which runs out of memory, our
memory-efficient graph transformer can be run on these benchmarks. Compared with
landmark GNN models GCN and GAT, our graph transformer requires 27.92% less
memory while being competitive in accuracy.

Thesis Supervisor: Arvind
Title: Johnson Professor of Computer Science and Engineering

3



4



Acknowledgments

Foremost, I would like to thank my MEng thesis supervisor Arvind and my project

supervisor Dr. Jie Chen for mentoring me and providing me with this opportunity

to work on this project. Their thoughtful insights and unwavering encouragement

helped me work through obstacles and complete this project.

A big thank you to my research scientist mentor Xuhao Chen for his helpful guid-

ance and constructive feedback on my ideas. Thank you to my UROP collaborator,

Siddhant Mukherjee, for tackling this project with me.

To the other members of the Computation Structures Group, Tianhao Huang,

Muhua Xu, and Michael Hadjiivanov, thank you for giving helpful suggestions at the

lab meetings.

And finally, a heartfelt gratitude to my family and friends for the frequent re-

minders to stay on track and be focused. I appreciate the endless support for all my

endeavors and thank you for making my college years an unforgettable experience.

5



6



Contents

1 Introduction 13

2 Related Works 15

2.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Graph Convolutional Network . . . . . . . . . . . . . . . . . . 16

2.1.2 Graph Attention Network . . . . . . . . . . . . . . . . . . . . 16

2.2 Limitations of GNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Graph Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Spectral Attention Network . . . . . . . . . . . . . . . . . . . 20

3 Methodology: Redesigning Model Architecture 23

3.1 Reducing Memory Consumption . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Iteration 1: Removing Redundant Edge Embeddings . . . . . 24

3.1.2 Iteration 2: Removing All Edge Data for Better Performance . 25

3.1.3 Main Graph Transformer . . . . . . . . . . . . . . . . . . . . . 25

3.2 Improving Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Multi-Layer Perceptron Readout Layer . . . . . . . . . . . . . 27

3.2.3 Ineffective Strategies . . . . . . . . . . . . . . . . . . . . . . . 27

4 Experiments 29

4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Experiment Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 30

7



4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion 35

6 Future Work 37

8



List of Figures

2-1 One iteration of message passing for graphs . . . . . . . . . . . . . . 15

2-2 Illustration of attention mechanism in Graph Attention Networks (GAT).

Equation 2.2 and figure are borrowed from [46] . . . . . . . . . . . . . 17

2-3 The over-smoothing problem: as the model gets deeper, node features

become similar everywhere. . . . . . . . . . . . . . . . . . . . . . . . 18

2-4 The over-squashing problem [36] [2]: information from a node’s exponentially-

growing receptive field is compressed into a fixed-size vector. Black

arrows are graph edges; red curved arrows illustrate information flow. 19

2-5 An example of graph transformer architecture; borrowed from [44] . . 20

2-6 The Spectral Attention Network (SAN) graph transformer architecture

[26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-1 Our proposed graph transformer architecture. . . . . . . . . . . . . . 23

9



10



List of Tables

4.1 Benchmark properties . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Total Space (GB) utilized by GPU to evaluate benchmark. PE: Posi-

tional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Node Classification Accuracy. Proportion of nodes with correct accu-

racy. PE: Positional Encoding; OoM: Out of memory. . . . . . . . . . 32

4.4 Number of seconds to evaluate benchmark. PE: Positional Encoding . 33

11



12



Chapter 1

Introduction

Graphs are a natural representation for data with intricate relationships in the real

world. Social networks [40, 18], biological networks [14, 18], and recommendation

systems [15] are all examples of phenomenon that can be modeled as graphs. Within

machine learning, most the models operating on graph structure data are graph neu-

ral networks (GNNs)[43]. Generally, this class of deep learning models iteratively

update node representations based on neighboring nodes to obtain local and global

patterns within the graph. However, long range dependencies are difficult for GNNs

to understand as nodes that are connected through intermediary nodes have a weaker

influence on one another [2]. Over-smoothing can also occur when information prop-

agates too broadly during message passing [33]. For tasks where the global graph

structure plays a crucial role, this can be problematic. Furthermore, GNNs have lim-

ited interpretability because the intricate transformations within the layers make it

difficult to comprehend the specific nodes and edges that contribute to the decision

making [45].

As a result, another graph architecture framework, the graph transformer is gain-

ing popularity. Transformers have gained notable achievements in natural language

processing (NLP) [9, 3, 28] and computer vision (CV) [21], so it is logical to ex-

plore their potential for graphs. By leveraging the self-attention mechanism, the

transformer can selectively attend to relevant nodes and features, which preserves

discriminative information and prevents over-smoothing. The attention module as-
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signs weights to nodes and edges based on their relevance for a certain task, which

allows the model to be interpretable and therefore determines trustworthiness.

Although graph transformers have many benefits, one major drawback is that

graph transformers are not easily scalable [32]. The computation complexity increases

quadratically as the number of nodes increase due to updating the attention scores for

each node. On the other hand, because GNNs often include message passing schemes

[35], when the number of nodes increases linearly, the computational complexity also

increases linearly. Thus, we aim to explore methods of improving the scalability of

graph transformers while maintaining the overall accuracy.

The Spectral Attention Network (SAN) [26] is graph transformer that produces

competitive results for node classification, graph classification, and link prediction

benchmarks. It exhibits a significant performance advantage over other attention

based models. SAN employs graph spectral theory, which analyzes eigenvalues and

eigenvectors of matrices associated with the graphs and encodes relevant positional

encoding information to node features. The models were evaluated on node classi-

fication for graphs that typically have 100-200 nodes. But, when applied to graphs

with thousands or tens of thousands of nodes, SAN exhausts the memory resources

of the GPU.

Hence, our objective is to develop a memory efficient graph transformer for node

classification for graphs on the order of thousands of nodes while preserving their accu-

racy. Our models utilize random walk landing probabilities as each node’s positional

encoding as well as eliminate redundant components of the self attention module. Our

evaluation on the Cora [27], Citeseer [16] and Chameleon [30] benchmarks showed a

significant decrease in memory consumption while maintaining competitive accuracy.
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Chapter 2

Related Works

2.1 Graph Neural Networks

Graph neural networks (GNNs) [34, 42, 47] aim to propagate information across graph

nodes using neural network layers. A key component of GNNs is representing graph

structure information through a message passing scheme. The graph nodes iteratively

update their representations by exchanging information with neighboring nodes [42].

While there are many variations of this idea, these architectures often have an over-

smoothing and over-squashing problem, which makes it difficult for the graph to learn

deep representations and propagate information to distant nodes [17].

Figure 2-1: One iteration of message passing for graphs
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2.1.1 Graph Convolutional Network

Graph Convolutional Network (GCN) [25] is a semi-supervised neural network ar-

chitecture for graph structured data. To encode graph structures, GCN takes ad-

vantage of first-order approximations of spectral graph convolutions. We display

this in eq. (2.1), where ℎ
(𝑙)
𝑗 = node 𝑗’s feature in layer 𝑙, 𝑊 (𝑙) = convolution weight

matrix for layer 𝑙, 𝒩 (𝑖) = set of node 𝑖’s neighbors, normalization constant 𝑐𝑖𝑗 =√︀
|𝒩 (𝑖)|

√︀
|𝒩 (𝑗)|, and 𝜎=activation function (GCN uses ReLU). Give these values,

we can compute the node features ℎ
(𝑙+1)
𝑖 for the next layer (𝑙 + 1).

ℎ
(𝑙+1)
𝑖 = 𝜎

⎛⎝ ∑︁
𝑗∈𝒩 (𝑖)

1

𝑐𝑖𝑗
𝑊 (𝑙)ℎ

(𝑙)
𝑗

⎞⎠ (2.1)

This layer-wise propagation rule allowed GCN to outperform other models released

at the time on citation networks and knowledge graphs. Since the advent of GCN,

future works have built upon this foundation. GraphSage [19] uses the same update

rule in eq. (2.1) but replace 𝑐𝑖𝑗 = |𝒩 (𝑖)|.

2.1.2 Graph Attention Network

The Graph Attention Network (GAT) [38] is a landmark model that utilizes masked

self-attention layers that allows different weights to be specified for each node in a

neighborhood. Specifically, it replaces the convolution in the update rule of GCN [25]

with an updated rule using attention as seen in eq. (2.2). We use the embeddings

of layer 𝑙 to calculate ℎ
(𝑙+1)
𝑖 , node 𝑖’s embedding in layer 𝑙 + 1. See Figure 2-2 as an

illustration of this attention-based update rule described in equation 2.2.
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Figure 2-2: Illustration of attention mechanism in Graph Attention Networks (GAT).
Equation 2.2 and figure are borrowed from [46]

𝑧
(𝑙)
𝑖 = 𝑊 (𝑙)ℎ

(𝑙)
𝑖 ,

𝑒
(𝑙)
𝑖𝑗 = LeakyReLU

(︁
𝑎⃗(𝑙)

𝑇
(︁
𝑧
(𝑙)
𝑖 ‖𝑧(𝑙)𝑗

)︁)︁
,

𝛼
(𝑙)
𝑖𝑗 =

exp
(︁
𝑒
(𝑙)
𝑖𝑗

)︁
∑︀

𝑘∈𝒩 (𝑖) exp
(︁
𝑒
(𝑙)
𝑖𝑘

)︁ ,
ℎ
(𝑙+1)
𝑖 = 𝜎

⎛⎝ ∑︁
𝑗∈𝒩 (𝑖)

𝛼
(𝑙)
𝑖𝑗 𝑧

(𝑙)
𝑗

⎞⎠ ,

(2.2)

First, 𝑧(𝑙)𝑖 is computed from a linear transformation of embedding ℎ
(𝑙)
𝑖 and learnable

weight matrix 𝑊 (𝑙). Then, we calculate the unnormalized attnetion score 𝑒(𝑙)𝑖𝑗 between

nodes 𝑖 and 𝑗 by concatenating (||) the embeddings 𝑧(𝑙)𝑖 and 𝑧
(𝑙)
𝑗 , taking the dot product

with learnable weight vector 𝑎⃗(𝑙)
𝑇 , and then applying a LeakyReLU function at the

end. Afterwards, we normalize the attention score through the softmax function

to yield normalized attention scores between two nodes 𝛼
(𝑙)
𝑖𝑗 . Finally, to calculate

ℎ
(𝑙+1)
𝑖 , node 𝑖’s embedding in layer 𝑙 + 1, we take a weighted sum of the embeddings

from neighbors 𝑧(𝑙)𝑗 based on the attention scores 𝛼(𝑙)
𝑖𝑗 and normalize with the sigmoid

function.
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2.2 Limitations of GNNs

Although graph neural networks have shown great promise in graph-based learning

tasks, they also come with certain limitations. GNNs heavily rely on the graph

structure to perform well [39]. So, if the graph structure changes significantly or if

new nodes or edges are added, the models may require retraining, making them less

adaptive to dynamic graphs. Furthermore, GNNs often have a limited receptive field

and may not capture the global context of the entire graph effectively [41]. This can

be a limitation for tasks that require understanding the broader relationships in the

graph.

Figure 2-3: The over-smoothing problem: as the model gets deeper, node features
become similar everywhere.

In deep Graph Neural Network architectures, information can be excessively smoothed

out across multiple layers, resulting in the loss of discriminative features for node

classification tasks [5, 24]. Generally, information is propagated between neighboring

nodes through message passing mechanisms. And at each layer, a node aggregates

features from its neighbors. As the layers of the GNN increase, nodes aggregate in-

formation from their neighbors repeatedly. Over time, this can lead to the blending

of node features, causing nodes that were initially dissimilar to become more alike

[4]. As a result, the model loses the ability to distinguish between nodes that should

have different representations, leading to diminished classification performance.

Additionally, graph neural networks (GNNs) with message passing based schemes

have node features which traverse the input graph. It has been highlighted that the

18



Figure 2-4: The over-squashing problem [36] [2]: information from a node’s
exponentially-growing receptive field is compressed into a fixed-size vector. Black
arrows are graph edges; red curved arrows illustrate information flow.

effectiveness of message passing for tasks involving distant interactions is hindered

by the distortion of information from faraway nodes [36]. The over-squashing phe-

nomenon, is due to the presence of graph bottlenecks; the number of k-hop neighbors

dramatically increases with the increase of k [2].

Transformers offer a resolution to these limitations. They are global context aware

and less susceptible to over-smoothing due to the lack of message passing scheme.

2.3 Graph Transformers

Transformers [37] have had great success in language [8, 31] and vision [20, 10] because

it is adept at modeling sequential data and represent long range temporal dependen-

cies [7]. However, graph transformers have not yielded as high performance as other

graph neural networks in common graph representation datasets [44, 23, 22]. A chal-

lenge specific to graphs is how to encode graph structure and node position. Unlike

sentences, where each word has a position within a sequence, nodes in a graph are

not inherently ordered. Multiple techniques provide the transformer with information

about the structural relationships between nodes. These include utilizing the eigen-

vectors of the graph Laplacian [11], pair-wise graph distances [44, 1], and relative
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positional encoding [29].

Linear Linear Linear
Q K V
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v5

feature
length
D

Figure 2-5: An example of graph transformer architecture; borrowed from [44]

Graphormer [44] (see fig. 2-5) proposes three structural encoding methods to help

the transformer understand the structural information of graphs. Specifically, it adds

a centrality encoding to signify which node is important, a spatial encoding to rep-

resent spatial relation such as distance between two nodes, and an edge encoding

that can propagate information through the whole graph. Another architecture,

GraphGPS [32], combines positional and structural encoding, local message-passing,

and global attention and is able to achieve linear complexity in the number of nodes

and edges 𝑂(𝑁 + 𝐸). We focused on a class of graph transformers with spectral at-

tention because its mechanisms can serve as a form of graph regularization [6]. They

implicitly encouraging the model to attend to relevant neighbors and suppress noise

or irrelevant information during feature aggregation.

2.3.1 Spectral Attention Network

The Spectral Attention Network (SAN) [26] (see fig. 2-6) tackles the lack of an explicit

graph structure with a learned positional encoding (LPE) [12] that determines the

position of nodes by Laplacian eigen-functions across the full spectrum of a graph. In

20



theory, by concatenating the LPE to the node features and utilizing a fully connected

graph, the model should have improvements in differentiating graphs and recognizing

similar sub-structures [26]. The fully-connected property allows the transformer to

avoid the over-squashing problem that exist for many GNNs.

Figure 2-6: The Spectral Attention Network (SAN) graph transformer architecture
[26]

Our attention mechanism in the main Transformer is based on SAN [26] because

the model combines the key, query, and value of graphs with "real" and "fake" edges.

However, it cannot evaluate graphs with more than thousands of nodes. The attention

mechanism combines the key and query linear layers in a manner that results large

intermediary matrices. Therefore, our model attempts to re-purpose the original

Transformer to graphs by considering the graph structure and improving attention

estimates with edge feature embeddings.
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Chapter 3

Methodology: Redesigning Model

Architecture

After carefully weighing the merits and drawbacks of the preceding models, we de-

signed model guided by SAN that reduces memory consumption while preserving

accuracy. fig. 3-1 illustrates our proposed graph transformer architecture. In the

following section, we discuss the details of this architecture design.

Figure 3-1: Our proposed graph transformer architecture.
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3.1 Reducing Memory Consumption

Graph transformers are difficult to scale as the computational complexity increases

quadratically as nodes increase linearly. Specifically, the propagate attention module

in SAN causes datasets with graphs on the order of thousands of nodes to run out of

memory. For example, SAN was unsuccessful in running CORA, a citation network

with 2708 nodes, on a NVIDIA V100 32GB GPU due to the lack of memory. In the

self-attention block of the original architecture, functions was applied to all the edges

to update node features was the root cause of the memory shortage.

SAN’s self-attention module combines four components — key (𝐾), query (𝑄),

value (𝑉 ), and edge (𝐸). The keys and queries are first multiplied element wise

and then the available edge features multiplied element wise as well to modify the

self-attention weights. Joining the elements in this manner creates the need to store

intermediary data that will eventually collapsed. Another issue is that the target

datasets do not have edge features. Thus, the only differentiating factor is whether

the edge is "real" or "fake." To reduce the memory footprint, we explored two new

implementations of self-attention.

3.1.1 Iteration 1: Removing Redundant Edge Embeddings

In the first iteration of strategies to circumvent the edge function application problem,

we only kept track of two edge embeddings — real or fake edge embeddings — and

combined the components in a different order. Thus, we was able to compress the E

matrix shape from (𝑁(𝑁 − 1) ×𝐻 ×𝐷) to (2 ×𝐻 ×𝐷) where N is the number of

nodes, 𝐻 is the number of heads and D is output dimensions for the self-attention

module. By performing element wise multiplication on the 𝐾 and 𝐸 first and then

combining it with 𝑄 afterwards, the self-attention block significantly reduced the

number of intermediary computations.
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3.1.2 Iteration 2: Removing All Edge Data for Better Perfor-

mance

For the second iteration, the edge embeddings were completely removed. Thus, the

only element wise multiplication was between the key and query matrices. Instead of

updating node features by function applications for each edge, 𝐾 and 𝑄 were com-

bined via matrix multiplication. Removing the edge embeddings completely showed

major improvements compared to keeping embeddings for real and fake edges. Both

versions the memory efficient spectral based graph transformer were able to run on a

singular NVIDIA 16GB V100 GPU.

3.1.3 Main Graph Transformer

The attention block leverages the ideas behind the classic transformer architecture

and is adapted to graph structured data. Let 𝑛𝑙
𝑖 be the features of the i -th node

features in the l -th layer and 𝑑ℎ = 𝑑
𝐻

is the hidden dimension d of a head. The

equation below applies SAN’s multi-head attention over the nodes in the graph.

𝑛̂𝑙+1
𝑖 = 𝑂𝑙

𝑛

𝐻n

ℎ=1

(
∑︁
𝑗∈𝑉

𝑤ℎ,𝑙
𝑖𝑗 𝑉

ℎ,𝑙𝑛𝑙
𝑗) (3.1)

where 𝑂𝑙
𝑛 ∈ R𝑑×𝑑, 𝑉 ℎ,𝑙 ∈ R𝑑ℎ×𝑑. H is the number of heads while ‖ represents concate-

nation.

To maintain the difference between edges that are originally connected (real) and

those that are linked due to construct a full graph (fake), the attention weights 𝑤𝑘,𝑙
𝑖𝑗

for layer l and head h are defined as follows:

𝑤̂𝑘,𝑙
𝑖𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑄1,ℎ,𝑙𝑛𝑙

𝑖 ∘𝐾1,ℎ,𝑙𝑛𝑙
𝑖√

𝑑ℎ
if i and j are connected by real edge

𝑄2,ℎ,𝑙𝑛𝑙
𝑖 ∘𝐾1,ℎ,𝑙𝑛𝑙

𝑖√
𝑑ℎ

otherwise

(3.2)
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𝑤𝑘,𝑙
𝑖𝑗 =

⎧⎪⎨⎪⎩
1

1+𝛾
· softmax(

∑︀
𝑑ℎ
𝑤̂ℎ,𝑙

𝑖𝑗 ) if i and j are connected by real edge

𝛾
1+𝛾

· softmax(
∑︀

𝑑ℎ
𝑤̂ℎ,𝑙

𝑖𝑗 ) otherwise
(3.3)

where 𝑄1,ℎ,𝑙, 𝑄2,ℎ,𝑙, 𝐾1,ℎ,𝑙, 𝐾2,ℎ,𝑙 ∈ R𝑑𝑗×𝑑 and ∘ represents element-wise multipli-

cation. 𝑄1 and 𝐾1 are the queries and keys for all pairs of nodes with a "real" or

connected edge while 𝑄2 and 𝐾2 are "fake" or disconnected edges. The hyperparam-

eter 𝛾 controls the degree of full graph attention as different datasets require varying

amounts of long range dependencies. To mitigate the exploding gradients problem,

the softmax outputs are clipped to a value between -5 and 5.

3.2 Improving Accuracy

After establishing a model that worked within the memory constraints of a single

GPU, we addressed parts of the architecture that potentially negatively impacted the

accuracy.

3.2.1 Positional Encoding

To encode graph structure into transformers, many models leverage the eigenvalues

and eigenvectors of the graph Laplacian. SAN, in particular, takes the 𝑚 smallest

normalized eigenvalues and eigenvectors where 𝑚 is a tuned hyperparameter. After

a linear layer transforms these values, a multi-layer transformer encoder is a applied.

The resulting learned positional encoding (LPE) is then included in the node em-

beddings of the graph. While this approach works well for graphs on the order of

hundreds of nodes that is a singular connected component, it causes mismatched

magnitudes for eigenvalues and eigenvectors for the target datasets.

No Positional Encoding

Through informal experiments of removing different combinations of the linear layer,

transformer, and eigenvalues of the positional encoding in Section 3.2.3, it was deter-

mined that SAN performed better after the positional encoding block was completely
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removed. As a result, my modifications aligned with the findings. The absence of a

positional encodings for nodes does not does not equate to the lack of graph struc-

ture information in a model though. The location of each node within a graph can

be determined through the differences between the sparse graph with all real edges

and the full graph that includes the fake edges as well.

Random Walks

Another alternative to the Laplacian based positional encoding is to use random

walk (RW) landing probabilities to encode graph structure [13]. This RW diffusion

process leverages the chance a walk lands on a specific node given a specific number of

steps. Experimentally, it was proven that positional encoding based on a random walk

scheme performs better than a graph Laplacian scheme [13]. Interestingly, based on

experiments results (Section 4.3), the accuracy is similar for models with no positional

encoding and utilizing random walk probabilities.

3.2.2 Multi-Layer Perceptron Readout Layer

After updating the weights of the nodes via the graph transformer layers, the multi-

layer perceptron (MLP) readout layer reduces each node’s embeddings from the out-

put dimensions into the number of classes. Theoretically, running multiple linear and

ReLU on a matrix to reduce the vector size of each node embedding should assist

with the representation power of the weights as well as the vanishing gradients issue.

Contrary to expectations, this causes the resulting values in the vector to be indis-

criminate and therefore bias towards choosing the first class. Thus, the model applies

a singular linear and ReLU function to alleviate this issue.

3.2.3 Ineffective Strategies

Through the process of refining the architecture of the new model, there were a few

notable changes that appeared promising but were ultimately ineffective. After dis-

covering the mismatched eigenvalue and eigenvector magnitude problem, we wanted
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to determine whether a singular component of the original SAN positional encoding

scheme was the issue. Note: all of the following architecture changes are independent

of one another.

First, we removed the eigenvalues because experimentally, they were 10 magni-

tudes smaller than the eigenvectors. The average accuracy only increased approxi-

mately 3% and was still significantly below the results of landmark models such as

GAT and GCN.

Another segment within this scheme was the linear layer. We wanted to check

whether the inputs to the PE Transformer required a more complex and nonlinear

transformation, so we changed the linear to a multi-layer perceptron (MLP) layer.

The changes were not notable; in fact, there was a <1% drop in accuracy.

We also removed the PE Transformer to simplify the architecture and it pro-

duced a <1% improvement. Thus, we concluded that the numerical instability of the

eigenvalues and eigenvectors cannot be attributed to one specific part of the graph

Laplacian scheme.
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Chapter 4

Experiments

We validated the model on a number of node classification benchmarks and evaluated

accuracy, space, and time metrics.

4.1 Benchmarks

The benchmarks Cora [27], Citeseer [16] and Chameleon [30] were chosen as they

were node classification tasks with a few thousand nodes. SAN was evaluated on

graphs that were tens to hundreds of nodes, thus we determined that an increase of

magnitude would be suitable.

Cora Dataset The Cora dataset is a citation network benchmark dataset for node

classification tasks. The dataset consists of nodes represented by scientific papers

belonging to different research topics and edges represent citations between papers.

Each publication has 1433 features that are unique binary word vectors — 0 or 1

depending on the presence of the word within the paper. The goal is to classify each

paper into 1 of 7 topics based on its features and the citation relationships between

papers.

CiteSeer Dataset The CiteSeer dataset also represents a citation network and is

very similar to Cora as each publication is represented as a node in the graph, and the
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edges denote the citation relationships between papers. There are 3703 0/1-valued

word vectors as features and each publication is assigned to 1 of 6 research areas for

node classification.

Chameleon Dataset Chameleon is a page-to-page network where its 2,277 nodes

are Wikipedia articles about chameleons and its edges represent mutual links be-

tween the articles. The node features indicate the presence of nouns in the articles.

The task is to classify the nodes into 5 classes in terms of their average monthly traffic.

The following table is a summary of benchmark attributes.

Cora CiteSeer Chameleon

# of Nodes 2708 3312 2277

# of Edges 5429 4732 36101

# of Features 1433 3703 2325

# of Classes 7 6 5

Table 4.1: Benchmark properties

4.2 Experiment Methodology

To evaluate our model, we compare it to two landmark models: GCN and GAT.

As each model implementation tunes their hyperparameter and architectures, we

standardize the neural network pipeline and specifically change the graph transformer

layer. By comparing the landmark models’ results with our Graph Transformer (GT)

layer, we are able to determine whether our results are competitive. We run four

different models on the benchmarks:

1. Model with two GT layers and random walk probabilities as positional encoding.

2. Model with two GT layers and no positional encoding.

3. Model with two GCN layers
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4. Model with two GAT layers

To ensure that these models are compared equally, we use the same hyperparameters.

For example, we standardized the number of epoch by setting a limit 1000 epochs.

To ensure reproducibility, we specify a seed for each of the runs. The results are the

average of 15 random seeds.

4.3 Results

The following tables summarize the average runs of each of four models on the space,

accuracy, and time consumption metrics. First, we look at the average memory

consumption for each of these models as our main goal was to reduce the space (in

GB) required for graph transformers.

Cora Citeseer Chameleon

Ours w/ PE 11.4751 ± 0.00 9.2920 ± 0.00 12.8026 ± 0.00

Ours w/o PE 11.5737 ± 0.00 9.3905 ± 0.00 12.8047 ± 0.00

GCN 15.7596 ± 0.00 15.6799 ± 0.00 15.7596 ± 0.00

GAT 15.5058 ± 0.00 15.2395 ± 0.00 15.4450 ± 0.00

SAN OoM OoM OoM

Table 4.2: Total Space (GB) utilized by GPU to evaluate benchmark. PE: Positional

Encoding

Notably, SAN resulted an out of memory error when run on these datasets, which

was the intial premise for modifying the model. Our models with PE and without

PE, required a similar amount of space. But, it is unexpected to see that the model

without positional encoding needed more memory as space was required to store the

extra PE information. Between runs, the memory consumption stayed exactly the

same, which is expected.

The models with random walk landing probabilities and no positional encoding

consistently require less GPU memory compared to the GCN and GAT models for all

31



three benchmarks (Cora, Citeseer, and Chameleon). In general, graph transformers

tend to consume more memory compared to traditional GNNs because graph neural

networks typically operate on a fixed-size neighborhood around each node and use

message passing mechanisms to aggregate information from neighboring nodes. Thus,

it is promising that our model demonstrates a reduced space requirement compared

to GCN while maintaining competitive accuracy.

Cora Citeseer Chameleon

Ours w/ PE 0.7862 ± 0.0169 0.6330 ± 0.0101 0.6304 ± 0.0093

Ours w/o PE 0.7376 ± 0.0152 0.6375 ± 0.0093 0.6308 ± 0.0132

GCN 0.7794 ± 0.0016 0.6276 ± 0.0030 0.5746 ± 0.0052

GAT 0.7770 ± 0.0153 0.6410 ± 0.0081 0.6029 ± 0.0285

Table 4.3: Node Classification Accuracy. Proportion of nodes with correct accuracy.

PE: Positional Encoding; OoM: Out of memory.

Through our experiments, our model with random walk landing probabilities tend

to do better or similar to models with no positional encoding. Each of the datasets

saw different accuracy performances. For Cora, the random walk model had higher

accuracy than both GCN and GAT. On the other hand, Citeseer only performed

better than GCN. Both of our models performed better than GCN and GAT for

Chameleon. And for all three datasets, our models performed better than GCN by

2.91% and 0.58% better than GAT. Thus, we can conclude that our random walk

model accuracy is generally competitive with GCN and GAT.

Interestingly, the results for our models with PE and without PE for both Chameleon

and Citeseer are quite similar but very different for Cora. This could be attributed

to Cora having the greatest number of classes but the least amount of features. Last

but not least, we look at the inference time (in seconds) for each of the models.
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Cora Citeseer Chameleon

Ours w/ PE 156.39 ± 0.63 230.76 ± 4.28 74.16 ± 4.73

Ours w/o PE 155.80 ± 0.98 229.25 ± 2.73 72.82 ± 3.28

GCN 45.64 ± 0.97 61.15 ± 0.76 90.31 ± 0.27

GAT 163.59 ± 5.30 338.18 ± 5.84 352.77 ± 88.92

Table 4.4: Number of seconds to evaluate benchmark. PE: Positional Encoding

Within our models, the presence of a positional encoding with random walk in-

creased the time, but not significantly. Both our models took less time than GAT.

Two of the benchmarks took more time than GCN, which is expected as the localized

nature of GNN operations allows for better parallelism, enabling faster computations

on GPUs.

For the Chameleon benchmark, our models did better – perhaps due to the nature

of the task or the smaller number of classes and nodes. And even though Chameleon

has a much larger number of edges compared to Cora and Citeseer, the lack of edge

embeddings for our model allowed the inference time to be decreased significantly

compared to the other graph transformer benchmark, GAT. GAT had a much higher

standard deviation than all other models which means the time it takes for inference

tasks has high variance.

In summary, the model significantly saves memory consumption compared to two

landmark graph networks while achieving competitive accuracy for Cora, Citeseer,

and Chameleon benchmarks.
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Chapter 5

Conclusion

In this work, we designed a new graph transformer (GT) architecture that reduces

memory while maintaining a competitive accuracy. The architecture decreases mem-

ory consumption by strategically removing edge embeddings. We then incrementally

refine the architecture by adjusting various sections of the model to improve accu-

racy. Specifically, we use random walks landing probabilities for positional encoding,

and applied a singular linear layer within the multi-layer perceptron readout layer.

This design allows the model to leverage nodes of higher importance based on fre-

quency of visit in the graph. The modified MLP readout layer prevents the graph

from over-fitting on dataset as it decreases the model’s ability to memorize noise.

We evaluate our proposed GT architecture using three benchmark datasets: Cora,

CiteSeer, and Chameleon, on which an existing GT architecture SAN runs out of

memory. We compared the prediction accuracy of our design against representative

GNN models, GCN and GAT. Specifically, we found that our proposed GT archi-

tecture with random walk positional encoding achieves competitive accuracy, but

consumes 28.68% and 27.16% less memory than GCN and GAT, respectively. We

were able to maintain a competitive accuracy with a 2.91% and 0.58% increase in

node classification correctness for GCN and GAT, respectively. In terms of training

speed, our model is 38.58% faster than GAT but 166.51% slower than GCN.

This study demonstrates that memory-efficient graph transformers, which is im-

portant for real-world applications, can yield competitive accuracy. The exciting
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results can encourage exploration of more advanced GT architectures and enable

training on massive-scale graph data to further improve model accuracy.
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Chapter 6

Future Work

There are several potential avenues for further research and areas of improvement to

enhance the model’s performance. We hope to explore other alternatives to random

walks landing probabilities and the graph Laplacian for positional encoding. An

improved positional encoding scheme would not only allow for better presentation

of the graph structure, but also improve the attention mechanism. Furthermore, we

aim to run our experiments on benchmarks with increased number of nodes. Graphs

datasets that have a magnitude greater of nodes include Computer, Pubmed, and

Physics with 13k, 20k, and 34k nodes, respectively. We also seek to compare

datasets with homophily and heterophily graphs; homophily refers to the tendency

of edges in a network to connect similar nodes.

Our model has the potential to be a building block for future model architecture

and extend its applicability to real-world scenarios. Current graph transformers are

not feasible for node classification on graphs in the range of 100k - 1 million nodes

on a singular GPU due to memory limitations. Thus, a next step would be to use

this architecture as the starting point for creating a model that fits within those

requirements.
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