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Abstract

Many applications of machine learning involve structured outputs with large do-
mains, where learning of a structured predictor is prohibitive due to repetitive
calls to an expensive inference oracle. In this work, we show that by decomposing
training of a Structural Support Vector Machine (SVM) into a series of multiclass
SVM problems connected through messages, one can replace an expensive struc-
tured oracle with Factorwise Maximization Oracles (FMOs) that allow efficient
implementation of complexity sublinear to the factor domain. A Greedy Direction
Method of Multiplier (GDMM) algorithm is then proposed to exploit the sparsity
of messages while guarantees convergence to ε sub-optimality after O(log(1/ε))
passes of FMOs over every factor. We conduct experiments on chain-structured
and fully-connected problems of large output domains, where the proposed ap-
proach is orders-of-magnitude faster than current state-of-the-art algorithms for
training Structural SVMs.

1 Introduction

Structured prediction has become prevalent with wide applications in Natural Language Process-
ing (NLP), Computer Vision, and Bioinformatics to name a few, where one is interested in outputs
of strong interdependence. Although many dependency structures yield intractable inference prob-
lems, approximation techniques such as convex relaxations with theoretical guarantees [10, 14, 7]
have been developed. However, solving the relaxed problems (LP, QP, SDP, etc.) is computationally
expensive for factor graphs of large output domain and results in prohibitive training time when
embedded into an learning algorithm relying on inference oracles [9, 6]. For instance, many appli-
cations in NLP such as Machine Translation [3], Speech Recognition [21], and Semantic Parsing
[1] have output domains as large as the size of vocabulary, for which the prediction of even a single
sentence takes considerable time.

One approach to avoid inference during training is by introducing a loss function conditioned on
the given labels of neighboring output variables [15]. However, it also introduces more variance
to the estimation of model and could degrade testing performance significantly. Another thread of
research aims to formulate parameter learning and output inference as a joint optimization problem
that avoids treating inference as a subroutine [12, 11]. In this appraoch, the structured hinge loss
is reformulated via dual decomposition, so both messages between factors and model parameters
are treated as first-class variables. The new formulation, however, does not yield computational ad-
vantage due to the constraints entangling the two types of variables. In particular, [11] employs a
hybrid method (DLPW) that alternatingly optimizes model parameters and messages, but the algo-
rithm is not significantly faster than directly performing stochastic gradient on the structured hinge
loss. More recently, [12] proposes an approximate objective for structural SVMs that leads to an
algorithm considerably faster than DLPW on problems requiring expensive inference. However, the
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Figure 1: (left) Factors with large output domains in Sequence Labeling. (right) Large number of
factors in a Correlated Multilabel Prediction problem. Circles denote variables and black boxes
denote factors. (Yu: domain of unigram factor. Yb: domain of bigram factor.)

approximate objective requires a trade-off between efficiency and approximation quality, yielding
an O(1/ε2) overall iteration complexity for achieving ε sub-optimality.

The contribution of this work is twofold. First, we propose a Greedy Direction Method of Multiplier
(GDMM) algorithm that decomposes the training of a structural SVM into factorwise multiclass
SVMs connected through sparse messages confined to the active labels. The algorithm guarantees
an O(log(1/ε)) iteration complexity for achieving an ε sub-optimality and each iteration requires
only one pass of Factorwise Maximization Oracles (FMOs) over every factor. Second, we show that
the FMO can be realized in time sublinear to the cardinality of factor domains, hence is consider-
ably more efficient than a structured maximization oracle when it comes to large output domain.
For problems consisting of numerous binary variables, we further give realization of a joint FMO
that has complexity sublinear to the number of factors. We conduct experiments on both chain-
structured problems that allow exact inference and fully-connected problems that rely on Linear
Program relaxations, where we show the proposed approach is orders-of-magnitude faster than cur-
rent state-of-the-art training algorithms for Structured SVMs.

2 Problem Formulation

Structured prediction aims to predict a set of outputs y ∈ Y(x) from their interdependency
and inputs x ∈ X . Given a feature map φ(x,y) : X × Y(x) → Rd that extracts rele-
vant information from (x,y), a linear classifier with parameters w can be defined as h(x;w) =
argmaxy∈Y(x) 〈w,φ(x,y)〉, where we estimate the parameters w from a training set D =
{(xi, ȳi)}ni=1 by solving a regularized Empirical Risk Minimization (ERM) problem

min
w

1

2
‖w‖2 + C

n∑
i=1

L(w;xi, ȳi) . (1)

In case of a Structural SVM [19, 20], we consider the structured hinge loss

L(w;x, ȳ) = max
y∈Y(x)

〈w, φ(x,y)− φ(x, ȳ)〉+ δ(y, ȳ), (2)

where δ(y, ȳi) is a task-dependent error function, for which the Hamming distance δH(y, ȳi) is
commonly used. Since the size of domain |Y(x)| typically grows exponentially with the num-
ber of output variables, the tractability of problem (1) lies in the decomposition of the responses
〈w,φ(x,y)〉 into several factors, each involving only a few outputs. The factor decomposition can
be represented as a bipartite graph G(F ,V, E) between factors F and variables V , where an edge
(f, j) ∈ E exists if the factor f involves the variable j. Typically, a set of factor templates T exists
so that factors of the same template F ∈ T share the same feature map φF (.) and parameter vector
wF . Then the response on input-output pair (x,y) is given by

〈w, φ(x,y)〉 =
∑
F∈T

∑
f∈F (x)

〈wF ,φF (xf ,yf )〉, (3)

where F (x) denotes the set of factors on x that share a template F , and yf denotes output variables
relevant to factor f of domain Yf = YF . We will use F(x) to denote the union of factors of
different templates {F (x)}F∈T . Figure 1 shows two examples that both have two factor templates
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(i.e. unigram and bigram) for which the responses have decomposition
∑
f∈u(x)〈wu, φu(xf , yf )〉+∑

f∈b(x)〈wb, φb(yf )〉. Unfortunately, even with such decomposition, the maximization in (2) is
still computationally expensive. First, most of graph structures do not allow exact maximization,
so in practice one would minimize an upper bound of the original loss (2) obtained from relaxation
[10, 18]. Second, even for the relaxed loss or a tree-structured graph that allows polynomial-time
maximization, its complexity is at least linear to the cardinality of factor domain |Yf | times the
number of factors |F|. This results in a prohibitive computational cost for problems with large output
domain. As in Figure 1, one example has a factor domain |Yb| which grows quadratically with the
size of output domain; the other has the number of factors |F| which grows quadratically with the
number of outputs. A key observation of this paper is, in contrast to the structural maximization
(2) that requires larger extent of exploration on locally suboptimal assignments in order to achieve
global optimality, the Factorwise Maximization Oracle (FMO)

y∗f := argmax
yf

〈wF ,φ(xf ,yf )〉 (4)

can be realized in a more efficient way by maintaining data structures on the factor parameters wF .
In the next section, we develop globally-convergent algorithms that rely only on FMO, and provide
realizations of message-augmented FMO with cost sublinear to the size of factor domain or to the
number of factors.

3 Dual-Decomposed Learning

We consider an upper bound of the loss (2) based on a Linear Program (LP) relaxation that is tight
in case of a tree-structured graph and leads to a tractable approximation for general factor graphs
[11, 18]:

LLP (w;x, ȳ) = max
(q,p)∈ML

∑
f∈F(x)

〈
θf (w), qf

〉
(5)

where θf (w) :=
(〈
wF ,φF (xf ,yf )− φF (xf , ȳf )

〉
+ δf (yf , ȳf )

)
yf∈Yf

. ML is a polytope that

constrains qf in a |Yf |-dimensional simplex ∆|Yf | and also enforces local consistency:

ML :=

{
q = (qf )f∈F(x)

p = (pj)j∈V(x)

∣∣∣∣ qf ∈ ∆|Yf |, ∀f ∈ F (x),∀F ∈ T
Mjfqf = pj , ∀(j, f) ∈ E(x)

}
,

where Mjf is a |Yj | by |Yf | matrix that has Mjf (yj ,yf ) = 1 if yj is consistent with yf (i.e.
yj = [yf ]j) and Mjf (yj ,yf ) = 0 otherwise. For a tree-structured graph G(F ,V, E), the LP
relaxation is tight and thus loss (5) is equivalent to (2). For a general factor graph, (5) is an upper
bound on the original loss (2). It is observed that parameters w learned from the upper bound (5)
tend to tightening the LP relaxation and thus in practice lead to tight LP in the testing phase [10].
Instead of solving LP (5) as a subroutine, a recent attempt formulates (1) as a problem that optimizes
(p, q) and w jointly via dual decomposition [11, 12]. We denote λjf as dual variables associated
with constraint Mjfqf = pj , and λf := (λjf)j∈N (f) where N (f) = {j | (j, f) ∈ E}. We have

LLP (w;x, ȳ) = max
q,p

min
λ

∑
f∈F(x)

〈θf (w), qf 〉+
∑

j∈N (f)

〈λjf ,Mjfqf − pj〉 (6)

= min
λ∈Λ

∑
f∈F(x)

max
qf∈∆|Yf |

(θf (w) +
∑

j∈N (f)

MT
jfλjf )Tqf (7)

= min
λ∈Λ

∑
f∈F(x)

 max
yf∈Yf

θf (yf ;w) +
∑

j∈N (f)

λjf ([yf ]j)

 = min
λ∈Λ

∑
f∈F(x)

Lf (w;xf , ȳf ,λf ) (8)

where (7) follows the strong duality, and the domain Λ =
{
λ
∣∣∣∑(j,f)∈E(x) λjf = 0,∀j ∈ V(x)

}
follows the maximization w.r.t. p in (6). The result (8) is a loss function Lf (.) that penalizes the
response of each factor separately given λf . The ERM problem (1) can then be expressed as

min
w,λ∈Λ

∑
F∈T

1

2
‖wF ‖2 + C

∑
f∈F

Lf (wF ;xf , ȳf ,λf )

 , (9)
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Algorithm 1 Greedy Direction Method of Multiplier

0. Initialize t = 0, α0 = 0, λ0 = 0 and A0 = Ainit.
for t = 0, 1, ... do

1. Compute (αt+1,At+1) via one pass of Algorithm 2, 3, or 4.
2. λt+1

jf = λtjf + η
(
Mjfα

t+1
f −αt+1

j

)
, j ∈ N (f), ∀f ∈ F .

end for

where F =
⋃N
i=1 F (xi) and F =

⋃
F∈T F . The formulation (9) has an insightful interpretation:

each factor template F learns a multiclass SVM given by parameterswF from factors f ∈ F , while
each factor is augmented with messages λf passed from all variables related to f .

Despite the insightful interpretation, formulation (9) does not yield computational advantage di-
rectly. In particular, the non-smooth loss Lf (.) entangles parameters w and messages λ, which
leads to a difficult optimization problem. Previous attempts to solve (9) either have slow conver-
gence [11] or rely on an approximation objective [12]. In the next section, we propose a Greedy
Direction Method of Multiplier (GDMM) algorithm for solving (9), which achieves ε sub-optimality
in O(1/ε) iterations while requires only one pass of FMOs for each iteration.

3.1 Greedy Direction Method of Multiplier

Let αf (yf ) be dual variables for the factor responses zf (yf ) = 〈w,φ(xf ,yf )〉 and {αj}j∈V be
that for constraints in Λ. The dual problem of (9) can be expressed as 1

min
αf∈∆|Yf |

G(α) :=
1

2

∑
F∈T
‖wF (α)‖2 −

∑
j∈V

δTj αj

s.t. Mjfαf = αj , j ∈ N (f), f ∈ F .

wF (α) =
∑
f∈F

ΦTf αf

(10)

where αf lie in the shifted simplex

∆|Yf | :=

{
αf
∣∣ αf (ȳf ) ≤ C , αf (yf ) ≤ 0, ∀yf 6= ȳf ,

∑
yf∈Yf

αf (yf ) = 0.

}
. (11)

Problem (10) can be interpreted as a summation of the dual objectives of |T | multiclass SVMs
(each per factor template), connected with consistency constraints. To minimize (10) one factor at a
time, we adopt a Greedy Direction Method of Multiplier (GDMM) algorithm that alternates between
minimizing the Augmented Lagrangian function

min
αf∈∆|Yf |

L(α,λt) := G(α) +
ρ

2

∑
j∈N (f) ,f∈F

∥∥mjf (α,λt)
∥∥2 − ‖λtjf‖2 (12)

and updating the Lagrangian Multipliers (of consistency constraints)

λt+1
jf = λtjf + η (Mjfαf −αj) . ∀j ∈ N (f), f ∈ F , (13)

where mjf (α,λt) = Mjfαf − αj + λtjf plays the role of messages between |T | multiclass
problems, and η is a constant step size. The procedure is outlined in Algorithm 1. The minimization
(12) is conducted in an approximate and greedy fashion, in the aim of involving as few dual variables
as possible. We discuss two greedy algorithms that suit two different cases in the following.
Factor of Large Domain For problems with large factor domains, we minimize (12) via a variant
of Frank-Wolfe algorithm with away steps (AFW) [8], outlined in Algorithm 2. The AFW algorithm
maintains the iterate αt as a linear combination of bases constructed during iterates

αt =
∑
v∈At

ctvv, At := {v | ctv 6= 0} (14)

1αj is also dual variables for responses on unigram factors. We define U := V and αf := αj , ∀f ∈ U .
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Algorithm 2 Away-step Frank-Wolfe (AFW)
repeat

1. Find a greedy direction v+ satisfying (15).
2. Find an away direction v− satisfying (16).
3. Compute αt+1 according to (17).
4. Maintain active set At by (14).
5. Maintain wF (α) according to (10).

until a non-drop step is performed.

Algorithm 3 Block-Greedy Coordinate Descent

for i ∈ [n] do
1. Find f∗ satisfying (18) for i-th sample.
2. As+1

i = Asi ∪ {f∗}.
for f ∈ Ai do

3.1 Update αf according to (19).
3.2 Maintain wF (α) according to (10).

end for
end for

where At maintains an active set of bases of non-zero coefficients. Each iteration of AFW finds
a direction v+ := (v+

f )f∈F leading to the most descent amount according to the current gradient,
subject to the simplex constraints:

v+
f := argmin

vf∈∆|Yf |
〈∇αf

L(αt,λt),vf 〉 = C(eȳf
− ey∗f ), ∀f ∈ F (15)

where y∗f := argmaxyf∈Yf\{ȳf} 〈∇αf
L(αt,λt), eyf

〉 is the non-ground-truth labeling of factor
f of highest response. In addition, AFW finds the away direction

v− := argmax
v∈At

〈∇αL(αt,λt),v〉, (16)

which corresponds to the basis that leads to the most descent amount when being removed. Then
the update is determined by

αt+1 :=

{
αt + γFdF , 〈∇αL,dF 〉 < 〈∇αL,dA〉
αt + γAdA, otherwise.

(17)

where we choose between two descent directions dF := v+−αt and dA := αt−v−. The step size
of each direction γF := argminγ∈[0,1] L(αt + γdF ) and γA := argminγ∈[0,cv− ] L(αt + γdA)
can be computed exactly due to the quadratic nature of (12). A step is called drop step if a step size
γ∗ = cv− is chosen, which leads to the removal of a basis v− from the active set, and therefore
the total number of drop steps can be bounded by half of the number of iterations t. Since a drop
step could lead to insufficient descent, Algorithm 2 stops only if a non-drop step is performed. Note
Algorithm 2 requires only a factorwise greedy search (15) instead of a structural maximization (2).
In section 3.2 we show how the factorwise search can be implemented much more efficiently than
structural ones. All the other steps (2-5) in Algorithm 2 can be computed in O(|Af |nnz(φf )),
where |Af | is the number of active states in factor f , which can be much smaller than |Yf | when
output domain is large.

In practice, a Block-Coordinate Frank-Wolfe (BCFW) method has much faster convergence than
Frank-Wolfe method (Algorithm 2) [13, 9], but proving linear convergence for BCFW is also much
more difficult [13], which prohibits its use in our analysis. In our implementation, however, we adopt
the BCFW version since it turns out to be much more efficient. We include a detailed description on
the BCFW version in Appendix-A (Algorithm 4).

Large Number of Factors Many structured prediction problems, such as alignment, segmenta-
tion, and multilabel prediction (Fig. 1, right), comprise binary variables and large number of factors
with small domains, for which Algorithm 2 does not yield any computational advantage. For this
type of problem, we minimize (12) via one pass of Block-Greedy Coordinate Descent (BGCD) (Al-
gorithm 3) instead. Let Qmax be an upper bound on the eigenvalue of Hessian matrix of each block
∇2
αf
L(α). For binary variables of pairwise factor, we have Qmax=4(maxf∈F ‖φf‖2 + 1). Each

iteration of BGCD finds a factor that leads to the most progress

f∗ := argmin
f∈F(xi)

(
min

αf+d∈∆|Yf |
〈∇αf

L(αt,λt),d〉+
Qmax

2
‖d‖2

)
. (18)

for each instance xi, adds them into the set of active factors Ai, and performs updates by solving
block subproblems

d∗f = argmin
αf+d∈∆|Yf |

〈∇αf
L(αt,λt),d〉+

Qmax

2
‖d‖2 (19)
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for each factor f ∈ Ai. Note |Ai| is bounded by the number of GDMM iterations and it converges
to a constant much smaller than |F(xi)| in practice. We address in the next section how a joint FMO
can be performed to compute (18) in time sublinear to |F(xi)| in the binary-variable case.

3.2 Greedy Search via Factorwise Maximization Oracle (FMO)

The main difference between the FMO and structural maximization oracle (2) is that the former
involves only simple operations such as inner products or table look-ups for which one can easily
come up with data structures or approximation schemes to lower the complexity. In this section,
we present two approaches to realize sublinear-time FMOs for two types of factors widely used in
practice. We will describe in terms of pairwise factors, but the approach can be naturally generalized
to factors involving more variables.

Indicator Factor Factors θf (xf ,yf ) of the form

〈wF ,φF (xf ,yf )〉 = v(xf ,yf ) (20)

are widely used in practice. It subsumes the bigram factor v(yi, yj) that is prevalent in sequence,
grid, and network labeling problems, and also factors that map an input-output pair (x, y) directly
to a score v(x, y). For this type of factor, one can maintain ordered multimaps for each factor
template F , which support ordered visits of {v(x, (yi, yj))}(yi,yj)∈Yf

, {v(x, (yi, yj))}yj∈Yj
and

{v(x, (yi, yj))}yi∈Yi
. Then to find yf that maximizes (26), we compare the maximizers in 4 cases:

(i) (yi, yj) : mif (yi) = mjf (yj) = 0, (ii) (yi, yj) : mif (yi) = 0, (iii) (yi, yj) : mjf (yj) = 0,
(iv) (yi, yj) : mjf (yj) 6= 0,mif (yi) 6= 0. The maximization requires O(|Ai||Aj |) in cases (ii)-(iv)
and O(max(|Ai||Yj |, |Yi||Aj |)) in case (i) (see details in Appendix C-1). However, in practice we
observe anO(1) cost for case (i) and the bottleneck is actually case (iv), which requiresO(|Ai||Aj |).

Note the ordered multimaps need maintenance whenever the vectorwF (α) is changed. Fortunately,
since the indicator factor has v(yf ,x) =

∑
f∈F,xf=x αf (yf ), each update (25) leads to at most

|Af | changed elements, which gives a maintenance cost bounded by O(|Af | log(|YF |)). On the
other hand, the space complexity is bounded byO(|YF ||XF |) since the map is shared among factors.

Binary-Variable Interaction Factor Many problems consider pairwise-interaction factor be-
tween binary variables, where the factor domain is small but the number of factors is large. For
this type of problem, there is typically an rare outcome yAf ∈ YF . We call factors exhibiting such
outcome as active factors and the score of a labeling is determined by the score of the active factors
(inactive factors give score 0). For example, in the problem of multilabel prediction with pairwise
interactions (Fig. 1, right), an active unigram factor has outcome yAj = 1 and an active bigram
factor has yAf = (1, 1), and each sample typically has only few outputs with value 1.

For this type of problem, we show that the gradient magnitude w.r.t. αf for a bigram factor f can be
determined by the gradient w.r.t. αf (yAf ) when one of its incoming message mjf or mif is 0 (see
details in Appendix C-2). Therefore, we can find the greedy factor (18) by maintaining an ordered
multimap for the scores of outcome yAf in each factor {v(yAf ,xf )}f∈F . The resulting complexity
for finding a factor that maximizes (18) is then reduced from O(|Yi||Yj |) to O(|Ai||Aj |), where the
latter is for comparison among factors that have both messages mif and mjf being non-zero.

Inner-Product Factor We consider another widely-used type of factor of the form

θf (xf ,yf ) = 〈wF ,φF (xf ,yf )〉 = 〈wF (yf ),φF (xf )〉

where all labels yf ∈ Yf share the same feature mapping φF (xf ) but with different parameters
wF (yf ). We propose a simple sampling approximation method with a performance guarantee for
the convergence of GDMM. Note although one can apply similar sampling schemes to the structural
maximization oracle (2), it is hard to guarantee the quality of approximation. The sampling method
divides Yf into ν mutually exclusive subsets Yf =

⋃ν
k=1 Y

(k)
f , and realizes an approximate FMO

by first sampling k uniformly from [ν] and returning

ŷf ∈ arg max
yf∈Y

(k)
f

〈wF (yf ),φF (xf )〉. (21)
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Note there is at least 1/ν probability that ŷf ∈ argmaxyf∈Yf
〈wF (yf ),φF (xf )〉 since at least

one partition Y(k)
f contains a label of the highest score. In section 3.3, we show that this approximate

FMO still ensures convergence with a rate scaled by 1/ν. In practice, since the set of active labels
is not changing frequently during training, once an active label yf is sampled, it will be kept in the
active set Af till the end of the algorithm and thus results in a convergence rate similar to that of
an exact FMO. Note for problems of binary variables with large number of inner-product factors,
the sampling technique applies similarly by simply partitioning factors as Fi =

⋃ν
k=1 F

(k)
i and

searching active factors only within one randomly chosen partition at a time.

3.3 Convergence Analysis

We show the iteration complexity of the GDMM algorithm with an 1/ν-approximated FMO given
in section 3.2. The convergence guarantee for exact FMOs can be obtained by setting ν = 1. The
analysis leverages recent analysis on the global linear convergence of Frank-Wolfe variants [8] for
function of the form (12) with a polyhedral domain, and also the analysis in [5] for Augmented
Lagrangian based method. This type of greedy Augmented Lagrangian Method was also analyzed
previously under different context [23, 24, 22].

Let d(λ) = minα L(α,λ) be the dual objective of (12), and let

∆t
d := d∗ − d(λt), ∆t

p := L(αt,λt)− d(λt) (22)

be the dual and primal suboptimality of problem (10) respectively. We have the following theorems.
Theorem 1 (Convergence of GDMM with AFW). The iterates {(αt,λt)}∞t=1 produced by Algo-
rithm 1 with step 1 performed by Algorithm 2 has

E[∆t
p + ∆t

d] ≤ ε for t ≥ ω log(
1

ε
) (23)

for any 0 < η ≤ ρ
4+16(1+ν)mQ/µM

with ω = max
{

2(1 + 4mQ(1+ν)
µM

), τη

}
, where µM is the

generalized geometric strong convexity constant of (12), Q is the Lipschitz-continuous constant for
the gradient of objective (12), and τ > 0 is a constant depending on optimal solution set.
Theorem 2 (Convergence of GDMM with BGCD). The iterates {(αt,λt)}∞t=1 produced by Algo-
rithm 1 with step 1 performed by Algorithm 3 has

E[∆t
p + ∆t

d] ≤ ε for t ≥ ω1 log(
1

ε
) (24)

for any 0 < η ≤ ρ
4(1+Qmaxν/µ1) with ω1 = max

{
2(1 + Qmaxν

µ1
), τη

}
, where µ1 is the generalized

strong convexity constant of objective (12) and Qmax = maxf∈F Qf is the factorwise Lipschitz-
continuous constant on the gradient.

4 Experiments

In this section, we compare with existing approaches on Sequence Labeling and Multi-label predic-
tion with pairwise interaction. The algorithms in comparison are: (i) BCFW: a Block-Coordinate
Frank-Wolfe method based on structural oracle [9], which outperforms other competitors such as
Cutting-Plane, FW, and online-EG methods in [9]. (ii) SSG: an implementation of the Stochastic
Subgradient method [16]. (iii) Soft-BCFW: Algorithm proposed in ([12]), which avoids structural
oracle by minimizing an approximate objective, where a parameter ρ controls the precision of the
approximation. We tuned the parameter and chose two of the best on the figure. For BCFW and
SSG, we adapted the MATLAB implementation provided by authors of [9] into C++, which is an
order of magnitude faster. All other implementations are also in C++. The results are compared in
terms of primal objective (achieved by w) and test accuracy.

Our experiments are conducted on 4 public datasets: POS, ChineseOCR, RCV1-regions, and EUR-
Lex (directory codes). For sequence labeling we experiment on POS and ChineseOCR. The POS
dataset is a subset of Penn treebank2 that contains 3,808 sentences, 196,223 words, and 45 POS

2https://catalog.ldc.upenn.edu/LDC99T42
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Figure 2: (left) Compare two FMO-based algorithm (GDMM, Soft-BCFW) in number of iterations.
(right) Improvement in training time given by sublinear-time FMO.
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Figure 3: Primal Objective v.s. Time and Test error v.s. Time plots. Note that subfigures of objective
have showed that SSG converges to a objective value much higher than all other methods, this is also
observed in [9].

labels. The HIT-MW3 ChineseOCR dataset is a hand-written Chinese character dataset from [17].
The dataset has 12,064 hand-written sentences, and a total of 174,074 characters. The vocabulary
(label) size is 3,039. For the Correlated Multilabel Prediction problems, we experiment on two
benchmark datasets RCV1-regions4 and EUR-Lex (directory codes)5. The RCV1-regions dataset has
228 labels, 23,149 training instances and 47,236 features. Note that a smaller version of RCV1 with
only 30 labels and 6000 instances is used in [11, 12]. EUR-Lex (directory codes) has 410 directory
codes as labels with a sample size of 19,348.
We first compare GDMM (without subFMO) with Soft-BCFW in Figure 2. Due to the approxi-
mation (controlled by ρ), Soft-BCFW can converge to a suboptimal primal objective value. While
the gap decreases as ρ increases, its convergence becomes also slower. GDMM, on the other hand,
enjoys a faster convergence. The sublinear-time implementation of FMO also reduces the train-
ing time by an order of magnitude on the ChineseOCR data set, as showed in Figure 2 (right).
More general experiments are showed in Figure 3. When the size of output domain is small (POS
dataset), GDMM-subFMO is competitive to other solvers. As the size of output domain grows (Chi-
neseOCR, RCV1, EUR-Lex), the complexity of structural maximization oracle grows linearly or
even quadratically, while the complexity of GDMM-subFMO only grows sublinearly in the experi-
ments. Therefore, GDMM-subFMO achieves orders-of-magnitude speedup over other methods. In
particular, when running on ChineseOCR and EUR-Lex, each iteration of SSG, GDMM, BCFW
and Soft-BCFW take over 103 seconds, while it only takes a few seconds in GDMM-subFMO.
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