
Sandslash: A Two-Level Framework for Efficient Graph Pattern
Mining

Xuhao Chen
MIT CSAIL

Cambridge, Massachusetts, USA
cxh@mit.edu

Roshan Dathathri, Gurbinder
Gill

Katana Graph
{roshan,gill}@katanagraph.com

Loc Hoang, Keshav Pingali
The University of Texas at Austin

Austin, Texas, USA
{loc,pingali}@cs.utexas.edu

Abstract
Graph pattern mining (GPM) is a key building block in
diverse applications, including bioinformatics, chemical engi-
neering, social network analysis, recommender systems and
security. Existing GPM frameworks either provide high-level
interfaces for productivity at the cost of expressiveness or
provide expressive low-level interfaces at the cost of increased
programming complexity. They also lack the flexibility to
explore combinations of optimizations to achieve performance
competitive with hand-optimized applications.

We present Sandslash, an in-memory graph pattern mining
framework that uses a novel programming interface to support
productive, expressive, and efficient GPM on large graphs.
Sandslash provides a high-level API that only needs a speci-
fication of the GPM problem from the user, and the system
implements fast subgraph enumeration, provides efficient data
structures, and applies high-level optimizations automatically.
To achieve performance competitive with expert-optimized
implementations, Sandslash also provides a low-level API
that allows users to express algorithm-specific optimizations.
This enables Sandslash to support both high-productivity
and high-efficiency without losing expressiveness. We evalu-
ate Sandslash using five GPM applications and a wide range
of real-world graphs. Experimental results demonstrate that
applications written using Sandslash’s high-level or low-level
API outperform those in state-of-the-art GPM systems Au-
toMine, Pangolin, and Peregrine on average by 13.8×, 7.9×,
and 5.4×, respectively. We also show that these Sandslash
applications outperform expert-optimized GPM implementa-
tions by 2.3× on average with less programming effort.

ACM Reference Format:
Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang,
Keshav Pingali. 2021. Sandslash: A Two-Level Framework for
Efficient Graph Pattern Mining. In 2021 International Conference
on Supercomputing (ICS ’21), June 14–17, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3447818.3460359

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICS ’21, June 14–17, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8335-6/21/06.
https://doi.org/10.1145/3447818.3460359

1 Introduction
Graph pattern mining (GPM) problems exist in many appli-
cation domains [5, 16, 18, 22]. One example is motif count-
ing [7, 25, 43], which counts the number of occurrences of
certain structural patterns in a given graph (Fig. 1). These
numbers are often different for graphs from different domains,
so they can be used as a “signature” to infer, for example,
the probable origin of a graph [22].

GPM problems are solved by searching the input graph for
patterns of interest. Programming efficient parallel solutions
for GPM problems is challenging. For efficiency, the search
space needs to be pruned aggressively without compromis-
ing correctness. Complex book-keeping data structures are
needed to avoid repeating work during the search process;
maintaining them efficiently in a parallel program can be
challenging. A number of GPM frameworks exist that reduce
these burdens on the programmer [13, 31, 40, 41, 57, 59, 64],
and they can be categorized into high-level and low-level sys-
tems. Both simplify GPM programming compared to hand-
optimized code, but they make different tradeoffs.

High-level systems such as AutoMine [41] and Peregrine [31]
take specifications of patterns as input and leverage static
analysis techniques to automatically generate GPM programs
for those patterns. These systems promote productivity, but
they do not provide enough flexibility to allow the program-
mer to express more efficient algorithms. Low-level systems
such as RStream [59] and Pangolin [13] provide low-level
API functions for the user to control the details of mining
process, and they can be used to implement solutions for
a wider variety of GPM problems, but they require more
programming effort. Programming in these low-level APIs
may prevent those systems from applying other optimizations
as the problem may become over-specified or unnecessarily
constrained. Moreover, both high-level and low-level systems
lack the ability to explore combinations of optimizations that
have been implemented in handwritten GPM solutions for
different problems.

We present Sandslash, an in-memory GPM system that
provides high productivity and efficiency without compro-
mising generality. Sandslash provides a novel programming
interface that separates problem specifications from algorith-
mic optimizations. The Sandslash high-level interface requires
the user to provide only the specification of the pattern(s) of
interest. Sandslash analyzes the specification and automati-
cally enables efficient search strategies, data representations,

https://doi.org/10.1145/3447818.3460359
https://doi.org/10.1145/3447818.3460359
https://doi.org/10.1145/3447818.3460359

ICS ’21, June 14–17, 2021, Virtual Event, USA Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang, Keshav Pingali

wedge triangle 3-star 4-path 4-cliquetailed
triangle

4-cycle diamond

3 motifs 4 motifs

Figure 1: 3-vertex (left) and 4-vertex (right) motifs.

and optimizations. This is achieved by augmenting the ver-
tex/edge extension model with pattern-awareness. We auto-
mate existing optimizations used in specific problems, such
that they can be applied more generally to other GPM prob-
lems. Moreover, users can leverage the Sandslash low-level
API to customize their algorithms and improve performance
further. Note that this low-level interface is not exposed in
prior high-level systems, and only partially exposed in prior
low-level systems.

Evaluation on a 56-core CPU demonstrates that appli-
cations written using Sandslash high-level API outperform
those in the state-of-the-art GPM systems, AutoMine [41],
Pangolin [13], and Peregrine [31] by 7.7×, 6.2× and 3.9× on
average, respectively, due to the high-level optimizations that
are not enabled in prior systems. Applications using Sand-
slash low-level API which contain low-level optimizations
outperform AutoMine, Pangolin, and Peregrine by 22.6×,
27.5× and 7.4× on average, respectively. Sandslash applica-
tions are also 2.3× faster on average than expert-optimized
GPM applications, mainly due to the flexible combination of
optimizations explored by Sandslash.

This work makes the following contributions:
∙ We present Sandslash, an in-memory graph pattern mining

system that supports productive, expressive, and efficient
pattern mining on large graphs.

∙ We propose a high-level programming model in which
the choice of efficient search strategies, subgraph data
structures, and high-level optimizations are automated,
and we expose a low-level programming model to allow the
programmers to express algorithm-specific optimizations.

∙ We holistically analyze the optimization techniques avail-
able in hand-tuned applications and separately enabled
them in the two levels. We show that existing optimizations
in the literature applied to specific problems/applications
can be applied more generally to other GPM problems.
The user is allowed to flexibly control and explore the
combination of optimizations.

∙ Experimental results show that Sandslash substantially out-
performs existing GPM systems. They also show the impact
of (and the need for) Sandslash’s low-level API. Compared
to expert-optimized applications, Sandslash achieves com-
petitive performance with less programming effort.

2 Background
2.1 Problem Definition
The following definitions are standard [27]. Given a graph
𝐺(𝑉 ,𝐸), a subgraph 𝐺′(𝑉 ′,𝐸′) of 𝐺 is a graph where 𝑉 ′ ⊆ 𝑉 ,
𝐸′ ⊆ 𝐸. If 𝐺1 is a subgraph of 𝐺2, we denote it as 𝐺1 ⊆ 𝐺2.

Given a vertex set 𝑊 ⊆ 𝑉 , the vertex-induced subgraph is
the graph 𝐺′ whose (1) vertex set is 𝑊 and whose (2) edge
set contains the edges in 𝐸 whose endpoints are in 𝑊 . Given
an edge set 𝐹 ⊆ 𝐸, the edge-induced subgraph is the graph
𝐺′ whose (1) edge set is 𝐹 and whose (2) vertex set contains
the endpoints in 𝑉 of the edges in 𝐹 .

The difference between the two types of subgraphs can be
understood as follows. Suppose 𝑣1 and 𝑣2 are connected by an
edge 𝑒 in 𝐺. If 𝑣1 and 𝑣2 occur in a vertex-induced subgraph,
then 𝑒 occurs in the subgraph as well; in an edge-induced
subgraph, edge 𝑒 will be present only if it is in the given edge
set 𝐹 . Any vertex-induced subgraph can be formulated as an
edge-induced subgraph.

Two graphs 𝐺1(𝑉1,𝐸1) and 𝐺2(𝑉2,𝐸2) are isomorphic,
denoted 𝐺1 ≃ 𝐺2, if there exists a bijection f : 𝑉1 → 𝑉2, such
that any two vertices 𝑢 and 𝑣 of 𝐺1 are adjacent in 𝐺1 if
and only if f𝑢 and f𝑣 are adjacent in 𝐺2. In other words, 𝐺1
and 𝐺2 are structurally identical. When f is a mapping of
a graph onto itself, i.e., 𝐺1 and 𝐺2 are the same graph, 𝐺1
and 𝐺2 are automorphic, i.e. 𝐺1 � 𝐺2.

A pattern is a graph defined explicitly or implicitly. An
explicit definition specifies the vertices and edges of the graph
while an implicit definition specifies its desired properties.
Given a graph 𝒢 and a pattern 𝒫, an embedding 𝒳 of 𝒫 in 𝒢
is a vertex- or edge-induced subgraph of 𝒢 s.t. 𝒳 ≃ 𝒫.

Given an undirected graph 𝒢 and a set of patterns 𝑆𝑝 =

{𝒫1, . . . , 𝒫𝑛}, GPM finds the vertex- or edge-induced embed-
dings of 𝒫𝑖 in 𝐺. For explicit-pattern problems, the solver
finds embeddings of the given pattern(s). For implicit-pattern
problems, 𝑆𝑝 is described using some high-level rules. There-
fore, the solver must find the patterns as well as the embed-
dings. If the cardinality of 𝑆𝑝 is 1, we call this problem a
single-pattern problem. Otherwise, it is a multi-pattern prob-
lem. Note that graph pattern matching [23] finds embeddings
only for explicit pattern(s), whereas graph pattern mining [3]
solves both explicit- and implicit-pattern problems. In some
GPM problems, the required output is the list of embeddings.
However, in other GPM problems, users want statistics such
as a count of the occurrences of the pattern(s) in 𝒢. A par-
ticular statistic for 𝒫 in 𝒢 is called its support. The support
is anti-monotonic if the support of a supergraph does not
exceed the support of a subgraph.
Graph Pattern Mining Problems We consider the following
GPM problems with the input graph 𝒢.
∙ Triangle Counting (TC): The problem is to count the

number of triangles in 𝒢. It uses vertex-induced subgraphs.
∙ 𝑘-Clique Listing (𝑘-CL): A subset of vertices 𝑊 of 𝐺 is a

clique if every pair of vertices in 𝑊 is connected by an edge
in 𝐺. If the cardinality of 𝑊 is 𝑘, this is called a 𝑘-clique
(triangles are 3-cliques). The problem of listing 𝑘-cliques is
denoted 𝑘-CL, and it uses vertex-induced subgraphs.

∙ Subgraph Listing (SL): The problem is to enumerate all
edge-induced subgraphs of 𝒢 isomorphic to a pattern 𝒫.

∙ Subgraph Counting (SC): same as SL but does counting.
∙ 𝑘-Motif Counting (𝑘-MC): It counts the number of occur-

rences of the different patterns that are possible with 𝑘

Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining ICS ’21, June 14–17, 2021, Virtual Event, USA

3

2

41

1 2 1 3 2 3 3 4

1 2

3

1 3

4

2 3

1

2 3

4

3 4

1

3 4

2

Level 1

Level 2

1 2

3 4

1 3

42

2 3

41
Level 3

Input Graph

1 2 3 4

2 1 3 1 3 2

1 3

2

Figure 2: A portion of a vertex-induced subgraph tree with 3 levels.
Lightly colored subgraphs are removed from consideration by auto-
morphism checks.

vertices. In the literature, each pattern is called a motif.
Fig. 1 shows all 3-motifs and 4-motifs. This problem uses
vertex-induced subgraphs.

∙ 𝑘-Frequent Subgraph Mining (𝑘-FSM): Given a labeled
input graph 𝒢, an integer 𝑘 and a threshold 𝜎𝑚𝑖𝑛 for
support, 𝑘-FSM finds all frequent patterns with 𝑘 or fewer
edges where a pattern is frequent if its support is greater
than 𝜎𝑚𝑖𝑛. If 𝑘 is not specified, it is set to ∞, meaning
it considers all possible values of 𝑘. FSM is a implicit-
pattern problem, and it finds edge-induced subgraphs. The
support in FSM is often defined as the minimum image-
based (MNI) support (a.k.a. domain support), where MNI
is the minimum number of distinct mappings for any vertex
in the pattern over all embeddings of the pattern. MNI
support is anti-monotonic.
Note that Counting and listing may have different search

spaces because listing requires enumerating every embedding,
but counting does not. Therefore counting allows more ag-
gressive pruning in many cases where the total count can be
computed by only enumerating a small portion of the search
tree (see Section 5.1).

2.2 Subgraph Trees and Vertex/Edge Extension
The vertex-induced subgraphs of a given input graph 𝒢 can
be ordered naturally by containment (i.e., if one is a subgraph
of the other). It is useful to represent this partial order as
a vertex-induced subgraph tree whose vertices represent the
subgraphs. Level 𝑙 of the tree represents subgraphs with 𝑙 1
vertices. The root vertex of the tree represents the empty sub-
graph. Intuitively, subgraph 𝑆2=𝑊2, 𝐸2 is a child of subgraph
𝑆1=𝑊1, 𝐸1 in this tree if 𝑆2 can be obtained by extending 𝑆1
with a single vertex 𝑣 ∉ 𝑊1 that is connected to some vertex
in 𝑊1 (𝑣 is in the neighborhood of subgraph 𝑆1); this process
is called vertex extension. Formally, this can be expressed as
𝑊2=𝑊1 ∪ {𝑣} where 𝑣 ∉ 𝑊1 and an edge 𝑣, 𝑢 ∈ 𝐸 exists for
some 𝑢 ∈ 𝑊1. It is useful to think of the edge connecting
𝑆1 and 𝑆2 in the tree as being labeled by 𝑣. Fig. 2 shows a
portion of a vertex-induced subgraph tree with three levels
(for lack of space, not all subgraphs are shown). Note that a

0 1

2 3

0 2

3 1
(a) (c)

0 1

23
(b)

1 0

3 2
(d) pattern

1 0

2 3
(e)

Figure 3: Possible matching orders for pattern diamond. The number
in each vertex is not a vertex ID but the order being matched. Colors
show the symmetric positions. The matching process can start from
blue vertices (a & b & c) or green vertices (d & e). Among them, (a)
and (e) match a wedge first, and then form a diamond; (b) (c) and (d)
discover a triangle first, and then form a diamond.

specific subgraph can occur in multiple places in this tree. For
example, in Fig. 2, the subgraph containing vertices 1 and 2
occurs in two places, i.e., [1, 2] and [2, 1]. These identical sub-
graphs are called automorphisms, i.e., they are automorphic
with each other. Automorphisms can cause over-counting
or multiplicity, i.e., the same subgraph is counted multiple
times. The edge-induced subgraph tree for 𝒢 can be defined
in a similar way. Edge extension extends an edge-induced
subgraph 𝑆1 with a single edge 𝑢, 𝑣 provided at least one of
the endpoints of the edge is in 𝑆1.

The subgraph tree is a property of the input graph 𝒢. When
solving a specific GPM problem, a solver uses the subgraph
tree as a search tree and builds a prefix of the subgraph tree
that depends on the problem, pattern, and other aspects
of the implementation (e.g., if the size of the pattern is 𝑘,
subgraphs of larger size are not explored). We use the term
embedding tree to refer to the prefix of the subgraph tree that
has been explored at any point in the search. Finally, since a
pattern is a graph, its connected subgraphs form a tree as
well. These subgraphs are called sub-patterns, and the tree
formed by them is called the sub-pattern tree.

2.3 Pattern-Aware GPM Solutions
A straightforward approach to solving a GPM problem is
to build the search tree and perform a graph isomorphism
test on each tree leaf to check if the subgraph matches the
pattern. This approach is oblivious to the given pattern
during the search and is general enough to solve a wide range
of GPM applications, including both explicit and implicit
pattern problems. A more efficient approach is to use pattern
analysis to generate a matching order and a symmetry order
to prune the search space, avoid isomorphism tests, and
perform symmetry breaking. We describe matching order
and symmetry order below. To avoid notational confusion,
we denote a vertex in 𝒫 as a pattern vertex and a vertex in
𝒢 as a data vertex.
Matching Order is a total order among pattern vertices that
defines the order to match each data vertex to a pattern ver-
tex. Fig. 3 shows the 5 possible matching orders for diamond.
Matching orders have different compute/memory require-
ments. For example, for diamond, we can find the triangle
first, and then add the fourth vertex connected to two of
the endpoints of the triangle. Another possibility is to find a
wedge first and then find the fourth vertex that is connected
to all three vertices of the wedge. In real-world sparse graphs,
the number of wedges is usually orders-of-magnitude larger

ICS ’21, June 14–17, 2021, Virtual Event, USA Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang, Keshav Pingali

than the number of triangles, so it is more efficient to find
the triangle first. Using matching order avoids isomorphism
tests if the patterns are explicit. However, for implicit-pattern
problems, this approach needs to enumerate all the possible
patterns before search. For example, FSM in AutoMine gener-
ates a matching order for each unlabeled pattern and includes
a lookup table to distinguish between labeled patterns. This
table is massive when the graph has many distinct labels.
Peregrine also suffers significant overhead for FSM since there
are many patterns that it matches one by one.
Symmetry Order is a specific partial order over data vertices
in an enumerated subgraph [31, 34]. This order is used to
avoid automorphic enumerations (a.k.a overcounting), by
finding a canonical representation from identical subgraphs,
i.e., only subgraphs that satisfy the partial order are counted.
This technique is also known as symmetry breaking. A valid
order guarantees each subgraph is enumerated once and only
once. In Fig. 2, lightly colored subgraphs are removed by
symmetry breaking, leaving a unique canonical subgraph for
each set of automorphisms. Symmetry breaking can signifi-
cantly prune the search tree: e.g., the subgraph [2,1] is not
extended in Fig. 2 because it is automorphic to the subgraph
[1,2]. For a 𝑘-clique whose every pair of vertices are symmet-
ric, the partial order becomes a total order. In these cases,
one can convert 𝒢 into a directed acyclic graph (DAG), and
dynamic automorphism checks are then not needed [13, 17].
The search done over the DAG instead of the original graph:
this reduces the search space. The technique of constructing
the DAG for 𝑘-cliques is known as orientation [17].

Given a pattern 𝒫, one can use pattern analysis [41] to
generate a matching order [31] and a symmetry order [40].
To generate a matching order, the pattern analyzer first
enumerates all the possible matching orders of 𝒫 and uses
a set of rules to pick one that is likely to perform well in
practice [34]. To generate a symmetry order, we take one of
the matching orders ℳ𝒪 of 𝒫 and build a subgraph 𝑆 of 𝒫
incrementally by adding one vertex at a time in the order
specified by ℳ𝒪. At each step, if the newly added vertex 𝑤
is symmetric1 to any of the existing vertices 𝑣 in 𝑆, we add
a partial order among 𝑤 and 𝑣.

Using matching order and symmetry order to mine a graph
is a pattern-aware approach: the pattern guides the search.
Automated pattern analysis [31, 41] can improve both per-
formance and productivity. However, to generate matching
order and symmetry order, the patterns of interest must be
known explicitly. Therefore, for implicit pattern problems,
existing systems need to enumerate all the possible (but not
necessarily interesting) patterns which results in non-trivial
performance overhead and memory consumption.

3 Sandslash
To provide flexibility of user-defined optimizations while re-
taining productivity and expressiveness, Sandslash provides a
1𝑤 and 𝑣 are symmetric if any match of 𝒫 in 𝒢 will be found twice
by permuting 𝑤 and 𝑣 when no order is enforced between 𝑤 and 𝑣.

 High-level
 Sandslash

 Low-level Sandslash

High-level
specification

Read and analyze pattern

Apply high-level optimizations

Automatic search strategy &
 data representation

Low-level API description:
Apply low-level	optimizations

Galois Parallel System

Shared-memory Multicore CPUs

Low-level
program

Figure 4: Overview of Sandslash. Dash indicates optional.

two-level programming interface to separate functional spec-
ification with optimizations. Fig. 4 shows the overview of
Sandslash, which is built on top of the Galois [44] parallel
system. High-level Sandslash accepts a GPM problem speci-
fication and performs search without further guidance from
the user (Section 3.1). Low-level Sandslash allows the user
to customize the search strategy to boost performance using
the low-level API functions (Section 3.2). The low-level im-
plementation is optional. Sandslash constructs a solver for
the problem and parallelizes the solver.

3.1 High-Level API
Table 1 shows Sandslash high-level API. The first two required
flags define whether the embeddings are vertex-induced or
edge-induced and whether the matched embeddings need to
be listed or counted. The third required flag defines if the set
of patterns is explicit or implicit. If they are explicit, then the
patterns must be defined using getExplicitPatterns(). Other-
wise, the rule to select implicit patterns must be defined using
isImplicitPattern(). process() is a function for customized
output. terminate() specifies an optional early termination
condition (useful to implement pattern existence queries).
The default support for each pattern in Sandslash is count
(number of embeddings). The support can be customized
using three functions: getSupport() defines the support of an
embedding, isSupportAntiMonotonic() defines if the support
has the anti-monotonic property, and reduce() defines the
reduction operator (e.g., sum) for combining the support
of different embeddings of the same pattern. In addition,
Sandslash has a runtime parameter 𝑘 to denote the maxi-
mum size (vertices or edges) of the (vertex- or edge-induced)
embeddings to find.

The problem specifications for TC, CL, SL, and MC are
straightforward. They all specify an explicit set of patterns2.
Each pattern is specified using an edge-list. For example, in
TC, the user provides an edge-list of {(0,1) (0,2) (1,2)}. Ta-
ble 1’s right column shows the problem specification for FSM.
2Sandslash provides helper functions to generate a clique or all patterns
of a given size 𝑘. It also allows reading the patterns from files.

Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining ICS ’21, June 14–17, 2021, Virtual Event, USA

Flag Required Example: spec for FSM

isVertexInduced yes false
isListing yes false
isExplicit yes false

Function Required Example: user code for FSM

getExplicitPatterns() no -
isImplicitPattern(Pattern pt) no pt.support ≥ MIN_SUPPORT
process(Embedding emb) no -
terminate(Embedding emb) no -
isSupportAntiMonotonic() no true
getSupport(Embedding emb) no getDomainSupport(emb)
reduce(Support s1, Support s2) no mergeDomainSupport(s1, s2)

Table 1: Left column lists Sandslash high-level API flags and functions.
Right column is the spec and user code of FSM using the API.

1 bool toExtend (Embedding emb , Vertex v);
2 bool toAdd (Embedding emb , Vertex u);
3 bool toAdd (Embedding emb , Edge e);
4 Pattern getPattern (Embedding emb);
5 void localReduce (int depth , vector <Support > &sups);
6 void initLG (Graph gg , Vertex v, Graph lg);
7 void initLG (Graph gg , Edge e, Graph lg);
8 void updateLG (Graph lg);

Listing 1: Sandslash low-level API functions.

isImplicitPattern() is used to specify that only frequent pat-
terns (i.e., those with support greater than MIN_SUPPORT) are
of interest. FSM uses the domain (MNI) support and its asso-
ciated reduce operation. Sandslash provides helper functions
getDomainSupport and mergeDomainSupport for the stan-
dard definition of domain support which is anti-monotonic.

3.2 Low-Level API
Sandslash low-level API shown in Listing 1 is designed

to give fine-grained control to the user. This includes cus-
tomizing (1) the graph to search (initLG, updateLG), (2) the
extension candidates and their selection (toAdd, toExtend),
and (3) the reduction operations to perform (getPattern,
localReduce). The low-level API is expressive enough to
support sophisticated algorithms.

toExtend() determines if a vertex 𝑣 in embedding 𝑒𝑚𝑏
must be extended. toAdd decides if extending embedding 𝑒𝑚𝑏
with vertex 𝑢 (or edge 𝑒) is allowed. toExtend and toAdd can
be used to do fine-grained pruning to reduce search space
(Section 5.3).

getPattern() returns the pattern of an embedding. This
function can be used to replace the default graph isomorphism
test with a custom method to identify patterns (Section 5.3).
Note that Pattern can be user-defined; therefore, Sandslash
can support custom aggregation-keys like Fractal [20].

Some algorithms [4] do local counting for a vertex or edge
instead of global counting. Sandslash provides localReduce
to support this; Listing 2 shows 3-MC using this. Some algo-
rithms [17] search local (sub-)graphs instead of the (global)
input graph. initLG and updateLG can be defined for search
on local graphs.

Note that in prior low-level frameworks, e.g. Fractal, spec-
ification of the problem in the low-level API may prevent
the system from applying high-level optimizations as the

problem is over-specified or unnecessarily-constrained. Sand-
slash’s low-level API, however, is designed such that it can
apply any high-level optimization.

3.3 Discussion on System Tradeoffs
Sandslash’s high-level API provides the same productivity as
existing high-level systems. For example, for explicit-pattern
GPM problems, the programmer only needs to provide the
pattern of interest. High-level API is much easier to use as
opposed to the existing low-level systems which require user
code to select or filter patterns 3. However, the ease of use
of high-level Sandslash does not come at the cost of the
performance: high-level Sandslash already outperforms all
existing high- and low-level GPM systems (Section 6) without
loss in programmer productivity.

For expert programmers, Sandslash’s low-level API ex-
poses a lower level interface that is not present in existing
high-level systems: therefore, high-level systems lack the low-
level optimizations. Using the low-level API requires extra
programming effort, but it boosts performance on top of
high-level Sandslash as it enables the user to express custom
algorithms while allowing the system to apply high-level opti-
mizations and explore different traversal orders. In contrast,
some low-level systems (e.g., Fractal) expose an even lower
level interface to give the user full control of the mining
process at the cost of preventing the system from applying
high-level optimizations. For example, to implement local
graph search in Sandslash, the user only implements ini-
tialization and modification functions for the local graph;
Sandslash still applies all possible high-level optimizations
in Table 2a during exploration. In Fractal, the user must
change the entire exploration which includes implementing
all the optimizations by hand: the system does not apply
optimizations automatically.

Furthermore, Sandslash is expressive enough to support all
features that fit in its pattern-aware vertex/edge extension
abstraction (Section 4.1) and can be extended to support
new features that fit in the abstraction (e.g., anti-edges and
anti-vertices in Peregrine). Sandslash’s vertex/edge extension
is more efficient than the set intersection/difference model
used in prior high-level systems: Peregrine and AutoMine
(set model) must enumerate patterns before the search which
leads to non-trivial overhead for FSM.

4 High-Level Sandslash
We describe high-level Sandslash which uses efficient search
strategies (Section 4.1), data representations (Section 4.2),
and automatic application of high-level optimizations (Sec-
tion 4.3).
3Note Fractal supports high-level API but only for single, explicit-
pattern problems. For implicit-pattern problems like FSM, Fractal
requires the user to write code for iterative expand-aggregate-filter,
which is also more complex than high level systems.

ICS ’21, June 14–17, 2021, Virtual Event, USA Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang, Keshav Pingali

4.1 Search Strategies
Given 𝒢 and 𝒫 with 𝑘 vertices, one can build the subgraph
tree (Section 2) to a depth 𝑘 and test each subgraph 𝒳 at
the leaves of the tree to see if 𝒳 ≃ 𝒫. This pattern-oblivious
approach works effectively for any pattern (even implicit
patterns). In Sandslash, we augment this model with pattern-
awareness. If the user defines an explicit pattern problem,
Sandslash uses matching order (Section 2.3) for vertex ex-
tension to prune the search tree and avoids isomorphism
tests. Sandslash also uses the standard symmetry breaking
technique (Section 2.3) to avoid over-counting. Sandslash
performs a depth-first search (DFS) parallel exploration as
follows:
∙ Each vertex 𝑣 in 𝒢 corresponds to a vertex-induced sub-

graph for the vertex set {𝑣} and corresponds to a search
tree vertex 𝑡𝑣.

∙ The subtree below each such 𝑡𝑣 is explored in DFS order.
This is a task executed serially by a single thread. When
the exploration reaches the pattern size 𝑘, the support is
updated appropriately.

∙ Multiple threads execute different tasks in parallel. The run-
time does work-stealing of tasks for thread load-balancing.

Pattern filtering for implicit-pattern problems that use anti-
monotonic support. The search strategy described above
mines implicit-pattern problems by enumerating all embed-
dings, binning them according to their patterns, and checking
the support for each pattern. This can be optimized by exploit-
ing the sub-pattern tree when the support is anti-monotonic:
if a sub-pattern does not have enough support, then its
descendants in the sub-pattern tree will not have enough
support and can be ignored. Instead of pruning sub-patterns
during post-processing, one can prune after generating all the
embeddings for a given sub-pattern. This is easy in breadth
first search (BFS): embeddings are generated level by level,
and in each level, the entire list of the embeddings is scanned
to aggregate support for each sub-pattern. However, this does
not work for DFS (what Sandslash uses) of the sub-graph
tree as DFS is done by each thread independently.

To handle pattern-wise aggregation, Sandslash performs
a DFS traversal on the sub-pattern tree instead of the sub-
graph tree. This ensures that the embeddings for a given
sub-pattern are generated by a single thread using the same
approach for pattern extension in hand-optimized gSpan [61]:
i.e., the embeddings are gathered to their pattern bins during
extension and canonicality is checked for each sub-pattern
to avoid duplicate pattern enumeration. When the thread
finishes extension in each level, the support for each sub-
pattern can be computed using its own bin of embeddings.

4.2 Representation of Tree
Since subgraphs are created incrementally by vertex/edge
extension in the subgraph tree, the representation of sub-
graphs should allow structure sharing between parent and
child subgraphs. We describe the information stored in the

v0

v1

v2

v3

history

frontier
Level

0

1

2

3

[v0]

[v0, v1]

[v0, v1, v2]

[v0, v1, v2, v3]
Current embedding

Figure 5: Embedding data structure (vertex-induced).

search tree and the concrete representation of the tree for
vertex-induced sub-graphs.
∙ Each non-root vertex in the tree points to its parent vertex.
∙ Each non-root vertex in the tree corresponds to a subgraph

obtained from its parent subgraph by vertex extension
with some vertex 𝑣 of the input graph. The vertex set
of a subgraph can be obtained by walking up the tree
and collecting the vertices stored on the path to the root.
These vertices are the predecessors of 𝑣 in the embedding;
they correspond to vertices discovered before 𝑣 in that
embedding. As shown in Fig. 5, the leaf containing 𝑣3
represents the subgraph with a vertex set of {𝑣3, 𝑣2, 𝑣1, 𝑣0},
which are the vertices stored on the path to the root from
this leaf.

∙ Given a set of vertices 𝑊 = {𝑣0, . . . , 𝑣𝑛} in a subgraph, the
edges among them are obtained from the input graph 𝒢. To
avoid repetitive look-ups, edge information is cached in the
embedding tree. Each time performing vertex extension by
adding a vertex 𝑢, the edges between 𝑢 and its predecessors
in the embedding tree are determined and stored in the
tree together with 𝑢. The connectivity (i.e. edges) of an
embedding can be represented compactly using a bit-vector
of length 𝑙 for vertices at level 𝑙 of the tree. We call this bit-
vector the connectivity code. For example, if 𝑢 is connected
with the first and the third vertices in the embedding,
but disconnected with the second, the code is ‘101’. This
technique is called Memoization of Embedding Connectivity
(MEC) [13].

∙ For a sub-pattern tree, embeddings of each sub-pattern are
gathered as an embedding list (bin of embeddings). The
search tree is constructed with sub-patterns as vertices, and
each sub-pattern has an embedding list associated with it.
Embedding connectivity is not needed as the sub-pattern
contains this information.
For edge-induced extension, a set of edges instead of ver-

tices is stored for each embedding. There is no need to store
connectivity for embeddings since the set of edges are already
recorded.

4.3 High Level Optimizations
Sandslash automatically performs high-level optimizations
without guidance from the user. Table 2a (left) lists which
of these optimizations are applied to each application. Ta-
ble 2b (left) lists which of them are supported by other GPM
systems.

Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining ICS ’21, June 14–17, 2021, Virtual Event, USA

High-level Low-level
SB DAG MO DF MNC FP CP LG LC

TC ✓ ✓ ✓
𝑘-CL ✓ ✓ ✓ ✓ ✓ ✓

SL ✓ ✓ ✓ ✓ ✓
SC ✓ ✓ ✓ ✓ ✓ ✓

𝑘-MC ✓ ✓ ✓ ✓ ✓ ✓
𝑘-FSM ✓ ✓

(a) Optimizations applied to GPM applications.

High-level Low-level
SB DAG MO DF MNC FP CP LG LC

AutoMine [41] ✓
Pangolin [13] ✓ ✓ ✓ ✓ ✓
Peregrine [31] ✓ ✓
Sandslash-Hi ✓ ✓ ✓ ✓ ✓
Sandslash-Lo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(b) Optimizations supported by GPM frameworks.

Table 2: Optimizations enabled in Sandslash. High level optimizations: SB: Symmetry breaking; DF: Degree Filtering; DAG:
orientation; MO: Matching Order; MNC: Memoization of Neighborhood Connectivity. Low-level optimizations: FP: Fine-grained
Pruning; CP: Customized Pattern classification; LG: search on Local Graph; LC: Local Counting. ✓: supported.

Symmetry Breaking (SB), Orientation (DAG), and Matching
Order (MO): Sandslash applies symmetry breaking for all
GPM problems by default, i.e., it enumerates only canonical
embeddings, unless the user specifies a custom automor-
phism check. Orientation (DAG) is enabled when it is a
single explicit-pattern problem and if the pattern is a clique.
Sandslash enables MO for explicit-pattern problems. We use
a greedy approach to automatically generate a good matching
order: at each step, (1) we choose a sub-pattern which has
more internal partial orders for symmetry breaking, (2) if
there is a tie, we choose a denser sub-pattern, i.e., one with
more edges. In Fig. 3, (c) is the matching order chosen by the
system since there is a partial order between vertex 0 and 1
for symmetry breaking (2.3). The intuition is that applying
partial ordering as early as possible can better prune the
search tree. Similarly, matching denser sub-pattern first can
possibly prune more branches at early stage.
Degree Filtering (DF): When searching for a pattern in which
the smallest vertex degree is 𝑑, it is unnecessary to consider
vertices with degree less than 𝑑. When MO is enabled, at
each level, only one vertex 𝑣 of the pattern is searched for, so
all vertices with degree less than that of 𝑣 can also be filtered.
This optimization (DF) has been used in a hand-optimized
SL implementation, PSgL [49]. Sandslash enables DF for all
GPM problems.
Memoizing of Neighborhood Connectivity (MNC): When ex-
tending an embedding 𝒳 = {𝑣0, . . . 𝑣𝑛} with a vertex 𝑢, a
common operation is to check the connectivity between 𝑢
and each vertex in 𝒳 . To avoid repeated lookups in the input
graph, we memoize connectivity information in a connectiv-
ity map during embedding construction. The map takes a
vertex ID 𝑣 and returns the positions in the embedding of
the vertices connected to 𝑣. In Fig. 6, 𝑣3 is connected to 𝑣0
and 𝑣2, so when 𝑣3 is looked up in the map, the map returns
0 and 2, the embedding positions of 𝑣0 and 𝑣2. Whenever a
new vertex (𝑤) is added to an embedding, the map for the
neighbors of 𝑤 that are not in the embedding are updated
with the position of 𝑤 in the embedding; when backing out
of this step in the DFS walk, this information is removed.

Fig. 6 shows how the connectivity map is updated during
vertex extension. At time ❶, depth of 𝑣0 is sent to the map
to update the entries of 𝑣1, 𝑣2 and 𝑣3 since 𝑣1, 𝑣2 and 𝑣3 are
neighbors of 𝑣0 and they are not in the current embedding.
At time ❷, depth of 𝑣2 is sent to the map, and the entry
of 𝑣3 is updated. Note that although 𝑣0 is also a neighbor

v3

v1v0

v2
input graph

v1

v0

v2

v3

{0, 2}
...v3

{0, 2}

{0}

{2}

connectivity map
embedding tree

depth
0

1

2

3

2

3

{0}v2
1

...

...

...
{0}v1

Figure 6: An example of connectivity memoization. ❶, ❷ and
❸ are timestamps to show the order of actions.

of 𝑣2, there is no need to update the entry of 𝑣0 since 𝑣0
already exists in the current embedding. When 𝑣3 is added
to the embedding, the map performs look up with 𝑣3, and
the positions {0, 2} are returned at time ❸. Therefore, we
know that 𝑣3 is connected to the 0-th and 2-th vertices in
the embedding, which are 𝑣0 and 𝑣2. For parallel execution,
the map is thread private, and each entry is represented by
a bit-vector.

MNC does not exist in any prior GPM systems, though
it has been used in a hand-optimized 𝑘-CL implementation,
kClist [17] and a hand-optimized 𝑘-MC solver, PGD [4].
Sandslash can enable MNC for any vertex-induced problem:
in particular, Sandslash enables MNC for SL. MNC is missing
in all hand-optimized SL implementations [8, 49]. Different
from 𝑘-CL or 𝑘-MC, for an arbitrary pattern 𝒫 we do not
need to update the map for every vertex added into the
embedding. For example, for 4-cycle, the fourth vertex 𝑣4
is a common neighbor of the second vertex 𝑣2 and the third
vertex 𝑣3. Since 𝑣4 is extended from 𝑣3, we only need to check
if 𝑣4 is connected with 𝑣2. Therefore, we only need to update
the map for 𝑣2’s neighbors. Sandslash uses pattern analysis
to detect in which level the vertex’s neighbor connectivity are
useful and sets the corresponding flag to notify the runtime
update of the map.

Note that MNC is different from the vertex set buffering
(VSB) technique used in Peregrine and AutoMine. To re-
move redundant computation, VSB buffers the vertex sets
computed for a given embedding. However, for multi-pattern
problems, different patterns may require buffering different
vertex sets. Peregrine’s solution is to match one pattern at
a time, which is inefficient for a large number of patterns.
AutoMine’s solution is to only buffer one vertex set, which

ICS ’21, June 14–17, 2021, Virtual Event, USA Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang, Keshav Pingali

leads to recomputation of unbuffered vertex sets. The other
alternative is to buffer multiple vertex sets for a large pattern,
but this does not scale well memory-wise. Unlike these solu-
tions, MNC works well for multi-pattern problems since the
information in the map can be used for both set intersection
and set difference. More importantly, MNC fits naturally in
Sandslash’s vertex/edge extension model. This results in an
augmented model which maintains its expressiveness and
improves productivity.

5 Low-Level Sandslash
Hand-optimized GPM applications [4, 17, 30, 47] use algo-
rithmic insight to prune the search tree. Table 2a (right)
lists optimizations applicable to each application, and Ta-
ble 2b (right) lists those that are supported by GPM systems.
Sandslash’s low-level API enables users to express such op-
timizations without implementing everything from scratch.
The API allows Sandslash to perform all possible high-level
optimizations which may be missing in hand-optimized ap-
plications (e.g., MNC is missing in hand-optimized SL). To
use the low-level API, the user only needs to understand the
subgraph tree abstraction and how to prune the tree. They
do not need to understand Sandslash’s implementation.

5.1 Local Counting (LC)
For GPM problems that count matched embeddings, there is
no need to enumerate all matched embeddings if is possible to
derive precise counts from counts of other patterns. Formally,
the count of embeddings that match a pattern 𝒫 may be
calculated using the count of embeddings that match another
pattern 𝒫 ′. This is useful when both patterns are being
searched for or when one pattern is more efficient to search
for than the other. This typically requires a local count [30]
(micro-level count [4]) of embeddings associated with a single
vertex or edge instead of a global count (macro-level count)
of embeddings that match the pattern.

Given a pattern 𝒫 and a vertex 𝑣 (or an edge 𝑒) ∈ 𝐺, let
𝑆 be the set of all the embeddings of 𝒫 in 𝐺. The local count
of 𝒫 on 𝑣 (or 𝑒) is defined as the number of subgraphs in
𝑆 that contains 𝑣 (or 𝑒). Fig. 7 shows an example of local
counting on edge 𝑒. Given an edge 𝑒 : 𝑢, 𝑣, the local count of
𝑒 for wedges 𝐶𝑤𝑑𝑔𝑒 can be calculated from the local count
of 𝑒 for triangles 𝐶𝑡𝑟𝑖𝑒 using this formula:

𝐶𝑤𝑑𝑔 = 𝑑𝑒𝑔𝑢 − 𝐶𝑡𝑟𝑖 − 1 𝑑𝑒𝑔𝑣 − 𝐶𝑡𝑟𝑖 − 1 (1)
𝑑𝑒𝑔𝑢 and 𝑑𝑒𝑔𝑣 are the degrees of 𝑢 and 𝑣.

Since wedge counts can be computed from triangle counts,
enumerating wedges is avoided when using local counting
for 3-MC. Similar formulas can be applied for 𝑘-MC. Local

u ve

v1 v2 v3 v4 v5

Figure 7: An example of local counting. Given the local triangle count
of edge 𝑒 is 𝐶𝑡𝑟𝑖 = 2, and 𝑑𝑒𝑔𝑢 = 4, 𝑑𝑒𝑔𝑣 = 5, we can get local wedge
count of 𝑒 as 𝐶𝑤𝑑𝑔 = 4 − 2 − 1 5 − 2 − 1 = 3.

7

5

8

1

9

6 5

7 9

6

Global graph

0

2 3

1

Local graph

Extract
Relabel
Vertex ID

Figure 8: Local graph induced by edge 𝑣5, 𝑣6 and common neighbors
of 𝑣5 and 𝑣6 from the global graph.

counting can also be used for subgraph counting (SC). For
example, to count edge-induced diamond, we first compute
the local triangle count 𝑛𝑡 for each edge 𝑒 and then use the
formula

(︀
𝑛𝑡
2

)︀
= 𝑛𝑡 × 𝑛𝑡 − 12 to get the local diamond count.

The global diamond count is obtained by accumulating local
counts.

Sandslash exposes localReduce (Listing 1) to let the user
specify how local counts are accumulated. It also exposes
toExtend and toAdd to permit the user to customize the sub-
graph tree exploration so that the user can determine which
patterns need to be enumerated. Listing 2 shows the user code
for 3-MC using local counting. Local counting is activated
when the user implements localReduce.
1 void localReduce (int depth , vector <Support > &sups){
2 if (depth == 0) { // local wedge count for each v
3 Vertex v = getHistory (depth);
4 int n = getDegree (v);
5 int pid = getWedgePid ();
6 sups[pid] += n * (n -1) / 2;
7 }
8 }
9 Pattern p = generateTriangle ();

10 Support tri_count = enumerate (p);
11 int pid = getTrianglePid ();
12 sups[pid] = tri_count ; // global triangle count
13 pid = getWedgePid ();
14 sups[pid] -= 3 * tri_count ; // global wedge count

Listing 2: Sandslash-Lo user code for 3-MC using local counting.

5.2 Search on Local Graph (LG)
For very dense patterns such as 𝑘-clique or 𝑘-clique-minus,
one pruning scheme is to build a local graph for search
instead of searching on the original input graph, i.e., the
global graph [17]. Fig. 8 illustrates constructing a local graph
induced by an edge (𝑣5, 𝑣6) and common neighbors of 𝑣5
and 𝑣6. This graph is much smaller than the original graph
because every vertex’s neighborhood is limited to the common
neighbors of 𝑣5 and 𝑣6.

This optimization leverages the property of a dense pat-
tern. For example, when mining a 5-clique-minus (i.e. one
edge less than a 5-clique), at level 2 we are extending an
embedding {𝑣0, 𝑣1, 𝑣2}, and the candidate vertices of the
forth vertex 𝑣3 should be in the intersection set of 𝑣0 and
𝑣1. 𝑣2’s neighbors that are not in this intersection set do
not need to be considered. This is also true for 𝑣4, so 𝑣3’s
neighbors that are not in this intersection set can also be
removed from consideration. Based on this observation, it is
safe to search a 5-clique-minus or a 𝑘-clique from the induced
graph in Fig. 8 because any match starting from edge (𝑣5,
𝑣6) is covered by the induced local graph. Note that the local
graph is different from the vertex set buffering (VSB): the

Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining ICS ’21, June 14–17, 2021, Virtual Event, USA

Graph Source # V # E 𝑑 # Labels

Pa Patents [26] 3M 28M 10 37
Yo Youtube [14] 7M 114M 16 29
Pdb ProteinDB [55] 49M 388M 8 25
Lj LiveJournal [38] 5M 86M 18 0
Or Orkut [38] 3M 234M 76 0
Tw4 Twitter40 [36] 42M 2,405M 29 0
Fr Friendster [62] 66M 3,612M 28 0
Uk UK2007 [10] 106M 6,604M 31 0
Gsh Gsh-2015 [11] 988M 51,381M 52 0

Table 3: Input graphs (symmetric, no loops, no duplicate edges,
neighbor list sorted) and their properties (𝑑 is the average degree).

benefit of local graphs comes from shrinking neighbor lists
in the embedding, not from memoizing intersection results.

Sandslash supports searching on either global or local
graph, depending on the user’s need. To enable local graphs,
the user specifies how to initialize the local graph using
initLG() and how to update it at the end of each DFS level
using updateLG() (optional). When initLG() is defined, Sand-
slash enables LG to get the neighborhood information during
extension using the local graph.

5.3 Fine-Grained Pruning (FP) and Customized
Pattern Classification (CP)

FP and CP are existing low-level optimizations [13], so we
only describe when and how to enable them.
Fine-Grained Pruning For explicit-pattern problems, Sand-
slash exposes toExtend and toAdd (Listing 1) to allow user-
defined matching order and symmetry order. toExtend speci-
fies the next vertex to extend in each level. Connectivity and
partial orders are checked in toAdd. For example, in 𝑘-CL [17],
since an 𝑖-clique can only be extended from an (𝑖-1)-clique,
toExtend and toAdd can be used to only extend the last
vertex in the embedding and check if the newly added vertex
is connected to all previous vertices in the embedding, re-
spectively. Sandslash generates these functions automatically
for explicit-pattern problems if not defined.
Customized Pattern Classification To recognize the pattern of
a given embedding, a straightforward approach is the graph
isomorphism test, which is expensive. If FP is not enabled,
Sandslash uses matching order for explicit patterns to avoid
isomorphism test. When FP is enabled, CP allows the user
to replace isomorphism test with a custom method. CP is
also useful for implicit pattern problems. For example, in
FSM, the labeled wedge patterns can be differentiated by
hashing the labels of the three vertices (the two endpoints of
the wedge are symmetric). To enable CP, the user specifies a
custom getPattern.

6 Evaluation
We present experimental setup in Section 6.1, compare Sand-
slash with state-of-the-art GPM systems and expert-optimized
implementations in Section 6.2, analyze it in Section 6.3.

6.1 Experimental Setup
We evaluate two variants of Sandslash: Sandslash-Hi, which
only enables high-level optimizations, and Sandslash-Lo, which

Lj Or Tw4 Fr Uk

Pangolin 0.4 2.3 75.5 55.1 45.8
AutoMine 1.1 6.4 9849.4 126.6 565.9
Peregrine 1.6 7.3 8492.4 100.3 3640.9

GAP 0.3 2.7 65.8 77.0 48.1
Sandslash-Hi 0.3 1.8 57.2 44.9 24.5

Table 4: Execution time (sec) of TC.

4-CL 5-CL
Lj Or Tw4 Fr Uk Lj Or Fr

Pangolin 19.5 56.6 TO 564.1 TO 970.4 223.4 1704.4
AutoMine 11.0 32.9 67168.4 209.6 44666.6 575.6 170.1 389.0
Peregrine 15.9 73.7 TO 397.3 55808.4 520.8 782.1 957.6

kClist 1.2 2.5 1174.0 84.0 OOM 22.3 5.8 87.5
Sandslash-Hi 0.6 2.4 1676.8 166.2 2481.2 13.9 7.4 194.9
Sandslash-Lo 0.7 1.9 681.8 60.4 2451.7 14.2 4.8 64.3

Table 5: 𝑘-CL exec. time (sec) (OOM: out of memory; TO: timed out).

enables both high-level and low-level optimizations. We com-
pare Sandslash with the state-of-the-art GPM systems4: Au-
toMine [41], Pangolin [13], and Peregrine [31]. We use all
applications listed in Section 2.1. We also compare with
the expert-optimized GPM applications: GAPBS [6] for TC,
kClist [17] for 𝑘-CL, PGD [4] for 𝑘-MC, and DistGraph [55]
for FSM (CECI [8] for SL is not publicly available). For fair
comparison, we modified DistGraph and PGD so that they
produce the same output as Sandslash. We added a param-
eter 𝑘 in DistGraph to stop exploration when the pattern
size reaches 𝑘. For PGD, we disabled counting disconnected
patterns.

Table 3 lists the input graphs. The first 3 graphs (Pa, Yo,
pdb) are vertex-labeled graphs which can be used for FSM.
We also include widely used large graphs (Lj, Or, Tw4, Fr,
Uk), and a very large web-crawl [11] (Gsh). These graphs do
not have labels and are only used for TC, 𝑘-CL, SL, 𝑘-MC.

Our experiments were conducted on a 4 socket machine
with Intel Xeon Gold 5120 2.2GHz CPUs (56 cores in total)
and 190GB RAM. All runs use 56 threads. For the largest
graph, Gsh, we used a 2 socket machine with Intel Xeon
Cascade Lake 2.2 Ghz CPUs (48 cores in total) and 6TB of
Intel Optane PMM (byte-addressable memory technology).

Peregrine preprocesses the input graph to reorder vertices
based on their degrees, which can improve the performance of
GPM applications. In our evaluation, Sandslash does not re-
order vertices to be fair to other systems and hand-optimized
applications which do not perform such preprocessing. We
use a time-out of 30 hours excluding graph loading and pre-
processing time and report results as an average of three
runs.

6.2 Comparisons with Existing Systems
Recall that Tables 2a and 2b list the optimizations applicable
for each GPM application and enabled by each GPM system.
Triangle Counting (TC): Note that BFS and DFS are sim-
ilar for enumerating triangles. As shown in Table 4, Sand-
slash achieves competitive performance with Pangolin and
4These GPM systems are orders of magnitude faster than previous
GPM systems such as Arabesque [57], RStream [59], G-Miner [12],
and Fractal [20].

ICS ’21, June 14–17, 2021, Virtual Event, USA Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang, Keshav Pingali

3-MC 4-MC
Lj Or Tw4 Fr Uk Lj Or

Pangolin 10.8 96.5 TO 2460.1 23676.6 TO TO
AutoMine 3.1 18.2 48901.7 352.8 4051.0 15529.7 90914.5
Peregrine 2.5 4.9 8447.4 165.3 3571.5 163.6 1701.4

PGD 11.2 42.5 OOM OOM OOM 192.8 4069.6
Sandslash-Hi 2.1 12.1 TO 723.7 4979.1 2366.2 30394.7
Sandslash-Lo 0.3 1.6 304.6 43.8 386.8 16.7 232.4

Table 6: 𝑘-MC exec. time (sec) (OOM: out of memory; TO: timed out).

diamond 4-cycle
Lj Or Tw4 Fr Lj Or Fr

Pangolin 92.3 884.5 TO 9301.6 553.5 13208.2 TO
Peregrine 5.4 10.2 20898.4 178.1 144.4 1867.2 32276.8

Sandslash-Hi 1.5 4.2 44659.5 284.2 6.3 79.0 20490.9

Table 7: Execution time (sec) of SL.

(sec) Mi Pa Yo Lj Or Fr Tw2 Tw4
Peregrine 0.05 0.5 1.6 2.2 8.7 158.8 245.8 16312.6
Sandslash 0.03 0.1 0.4 0.8 5.8 115.2 194.1 10187.4

Table 8: Exec. time of subgraph counting (SC). Pattern: diamond.

expert-implemented GAP [6]. Both Pangolin and Sandslash
outperform Peregrine and AutoMine because they use DAG
which is more efficient than on-the-fly symmetry breaking.
Sandslash is slightly faster than Pangolin because Pangolin
use edge-parallel (i.e. each task is an edge, not a vertex)
by default (vertex-parallel has better locality). On average,
Sandslash outperforms AutoMine, Pangolin, Peregrine, and
GAP by 10.1×, 1.4×, 13.8×, and 1.4×, respectively, for TC.
𝑘-Clique Listing (𝑘-CL): Table 5 presents 𝑘-CL results. Pan-
golin (BFS-only) performs poorly as memoizing of neigh-
borhood connectivity (MNC) can only be enabled in DFS.
Peregrine does on-the-fly symmetry breaking, but it does
not construct and use DAG unlike Pangolin and Sandslash.
Therefore, Peregrine performs similarly to Pangolin although
it is a DFS based system. AutoMine is slower than Sandslash
because it does not do symmetry breaking. We observe that
Sandslash-Hi is already significantly faster than all the previ-
ous GPM systems. Moreover, Sandslash-Lo achieves better
performance than even expert-implemented kClist [17] by
enabling search on a local graph. There are some cases where
Sandslash-Lo underperforms Sandslash-Hi. This is because
searching on local graph requires computing/maintaining lo-
cal graphs. When the search space is not reduced significantly,
the overhead might outweigh the benefits (we explain this in
detail in Section 6.3). On average, Sandslash-Lo outperforms
AutoMine, Pangolin, Peregrine, and kClist by 21.0×, 35.1×,
31.1×, and 1.4×, respectively, for 𝑘-CL.
𝑘-Motif Counting (𝑘-MC): Table 6 compares 𝑘-MC perfor-
mance. Sandslash-Hi outperforms AutoMine due to symme-
try breaking, and Sandslash-Lo is orders of magnitude faster
than Sandslash-Hi due to the local counting optimization.
Pangolin is particularly inefficient for 4-MC as it cannot
memoize neighborhood connectivity (MNC). Sandslash-Hi
and Sandslash-Lo count all patterns simultaneously, whereas
Peregrine does counting for each pattern/motif one by one;
this allows it apply optimizations for each pattern. Unlike
Sandslash, Peregrine reorders vertices during preprocessing.
Peregrine is faster than Sandslash-Hi likely due to these

reasons. Sandslash-Lo is faster than Peregrine due to the
formula-based local counting optimization, which cannot be
supported in the Peregrine API. All optimizations in expert-
implemented PGD [4] are enabled in Sandslash-Lo. Sandslash-
Lo outperforms PGD because PGD does not apply symmetry
breaking and has much larger enumeration space. On average,
Sandslash-Lo outperforms AutoMine, Pangolin, Peregrine,
and PGD by 27.2×, 53.6×, 8.6× and 17.9×, respectively.
Subgraph Listing (SL): Table 7 presents SL results (AutoMine
is omitted since it does vertex-induced, not edge-induced, SL).
Sandslash outperforms all other systems, except Peregrine
for the diamond pattern on Lj and Fr, which is likely because
Peregrine reorders vertices during preprocessing. Pangolin is
much slower than the other systems as it does not support
memoization of neighborhood connectivity (MNC) optimiza-
tion. The MNC approach in Sandslash is more efficient than
the vertex set buffering (VSB) in Peregrine as explained in
Section 4.3: Peregrine must do neighborhood intersections
to determine connectivity while Sandslash does not. MNC
is especially important for patterns like 4-cycle, for which
VSB has no benefit because there is no reusable vertex set
to buffer. On average, Sandslash outperforms Pangolin and
Peregrine by 29.5× and 5.6×, respectively.
Subgraph Counting (SC): Low-level Sandslash can support
local counting in subgraph counting (SC) using formulas for
specific patterns, e.g. diamond. Table 8 shows the SC perfor-
mance on diamond compared to Peregrine. SC in Peregrine
implements similar optimization in a hard-coded fashion as is
does not provide any API for that. Because Sandslash allows
high-level optimizations applied automatically while the user
implements low-level optimizations, SC in Sandslash is faster
than Peregrine due to MNC. On average, we observe 2.1×
speedup over SC in Peregrine. Compared to the high-level
Sandslash, the local counting optimization brings an average
2.0× speedup for diamond.
𝑘-Frequent Subgraph Mining (𝑘-FSM): Table 9 presents 𝑘-
FSM results (AutoMine is omitted because it does not use
domain support for FSM). Although Peregrine uses DFS
exploration, it does global synchronization among threads for
each DFS iteration in FSM which results in BFS-like explo-
ration. In contrast, Sandslash uses DFS exploration on the
sub-pattern tree and filters patterns without synchronization.
Peregrine is the fastest for Yo due to better load balance
and relatively small number of frequent patterns. We observe
that for graphs with a large number of frequent patterns
(Pa), Peregrine becomes very inefficient as its pattern-centric
approach enumerates all the possible patterns first and then
enumerates embeddings for each pattern one by one; this is
detrimental to performance for larger graphs and patterns
(e.g., it times out for Pdb). Sandslash is similar or faster than
Pangolin in most cases, but is slower for Pa at 𝜎=30K mainly
because the BFS based approach has high parallelism for that
case. For 4-FSM, Sandslash outperforms both Pangolin and
Peregrine. It also performs better than expert-implemented
DistGraph [55] as it enables all optimizations that are used
in DistGraph, but with a better parallel implementation.
Sandslash is the only system that can run 4-FSM on Pdb.

Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining ICS ’21, June 14–17, 2021, Virtual Event, USA

3-FSM 4-FSM
Pa Yo Pdb Pa Pdb

𝜎𝑚𝑖𝑛 500 1K 5K 500 1K 5K 500 1K 5K 10K 20K 30K 500 1K 5K

Pangolin 17.0 19.1 27.4 86.8 88.3 91.5 57.6 66.1 117.3 OOM 146.2 29.4 OOM OOM OOM
Peregrine 103.8 118.4 94.3 52.8 69.9 60.8 928.7 837.1 943.7 28301.0 4240.6 397.3 TO TO TO
DistGraph 13.1 13.0 14.1 OOM OOM OOM 253.9 278.8 239.8 120.7 58.01 25.1 OOM OOM OOM
Sandslash 3.5 3.8 6.1 81.0 80.8 82.8 46.5 40.0 44.5 102.3 108.4 43.7 200.2 198.0 195.1

Table 9: Execution time (sec) of 𝑘-FSM:- 𝜎𝑚𝑖𝑛: minimum support (OOM: out of memory; TO: timed out).

 0

 20

 40

 60

 80

 100

 120

3-Lj 3-Or 4-Pa 4-Yo

S
p
e
e
d
u
p

16
3.4 4.2

embedding neighborhood

Figure 9: 𝑘-MC speedup with memoization
of embedding/neighborhood connectivity.

 0

 1

 2

 3

 4

 5

 6

 4 5 6 7 8 9
S
p
e
e
d
u
p

Pattern size k

Or
Fr

Figure 10: 𝑘-CL speedup by ap-
plying search on local graph.

Lj Or Fr

235

237

239

em

be
dd

in
gs

 e
nu

m
er

at
ed

5-CL

Lj Or Fr

232

235

238

3-MC

Sandslash-Hi Sandslash-Lo

Figure 11: Comparing search space (# of enumerated
embeddings) of high- and low-level Sandslash.

On average, Sandslash outperforms Pangolin, Peregrine, and
DistGraph by 1.2×, 4.6× and 2.4×, respectively, for FSM.

6.3 Analysis of Sandslash
We present the impact of optimizations in Sandslash that are
missing in other systems (Table 2b).
High-Level Optimizations: We observe 2% to 16% improve-
ment for 𝑘-CL due to the degree filtering (DF) optimization.
Fig. 9 shows speedup due to memoization of embedding
connectivity (MEC) and memoization of neighborhood con-
nectivity (MNC) optimizations for 𝑘-MC. For 𝑘-MC, the
connectivity information in both the neighborhood and the
embedding is memoized. MEC and MNC improve perfor-
mance by 7.4× and 87× on average, respectively.
Low-Level Optimizations: Formula-based local counting (LC)
reduces compute time by avoiding unnecessary enumeration
of patterns. Table 6 shows Sandslash-Lo is 38× faster than
Sandslash-Hi due to LC. As the pattern gets larger, pruning
becomes more important. LC improves performance of 3-MC
and 4-MC by 25× and 136× on average, respectively. This
highlights the need to expose a low-level interface to express
customized pruning strategies.

Fig. 10 illustrates the performance improvement on 𝑘-CL
using the local graphs (LG) optimization on large patterns.
Shrinking the local graph can reduce the search space com-
pared to using the original graph. This improves performance
by 1.2× to 3.5× for Or and Fr. The speedup for Or increases
as the pattern size 𝑘 increases. However, for Fr, the speedup
peaks at 𝑘 = 7, indicating that further shrinking becomes
less effective as 𝑘 grows. This trend depends on the input
graph topology, but in general, this optimization is effective
for supporting large patterns.

Both LC and LG optimizations prune the enumeration
search space. We compare the search spaces of Sandslash-Hi
and Sandslash-Lo to explain how they improve performance.
Fig. 11 shows the number of enumerated embeddings for 𝑘-
CL and 𝑘-MC. We observe a significant reduction for Or and
Fr in Sandslash-Lo, explaining the performance differences

Time−Out

1e+01

1e+03

1e+05

4 5 6 7 8 9
Pattern size k

E
xe

cu
tio

n
T

im
e

(s
ec

)

Pangolin

Peregrine

kClist

Sandslash−Hi

Sandslash−Lo

Figure 12: Execution time (sec in log scale) of 𝑘-CL on Fr graph.

between Sandslash-Hi and Sandslash-Lo in Tables 5 and 6.
However, the pruning is less effective for Lj in 𝑘-CL, and
given the overhead of local graph construction, Sandslash-Lo
performs similar to Sandslash-Hi for Lj as shown in Table 5.
Large Patterns. Fig. 12 shows 𝑘-CL on Fr graph with the
pattern size 𝑘 from 4 to 9. Pangolin and Peregrine timed out
for 𝑘 = 8 and 𝑘 = 9. Existing systems cannot efficiently mine
large patterns due to a much larger enumeration search space
or significant amount of redundant computation. In contrast,
Sandslash can effectively handle these large patterns, and
in all cases Sandslash-Lo is faster than expert-implemented
kClist. More importantly, the performance gap between Sand-
slash and prior systems becomes larger as 𝑘 increases, in-
dicating the importance of including all the high-level and
low-level optimizations that are missing in prior systems.
Large Inputs. The large input graph, Gsh, requires 199GB
in Compressed Sparse Row (CSR) format on disk, so we

ICS ’21, June 14–17, 2021, Virtual Event, USA Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang, Keshav Pingali

 0

 10

 20

 30

 40

 0 10 20 30 40 50

S
p
e
e
d
u
p

Number of threads

LiveJ
Orkut

Twitter20

(a) TC

 0

 10

 20

 30

 40

 0 10 20 30 40 50

S
p
e
e
d
u
p

Number of threads

LiveJ
Orkut

Friendster

(b) 4-CL

 0

 10

 20

 30

 40

 0 10 20 30 40 50

S
p
e
e
d
u
p

Number of threads

Patent
LiveJ

Orkut

(c) SL (4-cycle)

 0

 10

 20

 30

 40

 0 10 20 30 40 50

S
p
e
e
d
u
p

Number of threads

LiveJ
Orkut

Friendster

(d) 3-MC
Figure 13: Strong scaling of Sandslash.

evaluate it using 96 threads on the Optane machine. We were
not able to run AutoMine and Peregrine on this large input.
For 4-CL, Pangolin takes 6.5 hours, whereas Sandslash-Hi
takes only 0.9 hours. Sandslash-Hi’s memory usage is low as
well: peak memory usage for Sandslash-Hi is 436 GB, while
Pangolin, a BFS-based system, uses 3.5 TB memory. kClist
and Sandslash-Lo run out of memory because maintaining
the local graphs consumes more than 6 TB memory.
Strong Scaling. Fig. 13 shows the strong scaling of Sandslash
applications. We observe the performance scales linearly for
most of the applications as we increase threads. The average
speedups of Sandslash on 56-thread over 1-thread are 43×,
28×, 39×, 35×, and 8× for TC, 𝑘-CL, SL, 𝑘-MC, and 𝑘-FSM,
respectively (FSM not shown in the figure due to limited
space). The speedup for 𝑘-FSM is lower than that for other
applications due to constrained parallelism in traversing the
sub-pattern tree in FSM. We also observe that Sandslash
balances work well because the number of grains/vertices is
large enough. Orthogonal techniques like fine-grained work-
stealing in Fractal and vertex reordering in Peregrine can be
added to Sandslash to further improve load balance.

7 Related Work
Low-level GPM Systems: Arabesque [57] is a distributed GPM
system that uses an embedding-centric programming para-
digm. RStream [59] is an out-of-core GPM system on a single
machine, using a relational algebra based model. Kaleido [64]
is a single-machine system that uses a compressed sparse
embedding (CSE) format to reduce memory consumption.
G-Miner [12] is a distributed GPM system which uses task-
parallel processing. Pangolin [13] is a shared-memory GPM
system targeting both CPU and GPU. Instead of the BFS
exploration used in the above systems, Fractal [20] uses DFS
to enumerate subgraphs on distributed platforms. Compared
to these low-level systems, Sandslash improves productivity
and performance with automated optimizations. Some of
these GPM systems use distributed, out-of-core, or GPU
platforms, which are orthogonal to our work.

High-level GPM Systems: AutoMine [41] is a DFS based
system targeting a single-machine. It provides a high-level
programming interface and employs a compiler to generate
high performance GPM programs. GraphZero [40] improves
AutoMine by introducing symmetry breaking to avoid over-
counting. GraphPi [50] further improves GraphZero with a
better performance model for redundancy elimination. Both

GraphZero and GraphPi support only pattern matching,
while Sandslash supports a wider range of GPM problems
and also enhances performance without compromising pro-
ductivity. Peregrine is the state-of-the-art high-level GPM
system. It includes efficient matching strategies from well-
established techniques [9, 25, 34] and improves performance
compared to previous systems. Nevertheless, Sandslash with
only its high-level API outperforms Peregrine. Furthermore,
Sandslash provides a low-level API to trade-off programming
effort for better performance.

GPM Algorithms: There are numerous hand-optimized
GPM applications targeting various platforms. For TC, there
are parallel solvers on multicore CPUs [19, 51, 60, 63], dis-
tributed CPUs [24, 46, 54], and GPUs [28, 29, 45]. kClist [17]
is a parallel 𝑘-CL algorithm derived from [15]. It constructs
DAG using a core value based ordering to reduce search
space. PGD [4] counts 3 and 4-motifs by leveraging proven
formulas to reduce enumeration space. Escape [47] extends
this approach to 5-motifs. Subgraph listing [2, 8, 9, 32–
35, 37, 39, 42, 48, 49, 52, 53, 58] is another important appli-
cation in which a matching order is applied to reduce search
space and avoid graph isomorphism tests. gSpan [61] is a
sequential FSM algorithm using a lexicographic order for
symmetry breaking. DistGraph [55, 56] parallelizes gSpan
with a customized load balancer.We did holistic analysis on
the optimizations introduced in these expert-written solvers
and implemented them in Sandslash.

8 Conclusion
In this work, we revisit GPM system design tradeoffs on mul-
ticore CPU, based on a holistic investigation on optimizations
in hand-tuned applications. We present Sandslash, a two-level
GPM programming system targeting shared-memory CPUs.
The Sandslash programming interface is split into two levels,
which provides high productivity in the high-level and high
performance in the low level, while retaining expressiveness.
The user can easily compose GPM applications with the
system support of automated optimizations and transpar-
ent parallelism. The system also gives the user flexibility
to optionally express advanced optimizations to boost per-
formance further. With two-level optimizations, Sandslash
significantly outperforms existing systems and even hand-
optimized implementations. This work demonstrates that a
GPM programming system can provide both high productiv-
ity and high efficiency, without compromising expressiveness.

Sandslash: A Two-Level Framework for Efficient Graph Pattern Mining ICS ’21, June 14–17, 2021, Virtual Event, USA

Acknowledgments
The research was supported by NSF grants 1406355, 1618425,
1705092, and 1725322, DARPA contracts FA8750-16-2-0004
and FA8650-15-C-7563, NSFC grant 61802416, and XSEDE
grant ACI-1548562 through allocation TG-CIE-170005. We
thank Intel for providing the Intel Optane DC PMM machine.

References
[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair

Khayyat, and Fuad Jamour. 2016. Scalemine: Scalable Paral-
lel Frequent Subgraph Mining in a Single Large Graph. In Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Salt Lake City,
Utah) (SC ’16). IEEE Press, Piscataway, NJ, USA, Article 61,
12 pages. http://dl.acm.org/citation.cfm?id=3014904.3014986

[2] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli,
Kunle Olukotun, and Christopher Ré. 2017. EmptyHeaded: A
Relational Engine for Graph Processing. ACM Trans. Database
Syst. 42, 4, Article 20 (Oct. 2017), 44 pages. https://doi.org/10.
1145/3129246

[3] Charu C. Aggarwal and Haixun Wang. 2010. Managing and
Mining Graph Data. Springer US.

[4] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick
Duffield. 2015. Efficient Graphlet Counting for Large Networks.
In ICDM. 1–10.

[5] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and SC. Sahi-
nalp. 2008. Biomolecular network motif counting and discovery
by color coding. Bioinformatics 24, 13 (2008), 241–249.

[6] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015.
The GAP Benchmark Suite. CoRR abs/1508.03619 (2015). http:
//arxiv.org/abs/1508.03619

[7] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016.
Higher-order organization of complex networks. Science 353,
6295 (2016), 163–166. https://doi.org/10.1126/science.aad9029
arXiv:https://science.sciencemag.org/content/353/6295/163.full.pdf

[8] Bibek Bhattarai, Hang Liu, and H. Howie Huang. 2019. CECI:
Compact Embedding Cluster Index for Scalable Subgraph Match-
ing. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19).
ACM, New York, NY, USA, 1447–1462. https://doi.org/10.1145/
3299869.3300086

[9] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016.
Efficient Subgraph Matching by Postponing Cartesian Products.
In Proceedings of the 2016 International Conference on Man-
agement of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA,
1199–1214. https://doi.org/10.1145/2882903.2915236

[10] Paolo Boldi, Massimo Santini, and Sebastiano Vigna. 2008. A
Large Time-Aware Graph. SIGIR Forum 42, 2 (2008), 33–38.

[11] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Frame-
work I: Compression Techniques. In Proc. of the Thirteenth In-
ternational World Wide Web Conference (WWW 2004). ACM
Press, Manhattan, USA, 595–601.

[12] Hongzhi Chen, Miao Liu, Yunjian Zhao, Xiao Yan, Da Yan, and
James Cheng. 2018. G-Miner: An Efficient Task-Oriented Graph
Mining System. In Proceedings of the Thirteenth EuroSys Con-
ference (Porto, Portugal) (EuroSys ’18). Association for Com-
puting Machinery, New York, NY, USA, Article 32, 12 pages.
https://doi.org/10.1145/3190508.3190545

[13] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav
Pingali. 2020. Pangolin: An Efficient and Flexible Graph Mining
System on CPU and GPU. Proc. VLDB Endow. 13, 8 (Aug.
2020). https://doi.org/10.14778/3389133.3389137

[14] X. Cheng, C. Dale, and J. Liu. [n.d.]. Dataset
for statistics and social network of youtube videos.
http://netsg.cs.sfu.ca/youtubedata/.

[15] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Sub-
graph Listing Algorithms. SIAM J. Comput. 14, 1 (Feb. 1985),
210–223. https://doi.org/10.1137/0214017

[16] Young-Rae Cho and Aidong Zhang. 2010. Predicting Protein
Function by Frequent Functional Association Pattern Mining in
Protein Interaction Networks. Trans. Info. Tech. Biomed. 14, 1
(Jan. 2010), 30–36. https://doi.org/10.1109/TITB.2009.2028234

[17] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. List-
ing K-cliques in Sparse Real-World Graphs*. In Proceedings of

the 2018 World Wide Web Conference (Lyon, France) (WWW
’18). International World Wide Web Conferences Steering Com-
mittee, Republic and Canton of Geneva, Switzerland, 589–598.
https://doi.org/10.1145/3178876.3186125

[18] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. 2005.
Frequent substructure-based approaches for classifying chemical
compounds. IEEE Transactions on Knowledge and Data Engi-
neering 17, 8 (Aug 2005), 1036–1050. https://doi.org/10.1109/
TKDE.2005.127

[19] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. The-
oretically Efficient Parallel Graph Algorithms Can Be Fast and
Scalable. In Proceedings of the 30th on Symposium on Paral-
lelism in Algorithms and Architectures (Vienna, Austria) (SPAA
’18). Association for Computing Machinery, New York, NY, USA,
393–404. https://doi.org/10.1145/3210377.3210414

[20] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner
Meira, and Srinivasan Parthasarathy. 2019. Fractal: A General-
Purpose Graph Pattern Mining System. In Proceedings of the
2019 International Conference on Management of Data (Am-
sterdam, Netherlands) (SIGMOD ’19). ACM, New York, NY,
USA, 1357–1374. https://doi.org/10.1145/3299869.3319875

[21] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and
Panos Kalnis. 2014. GraMi: Frequent Subgraph and Pattern
Mining in a Single Large Graph. Proc. VLDB Endow. 7, 7 (March
2014), 517–528. https://doi.org/10.14778/2732286.2732289

[22] Katherine Faust. 2010. A puzzle concerning triads in social net-
works: Graph constraints and the triad census. Social Networks 32,
3 (2010), 221 – 233. https://doi.org/10.1016/j.socnet.2010.03.004

[23] Brian Gallagher. 2006. Matching Structure and Semantics: A Sur-
vey on Graph-Based Pattern Matching. In AAAI Fall Symposium:
Capturing and Using Patterns for Evidence Detection.

[24] I. Giechaskiel, G. Panagopoulos, and E. Yoneki. 2015. PDTL:
Parallel and Distributed Triangle Listing for Massive Graphs.
In 2015 44th International Conference on Parallel Processing.
370–379. https://doi.org/10.1109/ICPP.2015.46

[25] Joshua A. Grochow and Manolis Kellis. 2007. Network Motif Dis-
covery Using Subgraph Enumeration and Symmetry-Breaking. In
Proceedings of the 11th Annual International Conference on Re-
search in Computational Molecular Biology (Oakland, CA, USA)
(RECOMB’07). Springer-Verlag, Berlin, Heidelberg, 92–106.

[26] B. H. Hall, Jaffe A. B., and Trajtenberg M. 2001. The NBER
Patent Citation Data File: Lessons, Insights and Methodological
Tools. http://www.nber.org/patents/.

[27] F. Harary. 1969. Graph theory. Addison-Wesley Pub. Co. https:
//books.google.com/books?id=QNxgQZQH868C

[28] Loc Hoang, Vishwesh Jatala, Xuhao Chen, Udit Agarwal, Roshan
Dathathri, Gurbinder Gill, and Keshav Pingali. 2019. DistTC:
High Performance Distributed Triangle Counting. In HPEC 2019
23rd IEEE High Performance Extreme Computing, Graph Chal-
lenge.

[29] Y. Hu, H. Liu, and H. H. Huang. 2018. TriCore: Parallel Triangle
Counting on GPUs. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis.
171–182. https://doi.org/10.1109/SC.2018.00017

[30] Shweta Jain and C. Seshadhri. 2020. The Power of Pivoting for
Exact Clique Counting. In Proceedings of the 13th International
Conference on Web Search and Data Mining (Houston, TX, USA)
(WSDM ’20). Association for Computing Machinery, New York,
NY, USA, 268–276. https://doi.org/10.1145/3336191.3371839

[31] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. 2020. Pere-
grine: A Pattern-Aware Graph Mining System. In Proceedings of
the Fifteenth EuroSys Conference (EuroSys ’20).

[32] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling:
A Fast and Provable Method for Estimating 4-Vertex Subgraph
Counts. In Proceedings of the 24th International Conference on
World Wide Web (Florence, Italy) (WWW ’15). International
World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland, 495–505. https://doi.org/10.
1145/2736277.2741101

[33] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi,
Jeremy Chen, and Semih Salihoglu. 2017. Graphflow: An Active
Graph Database. In Proceedings of the 2017 ACM International
Conference on Management of Data (Chicago, Illinois, USA)
(SIGMOD ’17). Association for Computing Machinery, New York,
NY, USA, 1695–1698. https://doi.org/10.1145/3035918.3056445

[34] Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin
Han, JeongHoon Lee, Seongyun Ko, and Moath H.A. Jarrah. 2016.

http://dl.acm.org/citation.cfm?id=3014904.3014986
https://doi.org/10.1145/3129246
https://doi.org/10.1145/3129246
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
https://doi.org/10.1126/science.aad9029
https://arxiv.org/abs/https://science.sciencemag.org/content/353/6295/163.full.pdf
https://doi.org/10.1145/3299869.3300086
https://doi.org/10.1145/3299869.3300086
https://doi.org/10.1145/2882903.2915236
https://doi.org/10.1145/3190508.3190545
https://doi.org/10.14778/3389133.3389137
https://doi.org/10.1137/0214017
https://doi.org/10.1109/TITB.2009.2028234
https://doi.org/10.1145/3178876.3186125
https://doi.org/10.1109/TKDE.2005.127
https://doi.org/10.1109/TKDE.2005.127
https://doi.org/10.1145/3210377.3210414
https://doi.org/10.1145/3299869.3319875
https://doi.org/10.14778/2732286.2732289
https://doi.org/10.1016/j.socnet.2010.03.004
https://doi.org/10.1109/ICPP.2015.46
https://books.google.com/books?id=QNxgQZQH868C
https://books.google.com/books?id=QNxgQZQH868C
https://doi.org/10.1109/SC.2018.00017
https://doi.org/10.1145/3336191.3371839
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1145/3035918.3056445

ICS ’21, June 14–17, 2021, Virtual Event, USA Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Loc Hoang, Keshav Pingali

DUALSIM: Parallel Subgraph Enumeration in a Massive Graph
on a Single Machine. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). ACM, New York, NY, USA, 1231–1245.
https://doi.org/10.1145/2882903.2915209

[35] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sung-
pack Hong, Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong.
2018. TurboFlux: A Fast Continuous Subgraph Matching System
for Streaming Graph Data. In Proceedings of the 2018 Inter-
national Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). ACM, New York, NY, USA, 411–426.
https://doi.org/10.1145/3183713.3196917

[36] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon.
2010. What is Twitter, a Social Network or a News Media?.
In Proceedings of the 19th International Conference on World
Wide Web (Raleigh, North Carolina, USA) (WWW ’10). ACM,
New York, NY, USA, 591–600. https://doi.org/10.1145/1772690.
1772751

[37] Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. 2015. Scalable
Subgraph Enumeration in MapReduce. Proc. VLDB Endow. 8, 10
(June 2015), 974–985. https://doi.org/10.14778/2794367.2794368

[38] J. Leskovec. 2013. SNAP: Stanford Network Analysis Platform.
http://snap.stanford.edu/data/index.html

[39] Shuai Ma, Yang Cao, Jinpeng Huai, and Tianyu Wo. 2012. Dis-
tributed Graph Pattern Matching. In Proceedings of the 21st
International Conference on World Wide Web (Lyon, France)
(WWW ’12). ACM, New York, NY, USA, 949–958. https:
//doi.org/10.1145/2187836.2187963

[40] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu,
and Bo Wu. 2019. GraphZero: Breaking Symmetry for Efficient
Graph Mining. arXiv:1911.12877 [cs.PF]

[41] Daniel Mawhirter and Bo Wu. 2019. AutoMine: Harmonizing
High-level Abstraction and High Performance for Graph Mining.
In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles (Huntsville, Ontario, Canada) (SOSP ’19). ACM,
New York, NY, USA, 509–523. https://doi.org/10.1145/3341301.
3359633

[42] Amine Mhedhbi and Semih Salihoglu. 2019. Optimizing Subgraph
Queries by Combining Binary and Worst-Case Optimal Joins.
Proc. VLDB Endow. 12, 11 (July 2019), 1692–1704. https:
//doi.org/10.14778/3342263.3342643

[43] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon. 2002. Network Motifs: Simple Building
Blocks of Complex Networks. Science 298, 5594 (2002),
824–827. https://doi.org/10.1126/science.298.5594.824
arXiv:https://science.sciencemag.org/content/298/5594/824.full.pdf

[44] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A
Lightweight Infrastructure for Graph Analytics. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles
(SOSP) (Farminton, Pennsylvania) (SOSP ’13). ACM, New York,
NY, USA, 456–471. https://doi.org/10.1145/2517349.2522739

[45] Santosh Pandey, Xiaoye Sherry Li, Aydin Buluc, Jiejun Xu, and
Hang Liu. 2019. H-INDEX: Hash-Indexing for Parallel Triangle
Counting on GPUs. In 2019 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 1–7. https://doi.org/
10.1109/HPEC.2019.8916492

[46] Roger Pearce, Trevor Steil, Benjamin W Priest, and Geoffrey
Sanders. 2019. One Quadrillion Triangles Queried on One Million
Processors. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1–5.

[47] Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE:
Efficiently Counting All 5-Vertex Subgraphs. In Proceedings of the
26th International Conference on World Wide Web (Perth, Aus-
tralia) (WWW ’17). International World Wide Web Conferences
Steering Committee, Republic and Canton of Geneva, Switzerland,
1431–1440. https://doi.org/10.1145/3038912.3052597

[48] Xuguang Ren, Junhu Wang, Wook-Shin Han, and Jeffrey Xu
Yu. 2019. Fast and robust distributed subgraph enumeration.
Proceedings of the VLDB Endowment 12, 11 (2019), 1344–1356.

[49] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and
Ning Xu. 2014. Parallel Subgraph Listing in a Large-scale

Graph. In Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). ACM, New York, NY, USA, 625–636.
https://doi.org/10.1145/2588555.2588557

[50] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. 2020.
GraphPi: High Performance Graph Pattern Matching through
Effective Redundancy Elimination. In Proceedings of the Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE
Press, Article 100, 14 pages.

[51] J. Shun and K. Tangwongsan. 2015. Multicore triangle computa-
tions without tuning. In 2015 IEEE 31st International Confer-
ence on Data Engineering. 149–160. https://doi.org/10.1109/
ICDE.2015.7113280

[52] Shixuan Sun, Yulin Che, Lipeng Wang, and Qiong Luo. 2019.
Efficient Parallel Subgraph Enumeration on a Single Machine. In
2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 232–243.

[53] Shixuan Sun and Qiong Luo. 2019. Scaling Up Subgraph Query
Processing with Efficient Subgraph Matching. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE,
220–231.

[54] Siddharth Suri and Sergei Vassilvitskii. 2011. Counting Trian-
gles and the Curse of the Last Reducer. In Proceedings of the
20th International Conference on World Wide Web (Hyder-
abad, India) (WWW ’11). ACM, New York, NY, USA, 607–614.
https://doi.org/10.1145/1963405.1963491

[55] N. Talukder and M. J. Zaki. 2016. A Distributed Approach for
Graph Mining in Massive Networks. Data Min. Knowl. Discov.
30, 5 (Sept. 2016), 1024–1052. https://doi.org/10.1007/s10618-
016-0466-x

[56] N. Talukder and M. J. Zaki. 2016. Parallel graph mining with
dynamic load balancing. In 2016 IEEE International Conference
on Big Data (Big Data). 3352–3359.

[57] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Geor-
gos Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. 2015.
Arabesque: A System for Distributed Graph Mining. In Proceed-
ings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). ACM, New York, NY, USA,
425–440. https://doi.org/10.1145/2815400.2815410

[58] J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J.
ACM 23, 1 (Jan. 1976), 31–42. https://doi.org/10.1145/321921.
321925

[59] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen,
and Guoqing Harry Xu. 2018. RStream: Marrying Relational
Algebra with Streaming for Efficient Graph Mining on a Single
Machine. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA,
USA) (OSDI’18). USENIX Association, Berkeley, CA, USA, 763–
782. http://dl.acm.org/citation.cfm?id=3291168.3291225

[60] Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D
Hammond, and Sivasankaran Rajamanickam. 2017. Fast linear
algebra-based triangle counting with kokkoskernels. In 2017 IEEE
High Performance Extreme Computing Conference (HPEC).
IEEE, 1–7.

[61] Xifeng Yan and Jiawei Han. 2002. gSpan: graph-based sub-
structure pattern mining. In Proceedings of the 2002 IEEE
International Conference on Data Mining. 721–724. https:
//doi.org/10.1109/ICDM.2002.1184038

[62] Jaewon Yang and Jure Leskovec. 2012. Defining and Evalu-
ating Network Communities based on Ground-truth. CoRR
abs/1205.6233 (2012). arXiv:1205.6233 http://arxiv.org/abs/
1205.6233

[63] Abdurrahman Yaşar, Sivasankaran Rajamanickam, Michael Wolf,
Jonathan Berry, and Ümit V Çatalyürek. 2018. Fast triangle
counting using cilk. In 2018 IEEE High Performance extreme
Computing Conference (HPEC). IEEE, 1–7.

[64] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng, and Jiafeng
Guo. 2020. Kaleido: An Efficient Out-of-core Graph Mining
System on A Single Machine. In Proceedings of the 2020 IEEE
International Conference on Data Engineering (ICDE 2020)
(ICDE ’20).

https://doi.org/10.1145/2882903.2915209
https://doi.org/10.1145/3183713.3196917
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.14778/2794367.2794368
http://snap.stanford.edu/data/index.html
https://doi.org/10.1145/2187836.2187963
https://doi.org/10.1145/2187836.2187963
https://arxiv.org/abs/1911.12877
https://doi.org/10.1145/3341301.3359633
https://doi.org/10.1145/3341301.3359633
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.14778/3342263.3342643
https://doi.org/10.1126/science.298.5594.824
https://arxiv.org/abs/https://science.sciencemag.org/content/298/5594/824.full.pdf
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1109/HPEC.2019.8916492
https://doi.org/10.1109/HPEC.2019.8916492
https://doi.org/10.1145/3038912.3052597
https://doi.org/10.1145/2588555.2588557
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1145/1963405.1963491
https://doi.org/10.1007/s10618-016-0466-x
https://doi.org/10.1007/s10618-016-0466-x
https://doi.org/10.1145/2815400.2815410
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/321921.321925
http://dl.acm.org/citation.cfm?id=3291168.3291225
https://doi.org/10.1109/ICDM.2002.1184038
https://doi.org/10.1109/ICDM.2002.1184038
https://arxiv.org/abs/1205.6233
http://arxiv.org/abs/1205.6233
http://arxiv.org/abs/1205.6233

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Subgraph Trees and Vertex/Edge Extension
	2.3 Pattern-Aware GPM Solutions

	3 Sandslash
	3.1 High-Level API
	3.2 Low-Level API
	3.3 Discussion on System Tradeoffs

	4 High-Level Sandslash
	4.1 Search Strategies
	4.2 Representation of Tree
	4.3 High Level Optimizations

	5 Low-Level Sandslash
	5.1 Local Counting (LC)
	5.2 Search on Local Graph (LG)
	5.3 Fine-Grained Pruning (FP) and Customized Pattern Classification (CP)

	6 Evaluation
	6.1 Experimental Setup
	6.2 Comparisons with Existing Systems
	6.3 Analysis of Sandslash

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

