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Abstract

We propose a novel unsupervised learning framework

for activity perception. To understand activities in compli-

cated scenes from visual data, we propose a hierarchical

Bayesian model to connect three elements: low-level visual

features, simple “atomic” activities, and multi-agent inter-

actions. Atomic activities are modeled as distributions over

low-level visual features, and interactions are modeled as

distributions over atomic activities. Our models improve ex-

isting language models such as Latent Dirichlet Allocation

(LDA) and Hierarchical Dirichlet Process (HDP) by mod-

eling interactions without supervision. Our data sets are

challenging video sequences from crowded traffic scenes

with many kinds of activities co-occurring. Our approach

provides a summary of typical atomic activities and interac-

tions in the scene. Unusual activities and interactions are

found, with natural probabilistic explanations. Our method

supports flexible high-level queries on activities and inter-

actions using atomic activities as components.

1. Introduction

The goal of this work is to understand activities and in-

teractions in a complicated scene, e.g. a crowded traffic

scene (see Figure 1), a busy train station or a shopping

mall. In such scenes individual objects are often not eas-

ily tracked because of frequent occlusions among objects,

and many different types of activities often occur simultane-

ously. Nonetheless, we expect a visual surveillance system

to: (1) find typical single-agent activities (e.g. car makes

a U-turn) and multi-agent interactions (e.g. vehicles stop

waiting for pedestrians to cross the street) in this scene,

and provide a summary; (2) label short video clips in a

long sequence by interaction, and localize different activi-

ties involved in an interaction; (3) show abnormal activities,

e.g. pedestrians cross the road outside the crosswalk; and

abnormal interactions, e.g. jay-walking (pedestrians cross

the road while vehicles pass by); (4) support queries about

an interaction that has not yet been discovered by the sys-

tem. Ideally, a system would learn models of the scene to

Figure 1. Our approach connects: low-level visual features, atomic

activities and interactions. (a) The video sequence is divided into

short clips as documents. In each clip, local motions are quantized

into visual words based on location and motion direction. The four

quantized directions are represented by colors. Each video clip has

a distribution over visual words. (b) Atomic activities (e.g. pedes-

trians cross the road) are discovered and modeled as distributions

over visual words. (c) Each video clip is labeled by type of inter-

action, modeled as a distribution over atomic activities.

answer such questions in an unsupervised way.

To answer these challenges for visual surveillance sys-

tems, we must determine: how to compute low-level visual

features, and how to model activities and interactions. Our

approach is shown in Figure 1. We compute local motion

as low-level visual feature, avoiding difficult tracking prob-

lems in crowded scenes. We do not adopt global motion fea-

tures ([15, 14]), because in our case multiple activities occur

simultaneously and we want to separate single-agent activi-

ties from interactions. Word-document analysis is then per-

formed by quantizing local motion into visual words and

dividing the long video sequence into short clips as docu-

ments. We assume that visual words caused by the same
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kind of atomic activities often co-exist in video clips (doc-

uments) and that interaction is a combination of atomic ac-

tivities occuring in the same clip. Given this problem struc-

ture, we employ a hierarchical Bayesian approach, in which

atomic activities are modeled as distributions over low-level

visual features, and interactions are modeled as distribu-

tions over atomic activities. Under this model, surveillance

tasks like clustering video clips and abnormality detection

have a nice probabilistic explanation. Because our data is

hierarchical, a hierarchical model can have enough parame-

ters to fit the data well while avoiding overfitting problems,

since it is able to use a population distribution to structure

some dependence into the parameters [2].

Hierarchical Bayesian models for word-document anal-

ysis include LDA [1] and HDP [12]. In these models, words

often co-existing in the same documents are clustered into

the same topic. HDP is nonparametric and can automically

decide the number of topics while LDA requires knowing

that in advance. Directly applying these models to our prob-

lem, atomic activities (corresponding to topics) can be dis-

covered and modeled, however modeling interactions is not

straightforward. Although LDA and HDP allow inclusion

of more hierarchical levels, they require manually labeling

documents into groups. For example, [12] modeled multi-

ple corpora but required knowing to which corpus each doc-

ument belonged; [5] used LDA for scene categorization,

but had to label each image in the training set into differ-

ent categories. We improve LDA and HDP approaches by

simultaneously grouping words into topics and documents

into clusters in an unsupervised way. In the case of visual

surveillance, this means we can learn atomic activities as

well as interactions among activities.

1.1. Related Work

Most existing approaches to activity analysis fall into

two categories. In the first, objects of interest are detected,

tracked, and classified into different classes. The object

tracks are used to model activities [8, 11, 13]. These ap-

proaches fail when object detection, tracking, and/or recog-

nition do not work well, especially in crowded scenes.

Some systems model primitive events, such as “move, stop,

enter-area, turn-left”, and use these primitives as compo-

nents to model complicated activities and interactions [4, 3].

These primitive events are learned from labeled training ex-

amples, or their parameters are manually specified. When

switching to a new scene, new training samples must be la-

beled and parameters must be tuned or re-learned.

The second approach [15, 10] directly uses motion fea-

ture vectors instead of tracks to describe video clips. With-

out object detection and tracking, a particular activity can

not be separated from other activities simultaneously oc-

curing in the same clip, as is common in crowded scenes.

These approaches treat a video clip as an integral entity and

flag the whole clip as normal or abnormal. They are often

applied to simple data sets where there is only one kind of

activity in a video clip. It is difficult for them to model both

single-agent activities and multi-agent interactions.

In computer vision, hierarchical Bayesian models have

been applied to scene categorization [5], object recognition

[9], and human action recognition [7]. Both [5] and [7] are

supervised learning frameworks in the sense that they need

to manually label the documents. The video clip in [7] usu-

ally contains a single activity and [7] did not model inter-

actions among multiple objects. [9], which directly applied

an LDA model, was an unspervised framework assuming

a document contains only one major topic. This does not

work for our problem where each document typically con-

tains several topics. It did not model interactions either.

Our approach avoids tracking in crowded scenes, using

only local motion as features. It can separate co-occuring

activities in the video clip by modeling activities and in-

teractions. The whole learning procedure is unsupervised

without manual labeling of video clips or local motions.

2. Low-Level Visual Features

Our data set is a challenging far-field traffic scene (Fig-

ure 1) video sequence lasting 1.5 hours, recorded by a fixed

camera. There are myriads of activities and interactions in

the video data. It also involves many challenging problems,

such as lighting changes, occlusions, a variety of object

types, object view changes and environmental effects.

We compute local motion as our low-level feature. Mov-

ing pixels are detected in each frame as follows. We

compute the intensity difference between two successive

frames, on a pixel basis. If the difference at a pixel is above

a threshold, the pixel is detected as a moving pixel. The

motion direction at each moving pixel is obtained by com-

puting optical flow [6]. The moving pixels are quantized

according to a codebook, as follows. Each moving pixel has

two features: position and direction of motion. To quantize

position, the scene(480 × 720) is divided into cells of size

10 by 10. The motion of a moving pixel is quantized into

four directions as shown in Figure 1(a). Hence the size of

the codebook is 48 × 72 × 4, and thus each detected mov-

ing pixel is assigned a word based on rough position and

motion direction. The whole video sequence is divided into

540 clips, each 10 seconds in length. In our framework,

video clips are treated as documents and moving pixels are

treated as words for word-document analysis as described

in Section 3.

3. Hierarchical Bayesian Models

LDA and HDP are hierarchical Bayesian models for lan-

guage processing. In these models, words that often co-

exist in the same documents are clustered into the same



Figure 2. (a) LDA model proposed in [1]; (b) our LDA model.

topic. We extend these models by enabling clustering of

both documents and words, thus finding co-occuring words

(topics) and co-occuring topics (interactions). For far-field

surveillance videos, words are quantized local motion of

pixels; moving pixels that tend to co-occur in clips (or doc-

uments) are modeled as topics. Our goal is to infer the set

of activities (or topics) from video by learning the distribu-

tions of features that co-occur, and to learn distributions of

activities that co-occur, thus finding interactions.

3.1. LDA

Figure 2(a) shows the LDA model of [1]. Suppose the

corpus has M documents. Each document is modeled as

a mixture of K topics, where K is assumed known. Each

topic k is modeled as a multinomial distribution over a word

vocabulary given by β = {βk}. α is a Dirichlet prior on

the corpus. For each document j, a parameter πj of the

multinomial distribution is drawn from Dirichlet distribu-

tion Dir(πj |α). For each word i in document j, a topic

zji is drawn with probability πjk , and word xji is drawn

from a multinomial distribution given by βzji
. πj and zji

are hidden variables. α and β are hyperparameters to be

optimized. Given α and β, the joint distribution of topic

mixture πj , topics zj = {zji}, and words xj = {xji} is:

p(xj , zj , πj |α, β) = p(πj |α)

N
∏

i=1

p(zji|πj)p(xji|zji, β)

=
Γ(

∑K

k=1 αk)
∏K

k=1 Γ(αk)
πα1−1

j1 · · ·παK−1
jK

N
∏

i=1

πjzji
βzjixji

(1)

where N is the number of words in document j. Unfortu-

nately, the marginal likelihood p(xj |α, β) and thus the pos-

terior distribution p(πj , zj |α, β) are intractable for exact in-

ference. Thus in [1], a Variational Bayes (VB) inference

algorithm used a family of variational distributions:

q(πj , zj |γj , φj) = q(πj |γj)

N
∏

i=1

q(zji|φji) (2)

to approximate p(πj , zj |α, β), where the Dirichlet parame-

ter γj and multinomial parameters {φji} are free variational

parameters. The optimal (γj , φj) is computed by finding a

tight lower bound on log p(xj |α, β).

This LDA model in [1] does not model clusters of docu-

ments. All the documents share the same Dirichlet prior α.

In activity analysis, we assume that video clips (documents)

of the same type of interaction would include a set of atomic

activities (topics) in a similar way, so they could be grouped

into the same cluster and share the same prior over topics.

Our LDA model is shown in Figure 2(b). The M documents

in the corpus will be grouped into L clusters. Each cluster c
has its own Dirichlet prior αc. For a document j, the cluster

label cj is first drawn from multinomial distribution η and

πj is drawn from Dir(πj |αcj
). Given {αc}, β, and η, the

joint distribution of hidden variables cj , πj , zj and observed

words xj is p(xj , zj , πj , cj|{αc}, β, η), given by:

p(cj |η)p(πj |αcj
)

N
∏

i=1

p(zji|πj)p(xji|zji, β) (3)

The marginal log likelihood of document j is:

log p(xj |{αc}, β, η) = log

L
∑

cj=1

p(cj |η)p(xj |αcj
, β) (4)

Using VB [1], log p(xj |αcj
, β) can be approximated by a

tight lower bound L1(γjcj
, φjcj

; αcj
, β). However because

of the marginalization over cj , hyperparameters are cou-

pled. So we use both EM and VB to estimate hyperpa-

rameters. After using VB to compute the lower bound of

log p(xj |αcj
, β), an averaging distribution q(cj |γjcj

, φjcj
)

can provide a further lower bound on the log likelihood,

log p(xj |{αc}, β, η) ≥ log

L
∑

cj=1

p(cj |η)eL1(γjcj
,φjcj

;αcj
,β)

= log

L
∑

cj=1

q(cj |γjcj
, φjcj

)
p(cj |η)eL1(γjcj

,φjcj
;αcj

,β)

q(cj |γjcj
, αjcj

)

≥

L
∑

cj=1

q(cj |γjcj
, φjcj

)
[

log p(cj |η) + L1(γjcj
, φjcj

; αcj
, β)

]

−
L

∑

cj=1

q(cj |γjcj
, φjcj

) log q(cj |γjcj
, φjcj

)

=L2(q(cj |γjcj
, φjcj

), {αc}, β, η) (5)



Figure 3. (a) HDP model proposed in [12]; (b) our HDP model.

L2 is maximized when choosing

q(cj |γjcj
, φjcj

) =
p(cj |η)eL1(γjcj

,φjcj
;αcj

,β)

∑

cj
p(cj |η)eL1(γjcj

,φjcj
;αcj

,β)
. (6)

Our EM algorithm for hyperparameters estimation is:

1. For each document j and cluster cj , find the opti-

mal values of the variational parameters {γ∗

j,cj
, φ∗

j,cj
:

j = 1, . . . , M, cj = 1, . . . , L} to maximize L1 (using

VB [1]).

2. Compute q(cj |γ
∗

jcj
, φ∗

jcj
) using (6) to maximize L2.

3. Maximize L2 with respect to {αc}, β, and η. β and η
are optimized by setting the first derivative to zero,

ηc ∝

M
∑

j=1

q(cj = c|γ∗

jc, φ
∗

jc) (7)

βkw ∝
M
∑

j=1

L
∑

cj=1

q(cj |γ
∗

jcj
, φ∗

jcj
)

[

N
∑

i=1

φ∗

jcj ikxw
ji

]

(8)

where xw
ji = 1 if xji = w, otherwise it is 0. The {αc}

are optimized using a Newton-Raphson algorithm.

L2 monotically increases after each iteration.

3.2. HDP

HDP is a nonparametric hierarchical Bayesian model

and automatically decides the number of topics. The HDP

model proposed in [12] is shown in Figure 3 (a). A global

random measure G0 is distributed as a Dirichlet Process

with concentration parameter λ and base probability mea-

sure H (H is a Dirichlet prior in our case):

G0|γ, H ∼ DP (γ, H).

G0 can be expressed using a stick-breaking representation,

G0 =
∑

∞

k=1 π0kδφk
, where {φk} are parameters of multi-

nomial distributions, φk ∼ H , π0k = π′

0k

∏k−1
l=1 (1 − π′

0l),
π′

0k ∼ Beta(1, λ). G0 is a prior distribution over the whole

corpus. For each document j, a random measure Gd
j is

drawn from a Dirichlet process with concentration parame-

ter α and base probability measure G0:

Gd
j |α, G0 ∼ DP (α, G0).

Each Gd
j has support at the same points {φk}

∞

k=1 as G0,

and can be written as Gd
j =

∑

∞

k=1 πjkδφk
. Gd

j is a prior

distribution of all the words in document j. For each word i
in document j, a factor θji is drawn from Gd

j (θji is sampled

as one of the φk’s). Word xji is drawn from multinomial

distribution F (xji; θji). In [12], Gibbs sampling schemes

were used to do inference under an HDP model.

In our HDP model, as shown in Figure 3 (b), clusters

of documents are modeled and each cluster c has a random

probability measure Gc. Gc is drawn from Dirichlet pro-

cess DP (ρ, G0). For each document j, a cluster label cj

is first drawn from multinomial distribution p(cj |η). Doc-

ument j chooses Gcj
as the base probabilty and draws its

own prior from Dirichlet process DP (α, Gcj
). We also use

Gibbs sampling for inference. In our HDP model, there are

two kinds of hidden variables to be sampled: (1) variables

k = {kij} assigning words to topics, base distributions G0,

{Gk}; and (2) cluster label cj . The key issue to be solved

in this paper is how to sample cj . Given cj , the first kind of

variables can be sampled using the schemes in [12].

At some sampling iteration, suppose that there have

been K topics, {φk}
K
k=1, generated and assigned to the

words in the corpus (K is variable during the sam-

pling procedure). G0, Gc, and Gd
j can be expressed as,

G0 =
∑K

k=1 π0kδφk
+ π0uG0u, Gc =

∑K

k=1 πckδφk
+

πcuGcu, Gd
j =

∑K

k=1 ωjkδωk
+ ωjuGd

ju, where G0u, Gcu,

and Gd
ju are distributed as Dirichlet process DP (γ, H).

Using the sampling schemes in [12], topic mixtures

π0 = {π01, . . . , π0K , π0u}, πc = {πc1, . . . , πcK , πcu}
are sampled, while {φk}, G0u, Gcu, Gd

ju, and ωd
j =

{ωj1, . . . , ωjK , ωju} can be integrated out without sam-

pling. In order to sample the cluster label cj of document

j, the posterior p(cj = c|(mj1, . . . , mjK), π0, {πc}) has to

be computed where mjk is the number of words assigned to

topic k in document j and is computable from k.

p(cj = c|(mj1, . . . , mjK), π0, {πc})

∝p(mj1, . . . , mjK |πc)p(cj = c)

=ηc

∫

p(mj1, . . . , mjK |ωd
j )p(ωd

j |πc)dωd
j

p(mj1, . . . , mjK |ωd
j ) is a multinomial distribution. Since

Gd
j is drawn from DP (α, Gc), p(ωd

j |πc) is Dirichlet distri-



Figure 4. Bars example. (a) Topic distributions learnt by the HDP

model in [12]. (b) Topics distributions learnt by the HDP model

in Figure 3(b), however, the cluster labels of documents are ran-

domly assigned and not updated by sampling. (c) Topic distribu-

tions learnt by our HDP model in Figure 3(b) where the cluster

labels are updated using our Gibbs sampling algorithms. (d) Topic

mixtures of two clusters π1 and π2.

bution Dir(ωd
j |α · πc). Thus we have

p(cj = c|(mj1, . . . , mjK), π0, {πc})

∝ηc

∫

Γ(απcu + α
∑K

k=1 πck)

Γ(απcu)
∏K

k=1 Γ(απck)
ωαπcu−1

ju

K
∏

k=1

ω
απck+mjk−1
jk dωd

j

∝
Γ(απcu + α

∑K

k=1 πck)

Γ(απcu)
∏K

k=1 Γ(απck)

Γ(απcu)
∏K

k=1 Γ(απck + mjk)

Γ(απcu +
∑K

k=1(απck + mjk))

∝ηc

∏K

k=1 Γ(α · πck + mjk)
∏K

k=1 Γ(α · πck)
. (9)

So the Gibbs sampling procedure repeats the following

two steps alternatively at every iteration:

1. given {cj}, sample k, π0, and {πc} using the schemes

in [12];

2. given k, π0, and {πc}, sample cluster labels {cj} using

posterior Eq 9.

3.3. Simple explanatory example

We use an example of synthetic data to demonstrate the

strength of our model. The word vocabulary is 5 × 5 cells.

There are 10 topics with distributions over horizontal bars

and vertical bars, i.e., cells tend to co-occur along the same

row or column, but not arbitrarily. If we generate doc-

uments by randomly combining several bars and adding

noise, there are only two levels of structures (topics and

words) in the data and the HDP model in [12] usually

can perfectly discover the 10 topics. However, in our ex-

periments in Figure 4, we add one more cluster level to the

data. Documents are from two clusters: a vertical-bars clus-

ter and a horizontal-bars cluster. If a document is from the

vertical-bars cluster, it randomly combines several vertical-

bars, otherwise, it randomly combines horizontal bars. As

seen in Figure 4 (a), HDP in [12] has much worse per-

formance on this data. There are two kinds of correlation

among words: if words are on the same bar, they often co-

exist in the same documents; if words are all on horizontal

bars or vertical bars, they are also likely to be in the same

documents. It is improper to use a two-level HDP to model

data with three-level structure. 15 topics are discovered and

many of the topics include more than one bar. Even using a

three-level HDP, if the cluster labels are not updated prop-

erly, the performance is still poor as shown Figure 4(b). Us-

ing our HDP model and simultaneously updating topics of

words and clusters of documents, the 10 topics are discov-

ered perfectly as shown in Figure 4(c). The topic mixtures

π1 and π2 of two clusters are shown in Figure 4 (d). π1 only

has large weights on horizontal bars while π2 only has large

weights on vertical bars.

4. Application and Experimental Results

After computing the low-level visual features as de-

scribed in Section 2, we divide our video sequence into 10

second long clips, each treated as a document, and feed

these documents to the hierarchical models described in

Section 3. In this section, we explain how to use the re-

sults from hierarchical Bayesian models for activity analy-

sis. We will mainly show results from HDP, since HDP au-

tomatically decides the number of topics, while LDA needs

to know that in advance. If the topic number is properly set

in LDA, it provides similar results.

4.1. Summary of Typical Atomic Activities and In-
teractions

In scene analysis, people often ask “what are the typical

activities and interactions in this scene?” The parameters

estimated by our hierarchical Bayesian models provide a

good answer to this question.

The topics of words are actually a summary of typical

atomic activities in the scene. Each topic has a multinomial

distribution over words (i.e., visual motions), specified by

β in LDA and {φk} in HDP (φk can be easily estimated

given the words assigned to topic k after sampling). We use

the term “atomic” to indicate that the activity is usually per-

formed by the agent coherently without break. The motions

caused by the same kind of atomic activity often co-occur

in the same video clip, thus being grouped into the same

topic. Our HDP model automatically discovered 29 atomic

activities in this traffic scene. In Figure 5, we show the mo-

tion distributions of these topics. The topics are sorted by

size (the number of words assigned to the topic) from large

to small. Topics 1 and 4 explain “vehicles pass road d from

left to right”. This activity is broken into two topics because



Figure 5. Motion distributions of some topics discovered by our HDP model. The motion is quantized into four directions represented by

four colors as shown in Figue 1(a). The topics are sorted according to how many words in the corpus are assigned to them (from large to

small). See all 29 topics in our supplementary video. For convenience, we label roads and crosswalks as a, b, . . . in the first image.
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Figure 6. The short video clips are grouped into five clusters. In the first row, we plot the prior distribution over 29 topics as a red line for

each cluster. For comparison, the blue line in each figure is the average topic distribution of the whole corpus. The large bar figure plots

the cluster mixture weights (η in Figure 3 (b)). In the second row, we show a video clip as an example for each type of interaction and

mark the motions of the five largest topics in that video clip. Notice that colors distinguish different topics in the same video (the same

color may correspond to different topics in different video clips) instead of representing motion directions as in Figure 5.

when vehicles from g make a right turn (see topic 2) or ve-

hicles from road e make a left turn (see topic 14), they also

share the motion in 4. From topic 10 and 19, we find vehi-

cles stopping behind the stop lines during red lights. Top-

ics 13, 17, 21 explain that pedestrians walk on crosswalks.

When people pass the crosswalk a, they often stop at the di-

vider beween roads e and f waiting for vehicles to pass by.

So this activity breaks into two topics 17 and 21.
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Figure 7. Results of video segmentation. (a) confusion matrix; (b)

segmentation result of 20 minutes video.

Since a video clip often includes several topics, this can

be explained by an interaction which is a combination of

atomic activities. In our hierarchical Bayesian models, the

video clips are automatically clustered into different inter-

actions. The topics mixtures ({αc} in LDA and {πc} in

HDP) as priors on clusters provide a good summary of inter-

actions. Figure 6 plots the topic mixtures πc of five clusters

under our HDP model. Cluster 1 explains traffic moving in

a vertical direction. Vehicles from e and g move vertically,

crossing road d and crosswalk a. 3, 6, 7, 9 and 11 are major

topics in this interaction, while other topics related to hori-

zontal traffic(1, 4, 5, 8, 16, 20), and pedestrians walking on

crosswalk a and b (13, 17, 21, 23), are very low. Cluster

2 explains “vehicles from road g make right turn to road a
while there is not much other traffic”. At this time, verti-

cal traffic is forbidden while there are no vehicles traveling

horizontally on road d, so these vehicles from g can make

right turn. Cluster 3 is “pedestrians walk on the crosswalks

while there is not much traffic”. Several topics (21, 13, 17)

related to pedestrian walking are much higher that the aver-

age distribution on the whole corpus. Topics 10 and 15 are

also high because they explain that vehicles on road e stop

behind the stop line. Cluster 4 is “vehicles on road d make

left turn to road f”. Topics 5, 11 and 12 related to this ac-

tivity are high. Topics 1 and 4 are also high since horizontal

traffic from left to right is allowed at this time. However

topics 8, 16 and 20 are very low, because traffic from right

to left conflicts with this left turn. Cluster 5 is horizontal

traffic. During this interaction, topics 13, 17 and 21 are also

relatively high, since pedestrians are allowed to walk on a.

4.2. Video Segmentation

Given a long video sequence, we want to segment it

based on different types of interaction occuring, and also

detect single-agent activities both temporally and spatially.

Our models provide a natural way to complete this task

since video clips are labeled into clusters (interactions) and

motion features are assigned to topics (activities). To eval-

uate the clustering performance, we manually label the 540

video clips into five typical interactions in this scene as de-

scribed in Section 4.1. The confusion matrix is shown in

Figure 7 (a). The average accuracy is 85.74%. Figure 7

shows the labels of video clips in the last 20 minutes. We

can observe that each traffic cycle lasts around 85 seconds.

In the second row of Figure 6, we show an example video

clip for each type of interaction. In each video clip, we

choose the five largest topics and mark motions belonging

to different topics by different colors.

4.3. Abnormality Detection

We want to detect abnormal video clips and localize ab-

normal activities in the video clip. Under the Bayesian

models, abnormality detection has a nice probabilistic ex-

planation since every video clip and motion can be as-

signed a marginal likelihood, rather than by comparing

similarities between samples. Computing the likelihoods

of documents and words under LDA has been described

in Section 3.1 (see Eq 5). Computing the likelihood

under HDP is not straightforward. We need to com-

pute the likelihood of document j given other documents,

p(xj |x
−j), where x−j represents the whole corpus exclud-

ing document j. Since we have already drawn M sam-

ples {k−j(m), {π
(m)
l }, π

(m)
0 }M

m=1 from p(k−j , {πl}, π0|x)
which is very close to p(k−j , {πl}, π0|x

−j), we approxi-

mate p(xj |x
−j) as

1

M

∑

m

∑

cj

∫

ωj

∑

kj

∑

i

p(xji|kji, kj(m), x−j)

p(kj |ωj)p(ωj |π
(m)
cj

)ηcjdωj

p(kj |π
(m)
cj ) is a Dirichlet distribution. If (u1, . . . , uT )

is the Dirichlet prior on φk, p(xji|kji, kj(m), x−j) =

(uxji
+ nxji

)/(
∑T

t=1(ut + nt)) is a multinomial distri-

bution, where nt is the number of words in x−j with

value t assigned to topic kji(see [12]). The computa-

tion of
∫

ωj

∑

kj
p(xji|kji, kj(m), x−j)p(kj |ωj)p(ωj |π

(m)
cj )

is intractable, but can be approximated with a variational

inference algorithm as in [1].

Figure 8 shows the top five abnormal video clips detected

by HDP. The red color highlights the regions with abnormal

motions in the video clips. There are two abnormal activi-

ties in the first video. A vehicle is making a right-turn from

road d to road f. This is uncommon in this scene because

of the layout of the city. Actually there is no topic explain-

ing this kind of activity in our data (topics are summaries of

typical activities). A person is approaching road f, causing

abnormal motion. In the successive video clip, we find that

the person is actually crossing road f outside the crosswalk

region. This video clip ranked No.4 in abnormality. In the

second and third videos, bicycles are crossing the road ab-

normally. The fifth video is another example of a pedestrian
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Figure 8. Results of abnormality detection. We show the top five video clips with the highest abnormality (lowest likelihood). In each

video clip, we highlight the regions with motions of high abnormality.

(a)

0 10 20 30 40
0

1

Rank of video clip

(b)

Figure 9. Query result of jay-walking(co-occurence of topics 6 and

13). (b) shows the top 40 retrieval results. If the video clip is

correct, it is labeled as 1 otherwise 0.

crossing the road outside the crosswalk.

4.4. High-Level Semantic Query

In our framework, it is convenient to use mid-level rep-

resentations of atomic activities as tools to query for ex-

amples of interactions of interest. Suppose a user wants to

detect jay-walking. This is not automatically discovered by

the system as a typical interaction. Thus, the user simply

picks topics involved in the interaction, e.g. topic 6 and 13,

and specifies the query distribution q (q(6) = q(13) = 0.5
and other mixtures are zeros). The topic distributions {pj}
of video clips in the data set match with the query distri-

bution using relative entropy between q and pj . Figure 9

(b) shows the result of querying examples of “pedestrians

walk on crosswalk a from right to left while vehicles are

approaching in vertical direction”. All the video clips are

sorted by matching similarity. The true instance will be la-

beled 1 ortherwise it is labeled as 0. There are totally 18

instances in this data set and they are all found among the

top 37 examples. The top 12 retrieval results are all correct.

5. Conclusion

We have proposed an unsupervised framework adopt-

ing hierarchical Bayesian models to model activities and

interactions in complicated scenes. We improve LDA and

HDP models by co-clustering both words and documents.

Our system summarizes typical activities and interactions

in the scene, segments the video sequence both temporally

and spatially, detects abnormal activities and supports high-

level semantic queries on activities and interactions.
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