Edge-based rich representation for vehicle classification
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Abstract However there are still great challenges to this prob-
lem. Vehicles are generally textureless. Limited object im-
age size and quality are special difficulties. Varying light-
ing conditions in video surveillance further complicate the
problem. The requirement to distinguish similar classes
such as sedans vs. taxies makes the problem even harder.
To tackle these challenges, this paper introduces an
edge-based rich representation. The rich representation is

In this paper we propose an approach to vehicle clas-
sification under a mid-field surveillance framework. We
develop a repeatable and discriminative feature based on
edge points and modified SIFT descriptors, and introduce a
rich representation for object classes. Experimental results
show the proposed approach is promising for vehicle classi-

fication in surveillance videos despite great challenges such L o . .
pte g 9 able to give finer categorizations by modeling more details

as limited image size and quality and large intra-class vari- . . . )
ations. Comparisons demonstrate the proposed approach?_nd improve robustness using over-complgte information.
outperforms other methods. he p_ropps_ed a_lpproach augment_s edge points tp r_epeatable
and discriminative features, combines several existing tech-
. nigues with modifications to fit them better to the consid-
1. Introduction ered problem, and gives models that perform sufficiently

Visual object recognition aims to classify observed ob- Wellj[o serve the purposes disgusseq above. Considering our
jects into semantically meaningful categories. In this pa- @Pplications, we focus on a fixed view angle. Our method
per we focus on vehicle classification in a mid-field video achievesa1.5% average error rate on cars vs. minivans clas-
surveillance framework with a single static uncalibrated Sification. For even more similar object types like sedans vs.
camera. Several scenarios motivate our work. Activity {@xies, our method gives only a 4.24% error rate.
mqnitoring a_round vita_l assets (embas_sy protection, port fa'l.l. Related work
cility protection) often involves categorizing patterns of be-
havior, both to monitor normal flow of activity and to serve ~ Researchers have investigated various 3D model based
as a baseline for detecting possibly anomalous behaviorapproaches for object recognition [8, 11, 16, 22].
Such categorization is based in part on trajectories of mov-These methods require geometric measurements such as
ing objects, but also depends on the type of object. Henceedge/surface normal [8], saliency-based grouping of lines
it is of value to categorize objects by type, including sub- or curves [10, 11, 16, 22], or solving 3D to 2D projection
classes of types. For example, trucks and vans may not bd11, 16]. These requirements become less well-posed for
expected to visit certain parts of a site; a sedan approaching/ehicle recognition in a surveillance framework where im-

a person may indicate an arranged pick-up, yet a taxi insteacdges are of limited size and quality. More closely related
may only correspond to a leaving person. In multi-camera work are the model or region based detection and recog-
settings, it is important to correlate activities through many nition of road vehicles [24]. However they need camera
different fields of view, which requires establishing corre- calibration to reduce the parameters to be estimated.
spondence between observations in non-overlapping views. Recognition based on edge maps is another related ap-
Again, there is a need to classify objects into subclasses, tqproach. Chamfer matching [25] and Hausdorff distance-
support this determination of correspondence. based method [9] are typical examples. As in 3D model

Compared with object recognition from still images, the based approaches, these 2D edge based methods compare
fact that a surveillance framework deals with video se- edge maps in a global manner. Unlike the edge-based rep-
guences simplifies the recognition task in several ways.resentation proposed in this paper, these methods only take
Moving objects can be separated from a static backgroundedge points into account without modeling appearance.
reasonably well by background modeling and subtraction, Some recent approaches to object recognition [13, 17,
so the problem of clutter can be minimized. Similarly, vari- 19, 21] have focused on extracting invariant features that
ation in scale is not a major challenge since objects can bedensely cover the observed objects and used voting schemes
extracted and normalized. to match observations with models. Experimental results



show that these methods are promising for individual ob-
ject recognition. However they are not suitable for generic
object class recognition, especially when inter-class differ-
ences are small. Furthermore, these features largely de-== =
pend on distinctive regions, such as corners, blobs and well- 8
textured patches. In our problem, since vehicles are tex- | 4
tureless and limited in size, the number of these kinds of mw=mg
distinctive features is limited, making voting less robust. : 5
Other approaches[1, 3, 7, 26] find features in objects and - e
build generative or discriminative models for recognition.  Figure 1. Edge points detected in vehicle objects. Many
Features used by [7] detect regions that give local maxima of the edge points are repeatable within one class. Also note
of entropy and saliency. As demonstrated in [13], these fea- the noise within one class and similarities between classes.
tures are still not consistent enough within one object class.  These challenges require a careful design of edge-based fea-
This is also shown in our experiments. tures.
Rich representations based on edges [2] describe objects
in a redundant way and are proven to be powerful in ac-
complishing object recognition purposes. In their original ing similar edge points as described below, our method is
forms, the features take statistics of distribution of edge able to deal with this issue.

points around each edge point. The discriminability de-  pesides repeatability, a good set of features should ex-
pends on the detected edge points. In our approach, we usgipit sufficient discriminability. We achieve this by asso-
edge points only for anchoring purposes. A rich descriptor ciating edge points with appropriate descriptors. In [20],
is designed to characterize the appearance of a neighborg|gT [17] is empirically shown to outperform many other
hood of an edge point, thus its discriminability is decoupled |oca| descriptors. A SIFT descriptor is created by first com-
from edge point detection. puting the gradient magnitude and orientation at each im-
Active appearance model [6] and vehicle classification age sample point in a region around an anchor point. The
using deformable templates [12] generate models that canegion is split into kr subregions. An orientation his-
only deform in allowed ways, thus can search instances intogram for each subregion is then formed by accumulating
an efficient way. These methods focus on modeling global samples within the subregion, weighted by gradient magni-

shape and appearance, making them inefficient in distin-ydes. Concatenating the histograms from subregions gives
guishing very similar objects. a SIFT vector.

We adopt SIFT, with several key modifications tuned to
vehicle classification, as descriptors for edge points. The

In this section, we describe our features defined by edgefirst modification is that during gradient orientation binning
points and associated descriptors. Our feature extractiorfor histograms forming SIFT, gradient orientations with

2. Edge-based features

method is: 180° differences are regarded as the same, i.e., polarities
(1) Extract edge points. are thrown away. This makes SIFT more robust against con-
(2) Attach a descriptor to each edge point. trast differences and lighting changes. In his original test-
(3) Segment edge points into point groups. ing for SIFT descriptors [17], Lowe found histograms with
(4) Form features from edge point segments. 8 orientations gave the best performance. Thus, we use 4-

. . orientation histograms for unpolarized gradient orientation

2.1. Edge points and descriptors which ranges betweed and 180°. Secondly, instead of

Repeatability of detected features is one of the pivotal thresholding the values in a unit SIFT vector, we thresh-
factors for successful recognition. As seen in mid-range old gradient magnitudes before forming a SIFT vector to
surveillance videos, the appearance of vehicles is domi-reduce the influence of large specular reflections and non-
nated by the vehicle contours; finer details are often notuniform illumination changes. Thirdly, we usé-distance
present or are highly variable. Thus, we expect edge pointsas the distance between SIFT vectors instead of Euclidean
to be more repeatable than other feature points. Figure 1distance [17]. Euclidean distance only cares about absolute
shows edge points extracted by a Canny edge detector [4fifferences in histogram bins. If the absolute differences
for several vehicles. Many detected edge points are repeatof corresponding bins are small, their Euclidean distance is
able within one class. Also it should be noted that there aresmall, no matter how large the differences are relative to the
still quite evident variations in edge images of objects from values in the binsy?-distance considers bin differences rel-
the same class. This makes global edge map-based mettative to bin values to give a better comparison between two
ods ineffective. By modeling local appearance and group- histogram distributions.



2.2. Edge point segmentation and features

As a result of low-resolution images and intra-class ap-
pearance variations, edge points of objects from the same
class still have evident variabilities as shown in Figure 1.
This observation suggests that individual edge points are not
good enough features in terms of spatial repeatability.

Edge points that both are spatially close to each other
and have similar descriptors can be grouped together. Edge
point groups are advantageous compared with individual
edge points. Firstly, edge point groups are more repeatable
in terms of spatial locations. Secondly, edge point groups
lead to more concise models. Thus in this step edge points
are segmented into groups by the mean-shift technique [5].

With edge points segmented, coordinates and associated
SIFT vectors of edge points in one segment define a feature.
Denote the number of points in segmemts.J;, the 2D co-
ordinate of theith point in segmentasp;;, the SIFT vector
of this point ass;;. A featuref; is a 3-tuple{{p;;}, {5i;},
G}, j=1,..,J;, where{p;;} is the set of coordinates of
all edge points in segment {5;;} is the set of SIFT vec-
tors that are anchored at the edge points in segrantl
¢; is the average SIFT vector of segmenite., mean of all
535 in segment. Further denote the set of all features of an
objectasF' = {f,}, i =1,...N, whereN is the number of
features of that sample.

Some feature examples are shown in Figure 2. The left
column shows descriptors for edge points near the trunk.
The right column shows descriptors for edge points near the
rear window. Red dots mark the corresponding edge points.
Blue squares correspond to neighborhoods where SIFTs are
computed. The 22 subregions are also marked. The de-
scriptors in the left column are more useful to discriminate
between the cars (sedan and taxi) and the minivan, since
the descriptor captures the differences around the rear part
of the cars and minivan. The most evident differences lie
in the 9th to 12th elements in each descriptor, which corre-
spond to the upper-right sub-region. The descriptors in the
right column are useful to discriminate between the sedan
and the taxi, since the upper-right subregion of the taxi cap-
tures the textured area of the top light. Again the 9th to
12th elements of each descriptor are different. The collec-
tion of these features gives a good base to build models and
classifiers.

2.3. Comparisons with other features
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Figure 2. Feature examples. Red dots mark the cor-
responding edge points. Bluex2 squares correspond to
neighborhoods and subregions where SIFTs are computed.
Bar graphs are corresponding SIFT vectors. Left column:
this feature is suitable to distinguish minivans from sedans
and taxies. Right column: this feature is suitable to dis-

tinguish taxies from sedans. In both cases, the 9th to 12th
elements in each descriptor give most evident differences.

It should be noted that Fergesal’s approach [7] needs

We ran tests on both the Saliency feature used by Fergus3 to 7 repeatable features and Lowe stated in [17] that his
et al. [7] and the DoG feature used by Lowe [17]. Figure 3 approach requires repeatable features that densely cover the
shows the features detected in three samples of sedan typémage over the full range of scales and locations and the
Typically, due to the low texture nature of vehicles, there quantity of features is particularly important. So these ap-
are only 10 to 20 Saliency or DoG features for each ob- proaches are not suitable for our task considering the low
ject. Furthermore, it is seen from the figure that the featuresrepeatabilities and low number of features. Also as seen in
are not consistently repeatable within one class because oFigure 3(c), our feature is more repeatable in terms of spa-
intra-class variations. tial locations.



Typically the number of possible hypotheses is pro-
hibitively large, hence it is quite difficult to efficiently
search through the hypothesis space. To overcome this
problem, we only use a most probable hypothégisde-
s _ fined as follows:

g For theith feature of the observed object and thie part

of the model, the corresponding mean SIFT vectorscare
andc,. Dissimilarity between featureand parp is simply

the x*-distance betweed; andé,. Then a most probable
hypothesish* is defined as a mapping where each feature
of an observed object only maps to its most similar part in
models, i.e., the part with leag-distance to the feature.
Equation (2) then becomes

(a) Saliency (b) DoG (c) Edge-based
Figure 3. Repeatability comparisons of features. Saliency p(Flwe) ~ p(F|h*, we) ()
and DoG features are typically low in number and repeata- 3.2, Model parameterization

bility, thus unsuitable for our task.
We assume that features of an object are independent of

each other, and for each feature, assume that its edge point
3. Object modeling coordinates{p;;} and corresponding SIFT vecto{s;; }
are also independent. Then
In this section, we develop the object class models that

are to be used for classification. 111[ ) ()
. p(Flwe) = [[p({Big}In" wop({5ig} I we) (@)

3.1. Constellation model i1 ! !

A constellation model [3, 7, 26] is a probabilistic model whereN is the number of features.
of a collection of parts with flexible appearance and spatial  Based on whether to deal with shape implicitly or explic-
configuration. In [7], Fergust al. model appearances from iy, we developed two models.
object parts as independent Gaussians and shape configura-
tion as a joint Gaussian of object parts’ coordinates. We use o
a modified version of this constellation model. 3.2.1. Implicit shape model

For two classess;, w2, a Bayesian decision is given by If we use a relatively large neighborhood size to model
an edge point’s local appearance, each descriptor effectively
. characterizes both the geometry and appearance of a large
¢ = arcg:?lzaXp(wC‘F) = ar;ilfngp(FWC)p(“’c) @) portion of an observed object, hence implicitly incorporates
7 ’ a certain amount of geometry information. The collection
where F is the set of features of an observed object. We of all these descriptors forms a rich representation of the ob-
assume constant priors. A simple extension should workject. So our first model only utilizes the descriptor vectors,

for multiple classes. leaving out their explicit positions. We call this an implicit
We call a matching from detected features to model partsshape model.
anhypothesisThen the likelihood items in Equation (1) can In this case, Equation (4) becomes

be expanded as follows:

p(F‘wc) = Z p(Fﬂ h|wc) = Z p(F|h’awc)p(h|wc)
heH heH The SIFT vectors item in Equation (5) is modeled as a

wherec = 1,2, andH is the set of all possible hypoth@ges. single Gaussian with diagonal covariance matrix

In our case, the configuration of an hypothesis is differ- . N .

ent from that in [7]. Firstly, we assume no occlusion or clut- p({8iz R we) = G{ S5 Hpn- iy, i) (6)

ter since we can separate moving object from background.yhereh* (i) is the index of the part that matches featire

Secondly, an hypothesis mappihgould be many-to-1, in-  4f the observed object* (i) € {1, ..., P} whereP is the

stead of the 1-to-1 mapping as in [7]. This is because it is nymber of parts in the modak,,. ;, is the mean vector and

possible for edge points of an observed object to be over-s;, _ . is the diagonal covariance matrix of the underlying
segmented, and thus give several almost identical features.ggyssian.

N
p(Flwe) ~ Hp({gijﬂh*v"%) (5)
i=1



3.2.2. Explicit shape model Q %/iﬁ/j ﬁ rms . “ :'l

Alternatively, we model both SIFT descriptors and their

positions explicitly. The distribution of edge point coordi- E&&E\QI g& EA&

nates is modeled as a mixture of Gaussians, i.e.,

o Ko ) e W AL, W, e W, e
p({Pij R we) = Z (i), m*G({Pij Hh= (5),m» S (i),m) Figure 4. Some samples in dataset.
m=1

(7)
whereh*(¢) is the index of the part that matches featiiof tors 1o be | d abé a
the observed objeck,. ;) is the number of mixture com- ~ PArameters fo be learmne Ay, Ap.ms M, m> Sip,my s

; ; - 3,}, wherem = 1,..,K,, p = 1,..,P where P is
onentsoy,- (i) . IS the weight of thenth mixture compo- ph Y P Ve
Eentu L:h @, g P the number of parts in the model. With the feature pool
1 ad il

5. andX;, -y ., are the mean vector and covari- . o ; .
ance mat;%k"i)f then'}[Lh (ggtjssian component achieved above, learning is quite straightforward. Each fea-
. ture in the feature pool is regarded as a part candidate. With

The reason for using a mixture of Gaussians instead OfSIFT : f thevth feature in the feat | .
a single Gaussian is that positions of edge points are highly vectors of thepth feature in he feature pool, maxi-
mum likelihood estimation giveg,,,3,. With edge points

structured. For example, edge points along the side window . . .
P gep g coordinates of theth feature in the feature pool, a typical

of a vehicle essentially form a curve, which a single Gaus- ) i :
sian is not able to model well. Replacing Equation (6) and E.M algorithm estimates parameters of a mixture of Gaus-
(7) into (4) gives the explicit model. S'anS’KP’ p,m> Hpm Zip,m- :

During recognition, features of an observed object are
computed, then class-conditional likelihoods are evaluated
with the learnt models. Note that in Equation (4), the like-

We now discuss our learning and recognition scheme. Alihood of a feature is determined by the probabilities of po-
straightforward training scheme could use all features from sitions{p;; } and SIFT vectorgs;;} of all edge points that
all samples to learn the model parameters. However, weform the feature. We use the largest probability among all
found that some of the features only occur in a small por- p(p;;) to represenp({p;;}), and similarly forp({5;;}).
tion of the training samples. Due to a reason described inThen a Bayesian decision rule - Equation (1) - gives the
Section 5.2.1, these features generally will not facilitate or recognition result.
even harm the recognition process. So a pruning process is
needed. 5. Results

Features of gach traln]ng 'sample are computed flrst.5.1. Experimental setup
Then a sequential clustering is performed on all features

quential clustering runs as follows. lance applications makes some readily available databases

Denote a pool of features ak,. To initialize, ran- (such as Cgltgch 101 [15]) _unsuitable since they concen-
domly select a sample with all its featurd={f,}, and trate on static images. More !mpo_rtantly, current f_ocus:es on
put them into the feature pool so now the feature pool is these databases are to distinguish between quite different
F,=F={f,}. Then add another sample with all its features OPj€cts, while our goal is to distinguish objects on a more
F'={f!}. For eachf’, compute the ?-distance to all fea- ~ detailed level, such as sedans vs. taxies. _
tures in the feature pool. Suppoge,,, in the feature pool We collected videos of trafflc_ from an overlooking cam-
has the smallest distance f9. If this smallest distance is ~€ra. Currently we focus on a fixed view angle. A track-
less than a threshold, merg®& with £, ,, in the feature ~ INg system [23, 18] gives tracked moving vehicles in the
pool by adding all its edge points coordinatgs;; } and videos. Average size of tracked vehicles isxBD pix-
SIFT vectors{37;} to f,,,,,, and update the mean SIFT vec- _els. _Note_that they are _much smaller than typical c_)b-
torof £, .. Otherwise addf’, into the feature pool as a new ject sizes in other static image databases. Three _kl_nds
feature. Running through all training samples will generate of veh|(?les are hand-labeled: - sedan, _passenger minivan
a feature pool. and taxi. Some gxqmp_lgs are shown in F|g 4, Note the

Denote the percentage of training samples that generat arge inter-class _S|m.|lar|t|es.. (This data_set is available at
feature f, in the feature pool as;. Features whose; is ttp://people.cs_;all.mlt.edu/X|aoxuma/pr(_)J.)
below a threshold are marked as invalid, that is to say: In the tracking system [23, 18], objects can be sepa-

For the model structures established in Section 3.2, the

4. Learning and recognition

1 i > Tinrosh rated from background. Then the scaling problem can be
validity of f, = Lo hres (8) limi db lizi bi lized
0 otherwise eliminated by normalizing objects to a normalized reference
All valid features form the final feature pool for learning frame. For each object, the mass center is computed first.

the model parameters. Then for all edge points, relative coordinates to this mass



center are computed. Finally relative coordinates are di-
vided by object width. Thus the width coordinate is approx-
imately normalized to the range of [-0.5, 0.5]. The reason
for dividing width coordinate and height coordinate with the
same value is to preserve the aspect ratio of objects.
Several free parameters also need to be set. The first
two are the size of the neighborhood and sub-region num-
ber of the SIFT descriptor. The third is the threshold used
for pruning out invalid features as shown in Equation (8). In
our experiments, the size of the SIFT neighborhood is set to
be proportional to object width. The ratios of SIFT neigh-
borhood size to object width in our tests d@2, 0.3, 0.4,
0.5}. The sub-region numbers of SIFT in our tests f4e
16}, i.e., 2<2 and 4x4. The valid feature thresholds in our

error rate
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Other parameters in our algorithm are the kernel width of
the mean-shift algorithm and thé-distance threshold dur-
ing feature pool formation. These two parameters are set to
be the same considering their identical nature of clustering
on SIFT vectors. For this parameter, an empirical test de-
termines 0.03 is appropriate for SIFT witkx4 sub-regions

Figure 5. Recognition results on cars vs. minivans by
constellation model with explicit shape. x-axis is the valid
feature threshold..sn. Yy-axis is error rate. The figure
shows error rates on test set witk 2 SIFT.

-0.4] -0.4]

and 0.01 is .appropnate for SIFT withx2 sub-regions. f\@ 3%\ - @Eﬁg‘;;@?i‘,
of @ = o - =GO
5.2. Experimental results ’ @%&\ 23 S ‘,: %@%
We tested on two classification tasks: cars vs. minivans o o -
and sedans vs. taxies. Note sedans and taxies are allre- .~ [
garded as cars, so sedans vs. taxies can be viewed as sub- ' ' ' '
classification within the car class. To build the models, for (a) Car (b) Minivan

cars vs. minivans, we use 50 cars and 50 minivans randomly ~ Figure 6. Constellation models with explicit shape. Fea-
selected from the dataset; for sedans vs. taxies, we used 50 tures form a rich representation of corresponding object
sedans and 50 taxies. Another 200 sedans, 200 minivans CasSes:

and 130 taxies are selected for testing.

o densely cover objects hence represent objects in a rich way.

5.2.1. Carversus minivan Smaller or larger,,.s, generally gives more errors in

Results of cars vs. minivans classification with explicit recognition. The reason lies in the nature of hypothasis
shape models are shown in Figure 5. The x-axis in Figure 5defined in Section 3.1. The validity of hypothehiSis crit-
is the valid feature thresholg,,...., in Equation (8). They- ical to the success of recognition. If the selected hypothe-
axis is error rate. Curves in the figures correspond to differ- sish™ consists of bad mappings from observed object fea-
ent ratios of SIFT neighborhood size to object width. Com- tures to model partg;” is a very poor approximation of the
bination ofr,,...,=0.05 and %2 SIFT with SIFT-size-to- ~ summation of all possible hypotheses. Whep..., is too
object-width-ratio=0.5 turns out to give the lowest error rate small, many superfluous features are kept in the models. If
on cars vs. minivans classification. rinresh 1S 100 large, fewer features are kept in the models.

First of all, we notice that the effect of size of SIFT Both cases lead to larger probabilities of mis-match thus
neighborhood conforms with the claim by Belongieal. poor hypotheseB*, hence give more errors on recognition.
[2] and Kumar and Hebert [14], that is, a rich representa-  For the explicit shape models, high recognition rates are
tion is necessary for limited (in both quality and quantity) achieved for both classes, as shown by the confusion ma-
training data. In our problem, SIFT-size-to-object-width ra- trix in Table 1 (a). We also built and tested implicit mod-
tio=0.5 turns out to capture more geometry and appearanceels. For comparison, models with shape only and no appear-
information and generate rich enough representations, re-ance (SIFT vectors) are also built and tested. Correspond-
sulting in good performance. Corresponding constellation ing confusion matrices are shown in Table 1 (c) & (e). As
models for car and minivan are illustrated in Figure 6. El- discussed in Section 3.2.1, the performance of the implicit
lipses in Figure 6 depict the distribution of edge points be- shape model only degrades to a small extent. This confirms
longing to a particular model part. Features in learnt models our expectation that a relatively large neighborhood can ef-



C ar M | n |Van S ed an TaXI 05 Comparisons of car vs minivan recognition o5 Comparisons of sedan vs taxi recognition
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(a) Explicit shape (b) Explicit shape foss e Eoxsp
Car | Minivan Sedan| Taxi e R T
Car | 98% | 2% Sedan| 945%| 55% | ~ S~—
Minivan | 1.5% | 98.5% Taxi | 1.54% | 98.46% ]
(c) Implicit shape (d) Implicit shape TE meowmsme 0 R Secmnesmes
c i Sed T (a) Cars vs. minivans (b) Sedans vs. taxies
ar inivan edan axi .
Py 5 o 0 Figure 7. Performance comparisons to Chamfer matching
Car 95% 5% Sedan| 92% 8% X ; . g
Minvan | 55% | 945% Tax | 1923% | 80.77% and Hausdorff distance matching. x-axis is training sample

number. y-axis is error rate. Chamfer matching and Haus-
dorff distance matching use individual edge points and no
appearance. Both give higher error rates than those of our
approach.

(e) Shape-only (f) Shape-only

Table 1. Confusion matrices on test sets. Small differ-
ences in performances of explicit and implicit shape mod-
els show the merit of rich representation. Large differences

in performances of explicit and shape-only models indicate
the importance of appearance modeling. 025

Comparisons of car vs minivan recognition Comparisons of sedan vs taxi recognition

—— edge-based rich representation
— © — constellation model+¢

lel+original SIFT|
oask DoG+SIFT voting

02 02 N

r rate

fectively capture both geometry and appearance. This"# .

test set error rate
°

again the merit of a rich representation. As for a shaper > " = | ¥, ]
only model, from Table 1 (e), itis clearly seen that, withoyt| ol S o
modeling appearance, shape information alone gives wors M T

performance than the other two models. T T o S

5.2.2. Sedan versus taxi (a) Cars vs. minivans (b) Sedans vs. taxies

Figure 8. Performance comparisons to original SIFTs. x-

Similar experiments are carried out on recognition of o g
axis is training sample number. y-axis is error rate. The dot-

sedans vs. taxies. Considering the vast similarity be- d . i :

. . ashed curve gives error rates of recognition with DoG fea-
tween S?dans and tax,'e,s’ this is an _e_ven harder ta§k COM- " tures and SIFT voting. The dashed curve gives error rates of
pared with cars vs. minivans recognition. Combination of  gnsteliation model with original SIFT descriptors. Results
Tthresh=0.1 and Z 2 SIFT with SIFT-size-to-object-width- show our rich representation and modifications to SIFT im-
ratio=0.5 gives the lowest error rate. Classification results  prove the performance.
are shown in the confusion matrices in Table 1 (b)(d)(f).

The results show that, even for very similar object classes

such as sedan and taxi, the method also performs quite wellFigure 7 gives comparisons on performances of these meth-
Table 1 (b)(f) also show that there are even larger differ- ods. X-axis is the number of training samples used. Y-
ences between explicit and shape-only models. This indi-axis is average error rate. We can see that the robust 0.8-
cates that appearance modeling plays a significantly impor-fractional Hausdorff matching [9] is better than Chamfer
tant role to achieve the high performance. matching. But they both perform worse than our approach.
For 50 training samples, our method has 1.5% error rate for
cars vs. minivans, 4.24% for sedans vs. taxies. Chamfer
This section gives several comparisons to demonstratematching has 11.75% for cars vs. minivans and 10.91% for

5.3. Discussion

the modeling capability of the proposed approach. sedans vs. taxies. Hausdorff matching has 11% for cars vs.

minivans and 10.3% for sedans vs. taxies. These methods’

5.3.1. Comparisons with Chamfer matching and Haus- ineffectiveness lies in the nature of global matching and lack
dorff distance-based matching of appearance modeling.

As mentioned in Section 2.1, while our method takes re- . ) .
peatable edge segments as features, there are still large varp-3-2- Comparisons with original SIFT
ations in positions of individual edge points. This makes We also implemented the DoG feature extraction and
global edge map matching schemes such as Chamfer matchSIFT voting method for object recognition proposed by
ing and Hausdorff distance-based matching less effective.Lowe [17]. Its error rates are shown as the dot-dashed



curves in Figure 8. This method is worse than the proposed [8] W. E. L. Grimson and T. Lozano-Perez. Localizing overlap-

method for our task. The reasons are two-fold: first, the

scheme uses a matching ratio score to do voting for each
feature, whereas our approach uses a probabilistic constel-[9]
lation model on all features; second, as discussed in Section
2.3, the original voting scheme uses sparse representation
rather than rich representation for recognition.

Another comparison is to demonstrate the necessity of
modifying original SIFT to fit better to our surveillance sys- [11]

(10]

tem as stated in Section 2.1. For this comparison, we keep

the probabilistic constellation model, but use original SIFT 12]

rather than our modified SIFT as descriptors. Performance

comparison is shown in Figure 8. It can be seen that, com-

pared to original voting scheme, incorporating constellation

model improves the performance. However its error rates

13]

are still higher than those of the proposed approach. This

shows the modifications developed in Section 2.1 are nec—[14]

essary to further improve the performance.
6. Conclusion and future work

In this paper we proposed a repeatable and discrimina-

(15]

tive feature. Each of these features describes a relatively

large region and the whole set of features forms a rich rep-
resentation for object classes. Experimental results demo
strate the good performance of the proposed approach o

vehicle classification in mid-field video surveillance.
Classification under view changes and occlusion is still

to be investigated. Future work also includes experiments

on more vehicle types and vehicle identity recognition.

Acknowledgements
The authors would like to thank Kinh Tieu, Biswaijit
Bose and Chris Stauffer for useful discussions. The work [19]

presented here is supported in part by grants from DARPA.

References

n_

T6]

(17]

(18]

(20]

[1] S. Agarwal and D. Roth. Learning a sparse representation [21]

(2]

(3]

(4]
(5]

(6]
(7]

for object detectionECCV, 4:113-130, 2002.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape conteX8EE Trans. PAM|
24(24):590-522, April 2002.

M. C. Burl, M. Weber, and P. Perona. A probabilistic
approach to object recognition using local photometry and
global geometryECCV, pages 628-641, 1998.

J. Canny. A computational approach to edge detectBE
Trans. PAM| 8(6):679-698, 1986.

D. Comaniciu and P. Meer. Mean shift: A robust ap-
proach toward feature space analysi&EE Trans. PAMJ
24(5):603-619, 2002.

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-
ance modelslEEE Trans. PAM] 23(6):853-857, 2001.

[22]

(23]

(24]

[25]

R. Fergus, P. Perona, and A. Zisserman. Object class recogyog)

nition by unsupervised scale-invariant learniRgoc. CVPR
2:264-271, June 2003.

ping parts by searching the interpretation tré#€EE Trans.
PAMI, 9(4):469-482, July 1987.

D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge.
Comparing images using the hausdorff distatEEE Trans.
PAMI, pages 850-863, September 1993.

D. Jacobs and R. Basri. 3-d to 2-d recognition with regions.
1JCV, 34(3):123-145, 1999.

D. W. Jacobs. Robust and efficient detection of salient con-
vex groups.|EEE Trans. PAM] 18(1):23-37, January 1996.

M.-P. Dubuisson Jolly, S. Lakshmanan, and A.K. Jain. Ve-
hicle segmentation and classification using deformable tem-
plates.IEEE Trans. PAM] 18(3):293-308, 1996.

F. Jurie and C. Schmid. Scale-invariant shape features for
recognition of object categorie®roc. CVPR pages 90-96,
2004.

S. Kumar and M. Hebert. Man-made structure detection in
natural images using a causal multiscale random fietdc.
CVPR 1:119-126, June 2003.

F. Li, R. Fergus, and P. Perona. Learning generative vi-
sual models from few training examples: An incremental
bayesian approach tested on 101 object catego@éPR
Workshop of Generative Model Based Visidane 2004.

D. G. Lowe. Three-dimensional object recognition from
single two-dimensional images. Artificial Intelligence
31(3):355-395, March 1987.

D. G. Lowe. Distinctive image features from scale-invariant
keypoints.lJCV, 60(2):91 — 110, November 2004.

J. Migdal and W. E. L. Grimson. Background subtraction
using markov thresholdslEEE Workshop on Motion and
Video ComputingJanuary 2005.

K. Mikolajczyk and C. Schmid. Indexing based on scale
invariant interest pointsProc. ICCV, pages 525-531, 2001.

K. Mikolajczyk and C. Schmid. A performance evaluation
of local descriptorsProc. CVPR 2:257—-263, June 2003.

K. Mikolajczyk, A. Zisserman, and C. Schmid. Shape recog-
nition with edge-based featurd8MVC, 2:779-788, Septem-
ber 2003.

A. Sha’ashua and S. Ullman. Structural saliency: The detec-
tion of globally salient structures using a locally connected
network. Proc. ICCV, 18(1):321-327, December 1988.

C. Staufferand W. E. L. Grimson. Adaptive background mix-
ture models for real-time tracking?roc. CVPR 2:246-252,
1999.

T. N. Tan, G. D. Sullivan, and K. D. Baker. Model-based
localisation and recognition of road vehiclé3CV, 27(1):5—
25, March 1998.

A. Thayananthan, B. Stenger, P. H. S. Torr, and R. Cipolla.
Shape context and chamfer matching in cluttered scenes.
Proc. CVPR pages 127-133, 2003.

M. Weber, M. Welling, and P. Perona. Unsupervised learning
of models for recognitionECCV, pages 18-32, 2000.



