Introduction to Transformation Synchronization

Transformation Synchronization

- Transformation Synchronization aims at estimating consistent rigid transformations across a collection of images or depth scans.
- Its applications include multi-view structure from motion, geometry reconstruction from depth scans, image editing and simultaneous localization and mapping.

Learning Transformation Synchronization

Xiangru Huang¹, Zhenxiao Liang¹, Xiaowei Zhou², Yao Xie³, Leonidas Guilbas⁴ and Qixing Huang¹ ¹ UT Austin ² Zhejiang University ³ Georgia Tech ⁴ Stanford

Towards learning based approaches

• Given input relative poses $\mathcal{T}^{in} = \{(R_{ii}^{in}, t_{ii}^{in})\}$, a class of iterative reweighting based methods aim to optimize

$$\min_{\{(R_i,t_i)\}} \sum_{1 \le i < j \le n} w_{ij} \|R_{ij}^{\text{in}}R_i - R_j\| + w_{ij} \|R_{ij}^{\text{in}}t_i + t_{ij}^{\text{in}} - t_j\|^2$$

and then at the k-th iteration, update weights w_{ij} by a simple rule, e.g.

 $w_{ij}^{k} = \begin{cases} \mathbf{1} & \text{if } \|R_{ij}^{\text{in}}R_{i} - R_{j}\| \\ \mathbf{0} & \text{otherwise} \end{cases}$

- Designing a function that distinguish good and bad relative poses is easy only when the noise is random or sparse, but can be much harder in other cases.
- ► We propose to address this issue by learning the weight update function from data.

Our approach

- ▶ Train a binary classifier function $score(scan_i, scan_j, T_{ij}) \in [0, 1]$ to distinguish good and bad relative poses.
- ▶ Replace (2) with a soft-thresholding function $reweight(R, R^{in}, \theta)$ parameterized by θ .

Learning-based Iterative Reweighting Algorithm

- **Input**: Scans $\{S_i\}$, poses \mathcal{T}^{in} and parameters θ .
- 0. Initialize the weight by

$$w_{ij}^{0} \leftarrow score(S_i, S_j, T_{ij}^{in})$$

for $k = 1, \ldots, k_{\max}$ do

- 1. Solve a low-rank matrix recovery problem to get absolute rotations $R^k = \{R_i^k | 1 \leq i \leq n\}$

2. Reweight relative poses

 $w^k \leftarrow reweight$

end for

3. Solve Least Squares to obtain translations $\{t_i^{k_{\max}} | 1 \leq i \leq i \}$

$$\min_{\substack{\{t_i^{k_{\max}}\}}} \sum_{1 \le i < j \le n} w_{ij}^{k_{\max}}$$

return Global poses $T^* = \{(R_i^{k_{\max}}, t_i^{k_{\max}}) | 1 \le i \le n\}$

▶ Implementing the classifier. As shown in the figure below, to compute score(S_i, S_j, Tⁱⁿ), we construct a distance map $M \in \mathbb{R}^{W \times H}$ for each scan. In every entry of the map we fill the point-to-set distance. We then concatenate these two maps and pass it into a Convolutional Neural Network (CNN).

Implementation of classifier

• **Tuning Parameter Vector** θ . When fixing the number of iterations, we can perform gradient descent on parameters θ to optimize pose error.

$$| \leq \epsilon c^{\kappa}$$
, $c \in (0,1)$ (2)

(1)

(3)

 $R^k \leftarrow lowrank(w^{k-1}, R^{in})$

$$ht(R^k, R^{in}, \theta)$$

$$\{n\}$$
.
 $\{k_{ij}^{k_{\max}}t_i^{k_{\max}}+t_{ij}^{in}-t_j^{k_{\max}}\}$

Figure: We show the results of ground truth result (column I), Rotation Averaging (A. Chatterjee, 2017)+Translation Sync. (X. Huang, 2017) (column II), Geometric Registration (S. Choi, 2015) (column III), and Our Approach (column IV). These scenes are from Redwood Chair dataset and ScanNet dataset.

Methods	Redwood		ScanNet	
	Rotation Error	Translation Error (m)	Rotation Error	Translation Error (m)
	Mean	Mean	Mean	Mean
FastGR (all)	37.4°	0.68	76.3°	1.67
FastGR (good)	34.1°	0.59	68.8°	1.43
Super4PCS (all)	55.8°	1.14	98.5°	2.11
uper4PCS (good)	49.2°	0.93	90.8°	1.80
RotAvg (FastGR)	22.4°	0.42	64.4°	1.26
GeoReg (FastGR)	27.7°	0.93	87.2°	1.80
tAvg (Super4PCS)	49.6°	0.95	96.8°	1.70
oReg (Super4PCS)	60.6°	1.25	72.9°	1.82
Approach (FastGR)	6.9 °	0.26	42.9 °	1.16
pproach (Super4PCS)	46.7°	1.02	66.9°	1.90
nsf. Sync. (FastGR)	22.1°	0.43	63.5°	1.31