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Abstract

» Many applications of machine learning involve structured outputs with large
domains, such as Translation, Alignment, and Parsing.

» Learning of a structured predictor is prohibitive due to repetitive calls to an
expensive inference oracle.
» We propose decomposing training of a structural SVM into factorwise

multiclass SVMs connected with messages, replacing structured oracles with
factorwise oracles.

» The proposed algorithm, Greedy Direction Method of Multiplier (GDMM),

guarantees e-suboptimality in O(log(1/€)) iterations, and shows
orders-of-magnitude speedup over state of the art on large-domain problems.

Structured Prediction of Large Output Domain
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» We considers Structured Predictor of the form

h(x; w) = arg max, (W, @(x,y)).

obtained by solving the regularized Empirical Risk Minimization problem
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» For Structural SVM, we use the structured hinge loss

L(wix,9) = max (w, ¢(xy) = 6(x.7)) +8(y.5),

where the inner product allows factor decomposition of the form

<W7 qb(x,y)> — Z Z <WF7 ¢F(Xf7yf)>7

FeT feF(x)
and d(y, y;) is a task-dependent error function (usually Hamming Error).

» Evaluation of the loss L(w; x, y) (and its derivative) requires maximization
over the structured domain Y(x) (i.e. structured oracle), a very expensive
inference procedure when domain |Yr| or #factor |F| is large.

Existing Approaches

» Approximate inference via Beam Search (suboptimal due to local decision).
» Pseudolikelihood (high-variance estimator downgrades testing performance).
» Generative model + Discriminative Re-ranking k-best.

Dual Decomposition: Struct-SVM to Multiclass SVMs

» Key Insight: the Factorwise Oracle

y? -= drgmax <WF9 ¢(vayf)>
Yf

can be solved cheaply, even in sublinear time.

» Replace the maximization domain Y(x) with its Linear-Program (LP)
relaxation M, giving the LP-relaxed loss

LY (w; x, ¥) > L(w; x, ¥),
which is tight for tree-structured factor graph.
» Apply strong duality to the LP relaxation gives the dual-decomposed loss:

L (w; x, ) = min Le(W; XFy Yy AF).
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where X : > - Air = 0, j € V(x) plays the role of messages and

Lr(wF, Ar) := max (wr, ¢e(xr, yr)) + Z Aif(Lyl))
YrEXs JEN(F)

is a multiclass SVM loss augmented with messages Ar.

» The dual problem comprises independent multiclass SVM problems (in dual

forms):
2
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min G(a) := ! Z

connected by consistency constraints Mjrar = aj, (J, ) € E.

Greedy Direction Method of Multiplier (GDMM)

» Use Augmented Lagrangian Method:
P 2
Lo, A) := G(a) + 5 > lImjr(a, N)| (1)
(J,f)e&

where mjr(a, AY) = Mjrar — aj + )\ff are the messages between factors.

GDMM Algorithm:

fort =0,1,... do
1. Compute (at*1, A1) via one pass of Algorithm 1 or 2.

2 A = My + 0 (Myraft! — oY), j € N(f), VF € F
end for

When Factor Domain |)¥| is Large.

Algorithm 1 Block-Coordinate Frank-Wolfe (BCFW)

for s =1 to |F| do
1. Draw f € JF uniformly at random.
2. Find the incorrect label y7 by factorwise oracle:

vy = argmin (Vo L(a', X)), vi) = C(ey, — ey:).
VfEA'yfI
3. Ast = As U {vi}
4. Minimize £L(ca, A") w.r.t. the active set .A,Sf"'l.
end for

» Messages mjr(c, A) have size bounded by active label size | Af/| of
neighboring factor f’.

» A pairwise factorwise oracle can be realized in time O(|.A;|?) instead of
O(|Yi|?) by maintaining priority queues for w ().

When Number of Factors |F| is Large.

Algorithm 2 Block-Greedy Coordinate Descent (BGCD)
for i € [n] do

L f*:= argmin  min,_, e api(VaL(a!, X), d) + S5
fE]'_(X,')

2. AsH = As U {F*}.
3. Minimize L(a, AY) w.rt. {or}pe g5+
end for

dH2>.

» The number of active factors of sample i is bounded by |.A;|.

» Only O(|.A;|?) pairwise factors require gradient computation (others can
be compared using priority queues maintained on we(a)).

Convergence Analysis

Let d(A) = min, L(a, A) and
A, :=d" —d(\'), A :=L(a’,\") — d(\)
be the dual and primal suboptimality respectively. The GDMM algorithm has

1
E[A; + Al <€ for t > w Iog(z) (2)

for some constant w > 0.

» Sequence Labeling: POS (|Y;| = 45), ChineseOCR (|Yi| = 3039).
» Structural oracle uses Viterbi Algorithm.

» Multilabel with Pairwise Interaction: RCV1 (|Y;| = 228).

» Structural oracle solves a Linear Program.




