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Abstract

This paper proposes a computational system of object

categorization based on decomposition and adaptive fu-

sion of visual information. A coupled Conditional Ran-

dom Field is developed to model the interaction between

low level cues of contour and texture, and to decompose

contour and texture in natural images. The advantages of

using coupled rather than single-layer Random Fields are

demonstrated with model learning and evaluation. Mul-

tiple decomposed visual cues are adaptively combined for

object categorization to fully leverage different discrimina-

tive cues for different classes. Experimental results show

that the proposed computational model of “recognition-

through-decomposition-and-fusion” achieves better perfor-

mance than most of the state-of-the-art methods, especially

when only a limited number of training samples are avail-

able.

1. Introduction

Generic object recognition has been a challenging task

in computer vision for years. Many approaches have been

proposed for modeling shape, appearance or a combination

of both for object classes [3, 8, 10, 12, 25]. While this work

has significantly advanced the field of object categorization,

relatively less work has been done in decomposing various

visual stimuli, such as contour and texture in images, and

adaptively combining them for object recognition. Many

popular approaches based on local image patches treat each

local patch as an integral entity, which means visual infor-

mation such as contour, texture and color are mixed together

in one descriptor, and given uniform or fixed weights for

recognizing objects. However, it has been shown in psy-

chophysical studies [1, 2, 24] that when human observers

see an object, the visual stimuli such as contour and texture

in an object image are first separated into different channels,

processed individually, and then recombined at a later stage

in the human visual system for object recognition. More-

over, it is intuitively more sensible to assume that different

visual cues should play different roles in discriminating dif-

ferent class pairs. Figure 1 gives a schematic illustration

of this idea. For instance, to classify beaver versus emu,

the shape information may be more important since both

classes have similar texture and color; while for laptop ver-

sus skate, the keyboard texture of laptops may be a more

salient cue for discriminating the two classes.

Figure 1. An illustration that various visual cues should have dif-

ferent weights in discriminating different class pairs.

Some work similar in spirit is image segmentation by

combining contour and texture [22], and learning the proba-

bility of boundaries in natural images with local brightness,

color and texture cues [23]. Also related is a range of work

in perceptual grouping. Many researchers have applied per-

ceptual grouping as an automatic and preattentive precursor

to object recognition [19, 26].

In this paper, we develop a computational system of vi-

sual information decomposition and fusion for object recog-

nition. A coupled Conditional Random Field is proposed to

model and decompose the interactive processes of contour

and texture. The importance of the coupled CRF model is

demonstrated by comparing to a single-layer CRF. The de-

composition of contour and texture naturally enables meth-

ods of matching different visual stimuli separately to fully

leverage each visual cue. At the top level of the system,

multiple visual cues are adaptively combined, by weighing

different visual cues for recognizing different classes. The

key concept of this computational model is to achieve better

recognition performance by decomposing and recombining

multiple disparate visual cues in object images.
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2. Contour process and texture process

Our first goal is to separate image information into con-

tour and texture. We focus on labeling of edge pixels, as-

signing to each edge pixel a contour or texture label, based

on local context. Once we have learned labelings for edge

pixels, we can use the different cues as a complementary

basis for classification of objects, including learning which

cues are more salient for distinguishing classes.

To decompose contour and texture, we must first define

our image processes. In this work, a contour process and a

texture process are defined on edge pixels. Each label in the

contour process will be one of {1, -1}, signaling an edge
pixel as a contour pixel or not; similarly for the texture pro-

cess. We have some flexibility in how contour pixels are

defined. One possibility is that only occluding contours are

regarded as contour pixels. An alternative includes both oc-

cluding and internal contours as contour pixels. In the latter

definition, depending on the scale, some internal edge pix-

els may be considered as texture flow or an internal contour.

For instance, at a large scale, zebra stripes or soccer-ball

patches have a repeating pattern and appear to be texture; at

a smaller scale, edge pixels from stripes or patches are well-

aligned and appear to be internal contours. In this work, we

choose the latter definition.

3. Coupled Conditional Random Field for con-

tour and texture interaction

A popular way of labeling image processes is to use a

single layer random field grid. Such a model for label-

ing an edge process, with one node for each edge point,

is shown in Figure 2(a). The underlying idea is that labels

for each edge point are influenced by nearby labels as well

as local measurements, and thus local context helps propa-

gate labels throughout a region. However, this single-layer

random field is limited in modeling power. The two pro-

cesses, contour and texture, could have disparate charac-

teristics and dynamics in their respective inter-point inter-

actions. One distinction lies in the angular alignment of

points. In the contour process, compatible contour points

are mostly aligned in local neighborhoods. For the texture

process, edge points are seldomly well-aligned and often

random (recall that locally well-aligned patterns such as ze-

bra stripes are defined as internal contours, part of the con-

tour process.) Hence, it is logical to postulate that contour

points are compatible only when they are locally continu-

ous and aligned, while the compatibility of texture points

could allow a random layout. This means the compatibility

functions of the two processes will exhibit disparate depen-

dencies on an angular alignment parameter. Other different

dynamicsmay also exist in the measurements of coarseness,

anisotropy, homogeneity and entropy.

Under these situations, using single-layer random field

models inevitably has to introduce a trade-off between dis-
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Figure 2. Single-layer CRF and coupled CRF models.

tinct dynamics of different processes. To accommodate dif-

ferent characteristics of interactions, the compatibility func-

tion in a one-layer model will be forced to compromise be-

tween the two otherwise distinct compatibility functions of

different processes. A better model is to explicitly capture

different dynamics of processes, with more than one layer

of random field grids. In the proposed model, one grid layer

is used for a contour process and a separate grid is used for

a texture process. The dependency between the two pro-

cesses is modeled with coupling links between the layers.

To reduce the complexity, each node in one layer is only

coupled with the same node in the other layer. This leads

to the proposed coupled Conditional Random Field (cCRF)

model, shown in Figure 2(b). The importance of using cou-

pled rather than single layer Conditional Random Fields to

address different image processes will becomemore evident

in the experimental results (Section 3.4).

3.1. Parametrization of coupled Conditional Ran­
dom Field

The proposed functional forms of the cCRF model in

Figure 2(b) are shown in Table 1. Five image measurements

are used in the current work. Contourness cmi and tex-

tureness tmi (defined in Section 3.3) are used for local ev-

idence functions, which have a form of logistic regression.

This discriminative form of local evidence was originally

proposed in Discriminative Random Field [17]. Unlike the

log-linear compatibility in [17], the proposed cCRF uses a

form of logistic regression for compatibility functions too.

The corresponding measurements used are: (1) δθij , angu-

lar difference between the orientation of i and the line join-

ing i with a neighboring pixel j; (2) δcmij = |cmi − cmj |,
absolute contourness difference between i and j; (3) δtmij

= |tmi − tmj|, absolute textureness difference between i

and j. The compatibility functions of the two processes will

have different parameters, capturing the distinct interaction

dynamics of the two processes stated in Section 3.

In both processes, the compatibility between a negative

labeling and a neighboring negative labeling, e.g., for the

labeling pair (ci, cj)=(−1,−1), is fixed to 0.5. For each
of the two layers, this negative-to-negative compatibility

is represented in the positive-to-positive compatibility in

the opposite layer and is already coupled into the current



• Variables for pixel i

ci: labeling variable in the contour layer:

ci = 1: contour pixel; ci = −1: non-contour pixel.

ti: labeling variable in the texture layer:

ti = 1: texture pixel; ti = −1: non-texture pixel.

cmi: contourness measurement. tmi: textureness measurement.

δθij : angle between orientation of i and the line joining

i and a neighboring pixel j.

δcmij : absolute difference between the contourness of i and j.

δtmij : absolute difference between the textureness of i and j.

• Evidence function Φc(ci|I)

Φc(ci|I) = 1

1 + e−ci(α0 + α1cmi + α2tmi)

• Compatibility function Ψc(ci, cj |I)

Ψc(ci, cj |I) =



0.5, if (ci, cj) = (−1,−1)
A, otherwise

where A = 1

1 + e−cicj(τ0 + τ1δθij + τ2δcmij + τ3δtmij)

• Evidence function Φt(ti|I)

Φt(ti|I) = 1

1 + e−ti(β0 + β1cmi + β2tmi)

• Compatibility function Ψt(ti, tj |I)

Ψt(ti, tj |I) =



0.5, if (ti, tj) = (−1,−1)
A, otherwise

where A = 1

1 + e−titj(γ0 + γ1δθij + γ2δcmij + γ3δtmij)

• Compatibility function Ψct(ci, ti|I)

Ψct(ci, ti|I) =



0 if ci = ti
1 if ci 6= ti

i.e., contour and texture processes are mutually exclusive.

Table 1. Evidence and compatibility functions of the proposed

coupled Conditional Random Field. See text for details.

layer through the coupling link. The compatibility matrix

Ψct(ci, ti|I) for the coupling links is fixed to make the two
processes mutually exclusive. Note, however, this could be

extended to allow non-mutually-exclusive labeling.

For clarity, the graphical model in Figure 2(b) shows a

cCRF with a 4-neighborhood system for each of the con-

tour and texture processes. In practice, models defined on

higher order neighborhood systems, capturing more infor-

mation from neighboring pixels, are used.

3.2. Learning and inference of coupled Conditional
Random Fields

Assuming only up to pairwise clique energies are

nonzero, with the functional forms in Table 1, the posterior

of the cCRF is given by the following factorized form:

P (C, T |I, Θ) =
1

Z
{

Q

iΦc(ci|I)Φt(ti|I)Ψct(ci, ti|I)} ·
{

Q

(i,j)∈Cedge
Ψc(ci, cj|I)

}

·
{

Q

(i,j)∈Tedge
Ψt(ti, tj |I)

}

(1)

where Cedge indicates the set of inter-node links in the con-

tour layer and Tedge for the texture layer, Z is the partition

function andΘ is the set of parameters of the cCRF. In prin-
ciple, parameters can be learned with maximum-likelihood.

Maximum-likelihood learning is complicated by the parti-

tion function Z . Exact maximum-likelihood in this case is

intractable thus the model learning has to resort to approx-

imation techiniques. For homogeneous random fields such

as the proposed cCRF, maximum pseudolikelihood [4] can

be used, which simplifies learning by approximating the

likelihood with a factorization of local conditional likeli-

hood:

Θ∗

ML≃argmaxΘ log
QM

m=1

Q

iP (cm
i , tmi |Cm

Ni
, T m

Ni
, Im, Θ) (2)

whereCm
Ni
is the contour labeling of edgels in the neighbor-

hood of i for themth training sample; similarly for T m
Ni
.

Each local conditional likelihood has the form

P (ci, ti|CNi , TNi, I, Θ) =
P (ci, ti, CNi , TNi|I, Θ)

Zi
(3)

Zi =
P

ci∈{+1,−1},ti∈{+1,−1}P (ci, ti, CNi , TNi|I, Θ) (4)

Now each of the partition functions Zi only sums over 4

combinations of labels, making the computation tractable.

The proposed cCRF is a complex image model, prone to

over-fitting. To avoid this, in practice a tempered maximum

pseudolikelihood is used for learning the parameters. Tem-

pered maximum likelihood is also used in tempered EM for

learning the pLSA model to improve generalization capa-

bility [15]. At each step, instead of maximizing the original

pseudolikelihood (2), the tempered maximum pseudolikeli-

hood maximizes a modified pseudolikelihood:

Θ∗

MLβ
≃argmaxΘ log

QM
m=1

Q

iP
β(cm

i , tmi |Cm
Ni

, T m
Ni

, Im, Θ) (5)

The tempered pseudolikelihood is equivalent to dis-

counting the corresponding free energy by a multiplicative

constant β. When β is small, or equivalently, when temper-

ature is high, the parameter learning is encouraged to move

around the feasible space more freely. This has the effect of

discounting each of the conditional probabilities in Equa-

tion (5) to make each of them contribute more evenly to

the joint distribution. The tempered maximum pseudolike-

lihood used for learning cCRF proceeds as in Table 2:

1. Initialize β with a small constant and perform

maximum pseudolikelihood to estimate parameters.

2. Using previous steps as initialization, increase β with

a small step and perform maximum pseudolikelihood.

3. Iterate step 2 until β reaches 1.

Table 2. Learning with tempered maximum pseudolikelihood.

To initialize the parameters for learning, the logistic

functions in Table 1 are first trained separately with max-

imum likelihood estimation for logistic regression, assum-

ing points are independent. The learned parameters are then

used as a starting point for the non-linear optimization on

the joint pseudolikelihood. Gradient Ascent is used for each

step of the tempered maximum pseudolikelihood learning.

For labeling in test images, Maximum a Posteriori (MAP)

inference is carried out using loopy Belief Propagation.



3.3. Measure of contourness and textureness

Quadrature filters are used to detect edges. To measure

contourness and textureness of edge pixels, we adopt an ap-

proach similar to the method by Martin et al. [23].

3.3.1 Edge extraction and contourness

The quadrature filter bank used here are the even and

odd pairs as in [22, 23]. The base symmetric filter is the

second derivative of an elongated Gaussian, and the base

odd-symmetric filter is its Hilbert transform. The entire fil-

ter bank consists of 8 rotated versions of the base even/odd

pair. Orientation energy is computed as the sum of squares

of even/odd filter responses. For color images, orientation

energy is computed by summing responses of the Lab color

channels. A Canny’s hysteresis thresholding [6] is applied

to the orientation energy image to extract edge points. Both

the lower and higher thresholds are set to be relatively small

in order to minimize misses at true edges with low contrast.

Rectification will be postponed until inference on cCRF.

For extracted edges, contourness cmi is measured by cor-

responding orientation energy.

3.3.2 Textureness

We use texture gradients [22] to measure textureness.

The filter banks are the 8 rotated quadrature pairs used in

Section 3.3.1, plus 3 Difference of Gaussians and 3 Gaus-

sians at the scales of σ = {1.5, 2, 3}. First, all filter re-
sponses of all points in an image are clustered to form 50

textons. As in [22], for each edge point, a 20-pixel wide cir-

cular region around the point is extracted and divided into

three parts: a 10-pixel wide center stripD0 along the orien-

tation of the edge point of interest, and D+ and D− which

are the pixels to the left and right of D0 respectively. χ2-

distances are computed between the histograms of textons

in D+ and D0

⋃

D− and between D− and D0

⋃

D+. The

larger of the two distances is kept as a measure of texture-

ness of the edge point. The larger the distance, the smaller

the textureness. Further details can be seen at [21]. In

the current work, textures are only modeled on edge pro-

cesses. Adding texture information from homogeneous re-

gions could also be beneficial.

3.4. Model learning and evaluation

In the current implementation, the neighborhood is set

to 5 × 5 for both the contour and texture CRF. A set of
ground truth data are labeled to train the cCRF. To show the

advantage of the proposed cCRF vs. the single-layer CRF,

the single-layer CRF in Figure 2(a) is also trained for com-

parison purposes. The parametrization of the single-layer

CRF is shown in Table 3. The evidence and compatibility

functions have the same logistic regression forms as in the

cCRF.

In the full models in Table 1 and 3, the compability func-

tions depend on three image measurements - δθij , δcmij

and δtmij . Compatibility functions in different models

• Edge process:

ei: labeling variable for an edge pixel i:

ei = 1: contour pixel; ei = −1: texture pixel.

• Evidence function of Φe(ei|I)=
1

1 + e−ei(λ0 + λ1cmi + λ2tmi)

• Compatibility function of Ψe(ei, ej |I)=
1

1 + e−eiej(η0 + η1δθij + η2δcmij + η3δtmij )

Table 3. Parametrization of a single-layer CRF.

a. Model-δθ: compatibility depends on angular difference:

Ψe(ei, ej |I) = 1

1 + e−eiej(η0 + η1δθij)

b. Model-δcm: compatibility depends on contourness diff.:

Ψe(ei, ej |I) = 1

1 + e−eiej(η0 + η2δcmij)

c. Model-δtm: compatibility depends on textureness diff.:

Ψe(ei, ej |I) = 1

1 + e−eiej(η0 + η3δtmij )

d. Model-all: compatibility depends on all: Ψe(ei, ej |I) =
1

1 + e−eiej(η0 + η1δθij + η2δcmij + η3δtmij )

Table 4. Different compatibility functions of a single-layer CRF.

(cCRF and single-layer CRF) could have quite distinct de-

pendencies on the three measurements, as discussed in Sec-

tion 3. To better evaluate these different dependencies in

different models, each model is also trained with the com-

patibility function dependent on only one of the three mea-

surements. For instance, the single-layer CRF is trained

with different implementations of compatibility function as

shown in Table 4. The evidence function remains the same

for all instances. Similarly for the cCRF model. For sim-

plicity, the four cases in Table 4 are referred as Model-δθ,

Model-δcm, Model-δtm and Model-all respectively. The

learned parameters are listed in Table 6. There are several

noticeable facts in the learned parameter of different mod-

els:

1. For Model-δθ where compatibility functions only de-

pend on the angular difference δθij :

for the cCRF, the learned parameters of compatibility

functions for contour process and texture process are

different, with τ0=5.4240 and τ1=−5.3993 for contour
and γ0=6.7777 and γ1=−3.7558 for texture, which
captures the disparate dynamics of the two processes;

whereas the single-layer CRF, with learned com-

patibility parameters of η0=0.7571 and η1=−0.5324,
makes a forced compromise while using only one

function to account for both dynamics in the two oth-

erwise distinct processes.

2. For Model-δcm and Model-δtm:

for the cCRF, the learned parameters of contour and

texture processes are slightly different; while for the

single-layer CRF, the learned parameters are again

compromises to those in the cCRF.



3. For Model-all where compatibility functions depend

on all three measurements:

for the cCRF, for contour compatibility, the learned

parameter for dependency on angular difference δθij ,

which is τ1=−2.3727, is quite different from the corre-
sponding parameter for texture which is γ1=−0.9708.
Other learned parameters of the compatibility func-

tions are comparable for both processes; while for the

single-layer CRF, the learned parameters are an ap-

parent compromise, with η1=−1.3580, which lies be-
tween τ1 and γ1.

To visualize these differences, the learned compatibil-

ity functions of Model-δθ, Model-δcm and Model-δtm

are drawn in Figure 3. Figure 3(a) clearly shows that

Ψc(ci, cj) (red curve) and Ψt(ti, tj) (green curve) are dis-
tinct. Roughly speaking, for small angular differences, e.g.,

less than 0.5 radian (28.6 degree), Ψc(ci, cj) gives high
compatibility of more than 0.9; whereas for large angu-

lar difference, e.g., larger than 1 radian (57.3 degree), the

compatibility is smaller than 0.5. This means the contour

compatibility function Ψc(ci, cj) encourages local align-
ment of edge points, which is consistent with intuition.

On the contrary, the compatibility function Ψt(ti, tj) of
texture process remains large for nearly all angular differ-

ences (0∼ π
2 ). As a comparison, the compatibility function

Ψe(ei, ej) (blue curve) of the single-layer CRF is forced to
account for two different interaction dynamics, hence lies

between the two different compatibility functions.
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Figure 3. Comparisons of different models (better view in color).

Figure 3(b)(c) reveals similar observations for dependen-

cies on contourness difference δcm and textureness differ-

ence δtm. Again, the compatibility functions of the single-

layer CRF are compromises of the two processes.

Figure 3(d), which plots the learned evidence function

Φc of the cCRF and Φe of the single-layer CRF (whose pa-

rameters are shown in Table 6(d)), shows another impor-

tant difference between the cCRF and the single-layer CRF.

In Figure 3(d), the evidence function Φc of the cCRF lies

above Φe of the single-layer CRF. This indicates that the

single-layer CRF is stricter in assigning local evidence of

contourness, i.e., only edge points with strong enough con-

tourness and weak enough textureness measurements are

given large local evidence of being contour, whereas the

cCRF relaxes this compared with the single-layer CRF, al-

lowing a much wider range of measurements to be consid-

ered as possible contour. This is also intuitively correct,

since the single-layer CRF has no other strong cues of de-

tecting contour while the cCRF is able to rectify contour

with local angular alignment in the compatibility function.

To quantitatively evaluate the proposed cCRF and com-

pare it with the single-layer CRF, another set of labeled

images are used as a test set. The performance of differ-

ent models is evaluated with precision-recall rates and cor-

responding F-measure. The results of the evaluation are

shown in Table 5. The cCRF is better than the single-layer

CRF for contour and texture processes respectively, as mea-

sured by F-measure. For contour and texture jointly, the

cCRF also performs much better than the single-layer CRF.
Recallcontour Precisioncontour Fcontour

coupled CRF 83.93% 80.97% 0.8243

single-layer CRF 58.33% 91.69% 0.7130

(a) Performance of models on contour process

Recalltexture Precisiontexture Fcontour

coupled CRF 89.65% 90.07% 0.8986

single-layer CRF 97.67% 80.42% 0.8821

(b) Performance of models on texture process

Recalldecomp=Precisiondecomp=Fdecomp

coupled CRF 87.53%

single-layer CRF 83.20%

(c) Performance of models on contour texture decomposition.

Table 5. Performance evaluation of different models.

Figure 4 shows a visual comparison of contour-texture

decomposition by the cCRF and the single-layer CRF on

some of the test images used for the evaluation. The cCRF

clearly does a much better job in separating contour and tex-

ture processes, with fewer mis-detections of contour edgels

while keeping most texture edgels in the texture process.

On the contrary, the single-layer CRF, due to the lack of

modeling power for the two distinct processes, compares

inferiorly in decomposition. Other decomposition results

by the cCRF are shown in Figure 5. Note the contours of

these objects are well-extracted as shown in the second and

fifth columns, and their textures, such as fur, spines, grass

and keyboard patterns, are clearly separated as shown in the

third and sixth columns.

4. Object recognition from decomposition

With the coupled CRF model, visual information such as

contour and texture in images are decomposed into separate



Model-δθ

coupled CRF single-layer CRF

Φc
α0 α1 α2 Φe

λ0 λ1 λ2
-7.4036 2.7973 7.1600 -4.8556 2.9285 6.1034

Φt
β0 β1 β2
7.4036 -2.7973 -7.1600

Ψc
τ0 τ1 Ψe

η0 η1
5.4240 -5.3993 0.7571 -0.5324

Ψt
γ0 γ1
6.7777 -3.7558

Model-δcm

coupled CRF single-layer CRF

Φc
α0 α1 α2 Φe

λ0 λ1 λ2
-4.4558 1.9039 7.5505 -5.4363 1.5867 7.5817

Φt
β0 β1 β2
4.4558 -1.9039 -7.5505

Ψc
τ0 τ2 Ψe

η0 η2
1.4656 -13.3836 2.1681 -12.7884

Ψt
γ0 γ2
2.9286 -12.8005

(a) Learned parameters of Model-δθ for cCRF and single-layer CRF. (b) Learned parameters of Model-δcm for cCRF and single-layer CRF.

Model-δtm

coupled CRF single-layer CRF

Φc
α0 α1 α2 Φe

λ0 λ1 λ2
-6.3037 3.6045 5.5762 -4.9371 4.1724 4.1971

Φt
β0 β1 β2
6.3037 -3.6045 -5.5762

Ψc
τ0 τ3 Ψe

η0 η3
4.1161 -8.9647 1.5933 -4.3612

Ψt
γ0 γ3
4.7566 -8.1626

Model-all

coupled CRF single-layer CRF

Φc
α0 α1 α2 Φe

λ0 λ1 λ2
-2.9588 2.7014 5.5123 -4.1046 2.4582 5.1092

Φt
β0 β1 β2
2.9588 -2.7014 -5.5123

Ψc
τ0 τ1 τ2 τ3 Ψe

η0 η1 η2 η3
2.7942 -2.3865 -8.8175 -3.1492 2.7313 -1.3540 -8.8621 -1.9071

Ψt
γ0 γ1 γ2 γ3
3.7624 -0.9594 -8.6021 -2.1545

(c) Learned parameters of Model-δtm for cCRF and single-layer CRF. (d) Learned parameters of Model-all for cCRF and single-layer CRF.

Table 6. Learned parameters for different models of cCRF and single-layer CRF.

Figure 4. Comparisons of contour-texture decomposition by cCRF and single-layer CRF. The first column are images of test objects. The

second and fourth columns are extracted contours by cCRF and single-layer CRF respectively. The third and fifth columns are texture.

channels. Each of the decomposed visual channels captures

a distinct perceptual aspect of objects. In the following sec-

tions, we employ some existing methods for matching the

decomposed contour and texture channels, and adaptively

combine them at the kernel level for object categorization.

4.1. Matching kernels

Spatial pyramid matching [18] is used on both contour

and texture channels. To extract features, dense sampling on

a grid with spacing of 8 pixels is used. For each point on the

grid, we extract two patches of 50 × 50 and 25 × 25 pixels
and compute SIFT [20] descriptors on edge points. Next,

visual dictionaries of 400 words for the contour channel and

200 words for texture are learned through clustering on a

random subset of images. Then spatial pyramid matching is

applied to compute pair-wise similarity.

Color information is also used for matching on both con-

tour and texture channels. Features are again defined on a

dense sampling grid. For each sample point, a small patch

is extracted and average Hue-Saturation-Value is computed.

Hue and Saturation are discretized into 10 bins, and Value

into 2 bins, giving 200 visual words. Then spatial pyramid

is applied for matching.

In the contour channel, shape correspondence is also a

salient visual cue, which is not explicitly addressed by spa-

tial pyramid matching. In this work, we leverage shape

matching with robust chamfer matching in the contour

channel, which works reasonably well for rigid or slightly

deformable objects. Usually chamfer matching performs

poorly in cluttered images. This shortcoming is mitigated,

to a large extent, by the fact that contour is decomposed by

the cCRF into a cleaner channel. Similar to [27], we define

a robust oriented chamfer distance as follows:

d(X, Y ) =
1

Nx

∑

xi∈X max(minyj∈Y ||xi − yj||, τ)

+λ
1

Nx

∑

xi∈X (1 − e
−δθ2

xiyj
/(2σ2

θ)
) (6)

where xi and yj are positions of edge pixels in imageX and

Y respectively, Nx is the number of edge pixels in X , and

δθxiyj is the difference between the orientation of xi and its

closest match yj in image Y . The first term in Equation 6

is the truncated chamfer distance, and the second term is a

Gaussian penalty for orientation differences. To account for

misalignment, X is slightly translated and rotated and the

best match to Y is kept. To make a symmetrical distance,

d(Y, X) is also computed and the average of d(X, Y ) and
d(Y, X) is taken as similarity betweenX and Y .

To compute kernel entries from pair-wise chamfer dis-

tances, another Gaussian form is used:

K(X, Y ) = e
−

[(d(X,Y )+d(Y,X))/2]2

2σ2
k (7)

whereK(X, Y ) is chamfer matching kernel entry. In prac-
tice, we find that adding robust chamfer matching is com-

plementary to bag-of-features and able to address the dis-

tinct characteristics of some classes, and helps to achieve

better recognition performance.



Figure 5. Example of contour/texture decomposition. The first and fourth columns are images of objects. The second and fifth columns are

extracted contours of the images to their left. The third and sixth columns are extracted textures of the corresponding images.

4.2. Adaptive kernel combination
As discussed earlier, it is more sensible to assume that

different visual cues play different roles in discriminating

different classes. To this end, we use adaptive kernel com-

bination based on kernel alignment [9, 16]. This tech-

nique finds a weighted linear combination of constituent

kernels which optimizes the alignment with an “ideal” ker-

nel. The learned combination weights for each class pair

effectively capture the relative importance of different vi-

sual cues. With the adaptively combined kernel, we use a

one-vs-one multi-class SVM for classification. Further de-

tails are available at [21].

4.3. Classification results

The proposed method is evaluated on the widely used

dataset CIT-101 [11]. The evaluation runs with different

numbers of training samples and tests on up to 50 images

per class. The algorithm is run 10 times with different ran-

domly selected training and test samples, and the average of

per-class recognition rates is reported.

Our first experiment is run on a subset of 28 classes from

CIT-101, which is used by Cao and Fei-Fei [7]. These 28

classes present a good balance of texture-rich, contour-rich

and color-rich classes, hence this subset is a good test bed

for the proposed adaptive method. With the kernels from

the decomposed channels, a simple average combination of

kernels gives an average recognition rate of 81.69% for 30

training samples per class. With adaptive combination, the

performance is boosted to 85.02%. These results suggest

that decomposing different visual cues and adaptively com-

bining them to fully leverage their potential is a promising

scheme for object categorization.

On the entire 101 classes of CIT-101, the recognition

rates of the proposed method are shown in Table 7. Fig-

ure 6 shows the comparisons to some of the state-of-the-

art methods on CIT-101. Compared with one of those top

methods [14], the proposed method in this paper achieves

recognition improvement of about {7.24%, 5.75%, 4.31%,
2.24%,} for {5,10,15,30} training samples per class respec-

tively. Comparison to another top method [13], where the

‘Background’ class is excluded and the ‘Faces easy’ class

is included, shows 5.42% and 6% recognition rate improve-

ments for 5 and 10 training samples per class respectively.

These comparisons demonstrate the effectiveness of the

proposed visual decomposition and recombination scheme

for object recognition. The performance improvements are

more significant when only a few training samples, e.g., 5,

10 or 15, are available for each class. This suggests that

when there are not enough training samples, it is more im-

portant to decompose various visual cues, leverage each of

them to their full potential, and recombine them for a better

understanding of image contents.

On the CIT-4 classes (Face, Leopard, Motorbike, Air-

plane), the proposed method achieves a recognition rate of

99.8% with only 30 training samples per class, with no er-

rors for the classes of Face, Leopard, and Motorbike, and

occasionally 1 to 2 misclassified test samples for Airplane.

Many current methods use many more training samples to

achieve comparable performance.

Figure 7 draws the learned weights when adaptively

combining multiple visual cues for classifying different

class pairs of CIT-101. It is clear that different visual cues

have different weights when discriminating different class

pairs. For most classes, contour is the most useful cue for

recognition. Texture and color are not as important, with

exceptions to some classes.

5. Conclusion and discussion

We propose a coupled CRF and demonstrate its advan-

tages to model and decompose contour and texture in im-

ages. Adaptive combination is applied at the kernel level to

weigh different visual cues for different classes. The pro-

posed method performs well on challenging data sets, espe-

cially when only a small number training samples are avail-

able. We expect the “recognition-through-decomposition-

and-fusion” scheme to be a promising direction for building

effective and efficient object categorization systems.



At the time of this work, some researchers are also inves-

tigating methods of combining multiple matching schemes,

with improved features and enhanced adaptive combination

methods, which are shown to achieve significant perfor-

mance improvements [5, 28]. It is expected that incorporat-

ing these enhanced elements into the proposed model will

be able to achieve further improvements.

Training sample 5 10 15 30

With Background class 48.74(±0.86) 58.75(±0.67) 63.31(±0.65) 69.84(±0.98)

No Background class 49.32(±0.89) 59.30(±0.65) 63.82(±0.65) 70.38(±0.96)

Table 7. Recognition rates on CIT-101 of the proposed method.

Number are in percentile, with standard deviation in parenthesis.
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Figure 6. Comparison of performance on CIT-101.
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