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Abstract

I Many applications of machine learning involve structured outputs with large
domains, such as Translation, Alignment, and Parsing.

I Learning of a structured predictor is prohibitive due to repetitive calls to an
expensive inference oracle.

I We propose decomposing training of a structural SVM into factorwise
multiclass SVMs connected with messages, replacing structured oracles with
factorwise oracles.

I The proposed algorithm, Greedy Direction Method of Multiplier (GDMM),
guarantees ε-suboptimality in O(log(1/ε)) iterations, and shows
orders-of-magnitude speedup over state of the art on large-domain problems.

Structured Prediction of Large Output Domain

I We considers Structured Predictor of the form

h(x ; w) = arg max
y∈Y(x)

〈w , φ(x, y)〉.

obtained by solving the regularized Empirical Risk Minimization problem

min
w

1

2
‖w‖2 + C

n∑
i=1

L(w ; x i, ȳ i) .

I For Structural SVM, we use the structured hinge loss

L(w ; x, ȳ) = max
y∈Y(x)

〈w , φ(x, y)− φ(x, ȳ)〉+ δ(y , ȳ),

where the inner product allows factor decomposition of the form

〈w , φ(x, y)〉 =
∑
F∈T

∑
f ∈F (x)

〈wF , φF(x f , y f )〉,

and δ(y , ȳ i) is a task-dependent error function (usually Hamming Error).
I Evaluation of the loss L(w ; x, ȳ) (and its derivative) requires maximization
over the structured domain Y(x) (i.e. structured oracle), a very expensive
inference procedure when domain |Yf | or #factor |F| is large.

Existing Approaches

I Approximate inference via Beam Search (suboptimal due to local decision).
I Pseudolikelihood (high-variance estimator downgrades testing performance).
I Generative model + Discriminative Re-ranking k-best.

Dual Decomposition: Struct-SVM to Multiclass SVMs

I Key Insight: the Factorwise Oracle

y∗f := argmax
y f

〈wF , φ(x f , y f )〉

can be solved cheaply, even in sublinear time.
I Replace the maximization domain Y(x) with its Linear-Program (LP)
relaxationML, giving the LP-relaxed loss

LLP(w ; x, ȳ) ≥ L(w ; x, ȳ),

which is tight for tree-structured factor graph.
I Apply strong duality to the LP relaxation gives the dual-decomposed loss:

LLP(w ; x, ȳ) = min
λ∈Λ

∑
f ∈F(x)

Lf (w ; x f , ȳ f , λf ).

where λ :
∑

f λjf = 0, j ∈ V(x) plays the role of messages and

Lf (wF , λf ) := max
y f∈Yf

〈wF , φ̄F(x f , y f )〉+
∑

j∈N (f )

λjf ([y f ]j)

is a multiclass SVM loss augmented with messages λf .

I The dual problem comprises independent multiclass SVM problems (in dual
forms):

min
αf∈∆|Yf |

G(α) :=
1

2

∑
F∈T

∥∥∥∥∥∥
∑
f ∈F

ΦT
f αf

∥∥∥∥∥∥
2

−
∑
j∈V

δT
j αj

connected by consistency constraints Mjfαf = αj, (j , f ) ∈ E .

Greedy Direction Method of Multiplier (GDMM)

I Use Augmented Lagrangian Method:

L(α, λ) := G(α) +
ρ

2

∑
(j ,f )∈E

‖mjf (α, λ)‖2 (1)

where mjf (α, λt) = Mjfαf −αj +λt
jf are the messages between factors.

GDMM Algorithm:

for t = 0, 1, ... do
1. Compute (αt+1,At+1) via one pass of Algorithm 1 or 2.

2. λt+1
jf = λt

jf + η
(
Mjfα

t+1
f − αt+1

j

)
, j ∈ N (f ), ∀f ∈ F .

end for

When Factor Domain |Yf | is Large.

Algorithm 1 Block-Coordinate Frank-Wolfe (BCFW)

for s = 1 to |F| do
1. Draw f ∈ F uniformly at random.
2. Find the incorrect label y∗f by factorwise oracle:

v+
f := argmin

v f∈∆|Yf |
〈∇αfL(αt, λt), v f 〉 = C(e ȳ f

− ey∗f ).

3. As+1
f = As

f ∪ {v
+
f }.

4. Minimize L(α, λt) w.r.t. the active set As+1
f .

end for

I Messages mjf (α, λ) have size bounded by active label size |Af ′| of
neighboring factor f ′.

I A pairwise factorwise oracle can be realized in time O(|Ai|2) instead of
O(|Yi|2) by maintaining priority queues for wF(α).

When Number of Factors |F| is Large.

Algorithm 2 Block-Greedy Coordinate Descent (BGCD)

for i ∈ [n] do

1. f ∗ := argmin
f ∈F(x i)

(
minαf +d∈∆|Yf |〈∇αfL(αt, λt), d〉+ Qmax

2
‖d‖2

)
.

2. As+1
i = As

i ∪ {f ∗}.
3. Minimize L(α, λt) w.r.t. {αf }f ∈As+1

i
.

end for

I The number of active factors of sample i is bounded by |Ai|.
I Only O(|Ai|2) pairwise factors require gradient computation (others can
be compared using priority queues maintained on wF(α)).

Convergence Analysis

Let d(λ) = minα L(α, λ) and

∆t
d := d∗ − d(λt), ∆t

p := L(αt, λt)− d(λt)

be the dual and primal suboptimality respectively. The GDMM algorithm has

E [∆t
p + ∆t

d] ≤ ε for t ≥ ω log(
1

ε
) (2)

for some constant ω > 0.

Experiments

I Sequence Labeling: POS (|Yi| = 45), ChineseOCR (|Yi| = 3039).
I Structural oracle uses Viterbi Algorithm.
I Multilabel with Pairwise Interaction: RCV1 (|Yi| = 228).
I Structural oracle solves a Linear Program.
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