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Abstract

We introduce an approach for establishing dense correspondences between par-
tial scans of human models and a complete template model. Our approach’s key
novelty lies in formulating dense correspondence computation as initializing and
synchronizing local transformations between the scan and the template model. We
introduce an optimization formulation for synchronizing transformations among a
graph of the input scan, which automatically enforces smoothness of correspon-
dences and recovers the underlying articulated deformations. We then show how
to convert the iterative optimization procedure among a graph of the input scan
into an end-to-end trainable network. The network design utilizes additional train-
able parameters to break the barrier of the original optimization formulation’s
exact and robust recovery conditions. Experimental results on benchmark datasets
demonstrate that our approach considerably outperforms baseline approaches.

1 Introduction

We introduce a novel approach for computing dense correspondences between partial scans of human
subjects and a complete template model. The correspondences computed with our approach are more
accurate than the state of the art, and are robust to input noise, pose of the scanned subject, and
variations in body shape and other non-rigid deformations of the scan relative to the template. Our
method is also efficient, capable of matching a 3 000-point partial scan to a 6 890-vertex template in
under 66 ms—suitable for real-time tracking applications running at 15 fps.

Algorithms for computing dense correspondences typically combine two key ideas. Local geometric
features are used to match points on the source to candidate points on the target. Only a sparse set of
prominent feature points can be reliably matched using these shape cues; to compute high-quality
dense correspondences insensitive to noise, pose, and global symmetries (such as human bilateral
symmetry), priors are enforced in the form of global regularization constraints (such as preservation
of pairwise distances or orientation [23, 46]).

While early works used hand-crafted shape descriptors to identify geometric features [23], recent
approaches [51, 15, 42, 31, 13, 17] have demonstrated that deep neural networks excel at this task.
However, the use of neural networks introduces a new challenge: there are many possible choices
for how to represent the set of dense correspondences [3, 2, 19, 29, 38, 33], and this choice of data
representation is critical, as it dictates which neural network architectures can be used and what types
of regularization constraints can be enforced.
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Our approach is motivated by the observation that the human body behaves, to good approximation,
as an articulated rigid body; poses can be explained by deformations that are almost rigid locally [44],
away from the joints. Similarly, mappings between different subjects are also nearly piecewise-
rigid, where variation in body shape can be explained by a small and almost-constant deviation
away from a rigid transformation at the local scale. Our key idea, then, is to use local rigid
transformations as the data representation for correspondences: we associate to each source point
a rigid transformation that characterizes the local source-to-target deformation near that point, and
formulate dense correspondence computation as synchronization of these local transformations over
the graph of nearest neighbors on the input scan.

We initialize these local rigid transformations by fitting dense correspondences derived from a learned
shape descriptor, and then perform transformation synchronization to jointly optimize the local rigid
transformations. Motivated by recent trends in formulating iterative optimization procedures as
recurrent neural networks [58, 40, 24, 22, 50], and recent advances in graph convolution [57, 52],
we formulate transformation synchronization as a recurrent neural network. Driven by a robust
optimization formulation of transformation synchronization, an essential advantage of our approach is
that it automatically enforces smoothness of correspondences, and these correspondences are locally
explainable in terms of articulated rigid motion of the source away from the target. The entire network
(including both transformation initialization and synchronization) admits end-to-end training.

We evaluate the proposed technique on multiple benchmark datasets. Our correspondences have mean
accuracy of 1.90cm, and 4.81cm on FAUST correspondence task [6], and SHREC19 [34], which
are 26.7% and 17.6% better than using the state-of-the-art SMPL model [33] for template matching.
When applying our approach to match complete shapes, i.e., by integrating correspondences between
simulated scans and the template (c.f. [51]), our approach also considerably outperforms existing
state-of-the-art [11, 51, 13, 10].

2 Related Work

Computing dense correspondences between geometric objects has an extensive history, and we
refer the reader to a few standard surveys [23, 46] on this topic. Since the focus of this paper is on
developing priors on correspondences and on the underlying shape deformation, in order to exploit
them for global regularization, we classify relevant works based on different regularization strategies.

MRF inference. A standard paradigm for dense correspondence computation is to solve an MRF
inference problem [3, 55, 8], where the unitary potentials model dense correspondence scores, and
high-order potentials score consistency between multiple correspondences. A limitation of these
approaches is their computational cost. To improve performance many methods take advantage of
relaxed formulations including spectral relaxations [27, 19] and convex relaxations [55, 8]. In contrast
to MRF inference, our approach’s key advantage is the use of local transformations as latent variables
to model consistency between nearby correspondences. Our approach is flexible in modeling various
constraints, such as the smoothness and articulated rigid structure of the correspondences.

The functional map framework. Functional maps [38] and their subsequent refinements [41, 35]
provide a flexible and efficient mapping framework between linear function spaces on two surfaces.
In this framework, mappings between surfaces are represented as linear transformations. Such a
linear algebraic structure enables many applications, such as solving non-rigid puzzles [32] and
joint analysis of object collections [48, 49, 21, 20]. Functional maps can be easily connected with
descriptor computation towers [31, 15, 42, 11], enabling end-to-end training in both supervised [31]
and unsupervised [15, 42] manner. Challenges of the functional map framework include difficulty in
recovering pointwise correspondences and with enforcing extrinsic constraints such as articulated
deformation of the source away from the target. Our approach overcomes both of these challenges.

Parameterization-based techniques. Another category of methods leverages intermediate parame-
terization domains [29, 25, 1, 26]. Key advantages of this approach include ensuring injectivity of the
mapping and generating very dense (i.e., continuous) correspondences. However, these approaches
usually assume that the source and target are manifold meshes, and provide no help in enforcing
priors on the extrinsic deformation (such as piecewise-rigid structure.)

Template-based matching. When matching a partial scan to a complete 3D model, a popular
approach is to perform template matching. Early works [28, 14, 60, 37, 53, 54, 59] explicitly model
shape deformations and leverage extrinsic distance metrics for matching. Thanks to advances in
generative modeling, recent methods [30, 13, 17] learn models of shapes and formulate template
matching as optimizing parameters in the learned latent space. In contrast to black-box modeling of
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Figure 1: Our network combines a transformation initialization module and a transformation regular-
ization module. The initialization module fits rigid local transformations to dense correspondences
derived from a descriptor module. The regularization module is derived from a robust transformation
synchronization formulation to rectify initial transformations. The entire network is end-to-end
trainable.
shape deformations, our recurrent module is based on a principled optimization-based formulation of
deformation regularization, and our method explicitly models smooth and articulated deformation.

Recurrent networks for dense correspondences. For optimization problems that admit iterative
solvers [58], a recent trend in machine learning is to convert them into recurrent networks. This
strategy has been adapted for object matching recently. One recent paper [40] presents a recurrent
procedure to compute weighted correspondences for estimating the fundamental matrix between
two images. Another [24] uses recurrent networks to progressively compute dense correspondences
between two images. The network design is motivated by the traditional variational procedure for
non-rigid image registration. Huang et al. [22] introduced a recurrent network for synchronizing
transformations among multiple point clouds. Finally, PRNet [50] presented a recurrent module for
predicting keypoint correspondences and rigid transformations between two partial point clouds. Our
approach differs from these works by analyzing exact and robust recovery conditions of a continuous
optimization strategy, and supports non-rigid deformation between the source scan and target.

3 Approach

This section presents our technical approach. We begin with a problem statement and an approach
overview in Section 3.1. Sections 3.2 through 3.5 elaborate on the technical details.

3.1 Problem Statement and Approach Overview

Problem statement. Our goal is to establish dense correspondences between a partial scan S =
{p1, · · · ,pn} of n points and a complete template modelM = (V, E). Here V = {q1, · · · , qN} are
the template’s N 3D vertices, and E ⊂ {1, · · · , N} × {1, · · · , N} collects pairs of adjacent vertices.
Note that the template model is shared by all partial scans. In this paper, we assume the number of
points n is shared across all partial scans.

Approach overview. The key idea of our approach is to formulate correspondence computation
as predicting dense local transformations between S and M, i.e., a rigid transformation {Ri ∈
SO(3), ti ∈ R3} associated with each point pi of S. The final correspondence of pi is then given
by the nearest neighbor of Ripi + ti on M . This representation exhibits appealing flexibility in
enforcing the smoothness of correspondences and the articulated structure of body deformation.

As illustrated in Figure 1, our approach combines a transformation initialization module and a
transformation regularization module. The initialization module (Section 3.2) first establishes dense
correspondences via learned global descriptors (i.e., the output of a descriptor tower). It then fits
initial transformations to the resulting correspondences. The initial transformations can have large
amounts of noise, both in the form of local error—non-smoothness and drift, particularly in flat,
featureless areas of the human body—and structure error due to ambiguities and symmetry at the
global scale (so that i.e. the left hand on the scan maps to the left hand of the template and vice-versa).
The transformation regularization module reduces these errors using a synchronization procedure
that promotes smoothness (neighboring local transformations are similar) and articulation (local
transformations form clusters). We first formulate regularization as a variational problem on the
adjacency graph of S (Section 3.3). We then analyze conditions on the input noise and the structure
of the adjacency graph which guarantee that the optimal solution is smooth and recovers articulated
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Figure 2: This figure illustrates how correspondences are improved through our pipeline. (a) Input
scan. (b-e) show errors (cm) of correspondences derived from learned descriptors, correspondences
derived from initial transformation, correspondences derived from the transformation synchronization
module, and correspondences derived from the generic transformation synchronization procedure.

deformations. We apply these conditions to the design of a recurrent neural network which solves the
variational problem (Section 3.4) and show how to train the entire network end-to-end (Section 3.5).

3.2 Initial Transformation Module

This module is composed of a descriptor sub-module for generating dense correspondences and a
regression sub-module for fitting initial transformations to these correspondences.

Descriptor sub-module. Since we assume a single template model M will be used for all scans, we
precompute a dense descriptor on the template model and train a neural network to predict on a scan
S the descriptor of the corresponding points on M . We leverage Laplacian embedding [5] as our
feature descriptor. Specifically, let LN×N be the discrete cotangent Laplacian matrix onM, and
(λi,ui) its eigenpairs, sorted in ascending order of eigenvalue magnitude. Let UN×K be the matrix
with columns ui/

√
λi (We use K = 50 in this paper); then we assign to vertex ql ofM the feature

descriptor f l = UTel ∈ RK . Our motivation for this descriptor is the Euclidean distance in the
descriptor space well-approximates diffusion distance on the original mesh [5], an intrinsic distance
metric. Therefore, points that are close to each other in the ambient space, but are intrinsically
far from each other, naturally separate in descriptor space; moreover, unlike descriptors based on
extrinsic geometry, points in smooth regions also remain well-separated in descriptor space. These
properties promote spatial consistency in the initial correspondences that we compute.

Given a training set S = {S} of partial scans, for each scan S, let CS ∈ {0, 1}n×N denote
(potentially sparse) ground-truth correspondences between vertices of S and M . We train the
descriptor sub-module fΘ : Rn×3 → Rn×K by minimizing the following regression loss:

Ldes(S) :=
∑
S∈S

∥∥[CSC
T
S

]
fΘ(S)− CSU

∥∥2

F , (1)

where CSC
T
S masks out the vertices with no ground-truth correspondences. In this paper, we employ

PointNet++ [39] for fΘ, which outperformed GeodesicCNN [36] and image- convolution [51].

Regression sub-module. For each point pi ∈ S with descriptor f i predicted by fΘ, we find its
nearest neighbor in descriptor space: ci = arg min1≤c≤N ‖f i − f c‖2. We then compute an initial
local transformation (Rin

i , t
in
i ) ∈ SE(3) for pi by solving

Rin
i , t

in
i = argmin

R,t

∑
j∈N (i)

exp

(
−
∥∥∥f j − f cj

∥∥∥2

/2σ2

)∥∥∥Rpj + t− qcj

∥∥∥2

(2)

where N (i) collects the k-nearest neighbors of pi on S (k = 20 in this paper); σ is a trainable
hyper-parameter. Equation (2) can be solved in closed form [18] (see supplemental material).

3.3 A Generic Transformation Synchronization Formulation

Correspondences derived from initial transformations exhibit both local error and structural errors
(See Figure 2(c)). Our ultimate goal is to develop a neural module to rectify these errors. In this
section, we will first present transformation regularization in the form of a traditional variational
problem, and then we describe how to adjust it to yield our transformation synchronization module.

Specifically, let vin
i =

[
α · vec(Rin

i ); tini
]
∈ R12 encode the initial local transformation associated

with pi; here α is a trainable parameter that weights rotations and translations. We formulate the
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following optimization problem to recover regularized transformation vectors:

{v?
1, · · · ,v?

n} = argmin
vi,1≤i≤n

n∑
i=1

wi‖vi − vin
i ‖+

∑
(i,j)∈ES

wij‖vi − vj‖ (3)

where ES consists of edges that connect neighboring points in S; {wi} and {wij} are weights
associated with points and edges in S. Note that our formulation (3) is related to network lasso [16].
However, our focus is on analyzing the impact of {wi}, {wij}, and ES on the optimized {v?

i }.
We adopt iteratively reweighted least squares (or IRLS) [9] for optimization. Specifically, we
introduce iteratively updated weights w(s)

i and w(s)
ij , where s is the iteration count, and modify (3) to

{v(s)
i , 1 ≤ i ≤ n} = argmin

vi,1≤i≤n

n∑
i=1

wiw
(s)
i ‖vi − vin

i ‖2 +
∑

(i,j)∈ES

wijw
(s)
ij ‖vi − vj‖2. (4)

We then compute the weights for the next iteration using the formulas

w
(s+1)
i = δ(‖vs

i − vin
i ‖ ≤ c0cs), w

(s+1)
ij = δ(‖vs

i − vs
j‖ ≤ c0cs) (5)

where c0 and c < 1 are hyper-parameters. Solving Equation (4) amounts to solving a sparse linear
system, which can be done efficiently with Gauss-Seidel iterations,

v
(s),(t+1)
i ←

wiw
(s)
i vin

i +
∑

j∈N (i)

wijw
(s)
ij v

(s),(t)
j

 /

wiw
(s)
i +

∑
j∈N (i)

wijw
(s)
ij

 , (6)

where t is the inner iteration count. Now we analyze this optimization procedure.

Noise model. Let vgt
i be the ground-truth transformations. We assume there are K connected

rigidity clusters Vk, with vgt
i = vgt

j whenever i, j ∈ Vk. We further assume that each cluster can be
partitioned into a good vertex set VG

k and an outlier set VB
k where for each vertex i in the good set,

vin
i satisfies ‖vin

i − vgt
i ‖ ≤ ε. The vin

i for the outlier set are arbitrary.
Theorem 1. Let DW = diag(wi) and LW be the diagonal matrix that encodes vertex weights and
the weighted Laplacian matrix that corresponds to the edge weights, respectively. With Dg

W and
Db

W we collect the rows of DW that correspond to good and outlier vertices, respectively. Similarly,
let Lg,ol

W and Lb,ol
W be the Laplacian matrices that correspond to boundary edges that involve good

vertices and outlier vertices, respectively. Suppose there exists a constant c1 > 1 so that

‖(DW + LW )−
1
2 ‖21 ·max

(
‖ 1

c1
Dg

W + 2Lg,ol
W ‖1, ‖D

b
W + 2Lb,ol

W ‖1
)
≤ c

2 + c
(7)

Then the above IRLS procedure recovers vectors v?
i that satisfy ‖v?

i − vgt
i ‖ ≤ c1ε, 1 ≤ i ≤ n. Note

that ‖A‖1 = max
1≤i≤m

n∑
j=1

|aij |,∀A ∈ Rm×n.

Proof: Please refer to the supplemental material. �.

One implication of Theorem 1 is that noisy removal is guaranteed whenever wrong initial transforma-
tions connect to many more correct transformations. This suggests that Equation (3) is most effective
when points with structural error have many neighbors in ES , i.e., λmin(DWk

+ LWk
) is big. As we

will discuss shortly, this implication motivates us to introduce down-sampling layers to assess big
neighborhoods with similar neighborhood size. Another observation is that Equation (3) becomes
more effective, i.e., to make ‖eVk ‖ and ‖eEk ‖ small, if wi and wij are set (using external signals) to be
smaller when vin

i is an outlier, and when pi and pj fall into different underlying clusters, respectively.
We next describe how to our network design, which applies the analysis described above.

3.4 Transformation Regularization Module

The regularization module consists of two sub-modules and two network layers derived from the
optimization formulation described in the previous section. We first describe each component, then
explain how they’re stitched together into the regularization module.
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Transformation propagation sub-module. Given a fixed point cloud S, the associated initial
transformations, and an adjacency edge set ES , the transformation propagation sub-module fixes the
vertex weights wiw

s
i and the edge weights wijw

s
ij and applies four Gauss-Seidel updates (Equation 6)

to the transformations vi. It is clear that these updates can be framed as graph convolutions [57, 52],
with a specific kernel derived from solving Equation (3).

Reweighting sub-module. This sub-module updates the weights associated with points and graph
edges {ws+1

i } and {ws+1
ij }. Since truncated weights are hard to learn, we rewrite the update scheme

of Equation (5) as

w
(s+1)
i = ε/

√
ε2 +

∥∥∥v(s)
i − vin

i

∥∥∥2

, w
(s+1)
ij = ε/

√
ε2 +

∥∥∥v(s)
i − v

(s)
j

∥∥∥2

where ε is a trainable parameter. To further increase the adaptivity of the method, we also train
the initial weights wi and wij to incorporate additional signals. Specifically, let pc

i be the image
of pi under its current transformation vi. Denote by ci its closest point on M . We set wi =
γ/
√
γ2 + ‖pc

i − qci‖2, where γ is trainable parameter shared by all points on all scans. Intuitively,
if the distance ‖pc

i − qci‖ is large, then the transformation vi is unreliable, and so we want to ignore
it and instead rely on transformations propagated from pi’s neighbors. To set wij , we evaluate a
two-layer fully-connected network that takes the descriptors f i and f j of pi and pj , and current
transformations vi and vj , as input. For the feature descriptor we’ve chosen based on Laplacian
embedding, points that belong to the same rigid part tend to be close in descriptor space [56]), so that
we can expect the network to be able to classify whether pi and pj belong to the same rigid limb
based on their feature vectors.

Graph down-sampling layer. This layer is inspired by the max-pooling layer in convolution neural
networks. In our setting, it allows us to synchronize transformations over a large spatial neighborhood
without directly increasing the number of nearest neighbors. Given an input scan Sden, the output
of the down-sampling layer is a point cloud Sspa that is randomly sampled from Sden, and contains
|Sspa| = |Sden|/2 points. Let Nden(i) be the set of 8 nearest neighbors of p̂i ∈ Sspa in Sden. We set
the initial transformation v̂in

i for p̂i by taking the geometric median of the dense neighbors:

v̂in
i = min

x

∑
j∈Nden(i)

‖x− vj‖. (8)

We compute this median using reweighted least squares with no trainable parameter.

Graph up-sampling layer. The up-sampling layer propagates the synchronization results on a sparse
scan Sspa to a dense scan Sden using simple averaging. Let Nspa(i) = {j | i ∈ Nden(j)}; we set

vin
i =

1

|Nspa(i)|
∑

j∈Nspa(i)

v̂i, (9)

where v̂i is the transformation for point p̂i ∈ Sspa.

Network design. Our regularization module first resolves coarse-scale structural errors on a down-
sampled scan, then fine-tunes the local transformations on the original, up-sampled scans. The
module consists of two down-sampling layers and two up-sampling layers, with three alternations of
transformation propagation and reweighting after each down-sampling or up-sampling layer. Note
that the network weights of the reweighting modules are shared.

3.5 Network Learning

We define the following transformation loss on the training dataset S, which measures the accuracy
with which each point’s local transformation explains the deformation of its neighborhood:

Ltrans(S) :=
∑
S∈S

∑
(i,ci)∈CS

∑
j∈N (i)

‖Rjpi + tj − vci‖2, (10)

where CS is the set of indices of the nonzero entries in CS . Combining (1) and (10), we arrive at the
following term for training the entire network:

min
Θ,Φ
Ldes(S) + λLtrans(S), (11)

where λ is optimized on a hold-out validation set.
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Figure 3: Qualitative comparisons between our approach and top performing baseline. The bottom
right is from FAUST while the rest are from SHREC19. For each group, from left to right: predicted
correspondences of Ours-Desc, errors (cm) of Ours-Desc, SMPL, ASAP and Ours-Refine.

4 Experimental Results

This section presents an experimental evaluation of our proposed approach. We begin by describing
the experimental setup in Section 4.1. We then analyze the experimental results in Section 4.2,
including baseline comparisons and an ablation study.

4.1 Experimental Setup

Datasets. We consider three datasets for training and experimental evaluation. The first dataset is
SURREAL [47], which contains synthetic human animation sequences generated from the SMPL
deformation model [33]. We adopt the publicly available1 200K pose and shape parameters generated
by the authors of [13]. The training/testing split is 190K:10K. The second dataset is FAUST [6],
which contains 50 inter-subject pairs (FAUST-Inter) and 50 intra-subject pairs (FAUST-Intra). The
third dataset is SHREC19 [34], where the 3D models exhibit certain domain gaps from those of the
first two datasets. Note that our network is only trained on SURREAL. FAUST and SHREC19 test its
generalizability. To train and evaluate the performance of matching partial scans to complete objects
(the partial-2-full problem), we follow the protocol of [51] to generate partial scans. Specifically, we
render 20 scans for each mesh from SURREAL dataset and 100 scans for FAUST and SHREC19
from random viewpoints. Note that our approach can be easily adapted to compute correspondences
between two complete shapes (the full-2-full problem) by synchronizing partial-2-full matching
(c.f. [51]). Due to the space constraint, we leave these evaluations to the supplemental material.

Baseline comparisons. We consider three categories of approaches for baseline comparison. The first
category replaces the spectral descriptors with three invariant signatures, namely, HKS [45], WKS [4]
and SHOT [43]. They evaluate the importance of using the Laplacian embedding descriptor in our
framework. Many partial-2-full matching are based on deforming the template. The second category
of baselines consists of two template deformation approaches, i.e., ASAP [19] and SMPL [33]. Since
these approaches require initial correspondences, we combine them with the dense correspondences
computed by our descriptor tower (shown as Ours-Desc). Such comparisons directly assess the
performance of our transformation regularization module. The third category is DHBC [51], which is
a state-of-the-art dense correspondence approach based on deep learning. Many prior approaches
operate in the full-2-full matching setting. In the supplemental material, we compare against four
state-of-the-art approaches, namely, DeepGeoFunc [11], DHBC [51], 3D-CODED [13], and LES [10].

Evaluation protocol. We employ the evaluation protocols of [51] for evaluating computed corre-
spondence results. We report the average correspondence error and the recall rate within 5cm and
10cm. The unit of correspondence error is centimeter (cm). The statistics are shown in Table 1.

4.2 Analysis of Results

Table 1 and Figure 3 present quantitative and qualitative results, respectively. Overall, our approach
yielded highly accurate results. On SURREAL, FAUST, and SHREC19, our approach achieved
1.71cm, 1.90cm, and 4.81cm mean errors, respectively. Moreover, the 10cm recall rates on these
datasets are 99.2%, 99.8%, and 97.0%, respectively. Note that the results on SHREC19 are much
worse than SURREAL and FAUST. This is due to the domain gap between SURREAL and SHREC19.

1https://github.com/ThibaultGROUEIX/3D-CODED/tree/master/data
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SURREAL FAUST SHREC19
Method AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall
SHOT 5.97 0.803 0.942 6.66 0.665 0.893 11.04 0.477 0.840
HKS 7.70 0.719 0.933 9.98 0.631 0.861 11.28 0.462 0.829
WKS 8.99 0.676 0.869 10.15 0.622 0.859 11.25 0.467 0.831

DHBC 14.29 0.440 0.651 10.91 0.503 0.772 17.24 0.401 0.646
Ours-Desc 2.19 0.939 0.991 2.59 0.917 0.994 5.84 0.749 0.965
Ours-Opt 2.13 0.942 0.991 2.44 0.919 0.995 5.77 0.752 0.966

SMPL 2.02 0.937 0.977 1.98 0.932 0.973 5.48 0.751 0.897
ASAP 1.93 0.949 0.981 1.95 0.946 0.983 6.15 0.774 0.923

Ours-Refine 1.71 0.960 0.992 1.90 0.953 0.998 4.81 0.810 0.970
Table 1: Evaluation of all correspondence computation methods for partial-2-full correspondence task.
We report average correspondence error, 5cm-recall and 10cm-recall of all correspondence computa-
tion methods on each dataset. Ours-Refine represents the result of our method after transformation
regularization.

Baseline comparisons on dense point-wise descriptors. Table 1 shows baseline comparisons where
we replace the Laplacian descriptor with three baseline shape descriptors, i.e., SHOT [43], HKS [45]
and WKS [4]. The mean error of the top-performing baseline increased by 173%, 204%, and 89% on
SURREAL, FAUST and SHREC19, respectively. Accordingly, the 10cm recall rates dropped from
99.1%, 99.4%, and 96.5% to 94.2%, 89.3%, and 84.0%, respectively. These performance drops are
due to the fact that although these baseline signatures are distinctive for extremal points, they do not
provide sufficient separations between points among smooth regions. As a result, there are large
errors in initial local transformations, which affect the final performance.

Baseline comparisons on regularization. Table 1 shows baseline comparisons with ASAP [19]
and SMPL [33]. We can see that our approach outperforms these two baseline approaches consider-
ably. The mean errors of SMPL/ASAP on SURREAL, FAUST, and SHREC19 are 2.02cm/1.93cm,
1.98cm/1.95cm, and 5.48cm/6.15cm, respectively. These statistics show that our regularization
module, which leverages a trainable recurrent module to suppress diverse types of errors in the initial
transformations, is superior to the generic regularization strategies in ASAP and SMPL.

Comparison with [51]. Our approach reduces the mean errors of [51] by 88.8%, 82.8%, and 72.1%
on SURREAL, FAUST and SHREC19, respectively, which are quite salient. The improvements
come from both the Laplacian-based descriptors and our regularization module.

Ablation study. We present an ablation study on our transformation synchronization module. As
shown in Table 1, merely using the initial transformations results in an increase in mean errors by
28.1%, 36.3%, and 21.4% on SURREAL, FAUST and SHREC19, respectively. In other words, the
transformation synchronization module, which enforces approximate piece-wise rigidity of the local
transformations, is critical for correspondence computation. Note that initial transformations are
obtained through local robust regression, which already has certain denoising power. Specifically,
the mean errors of nearest neighbors in the descriptor space are bigger than those of the initial
transformations by 2.82%, 2.70%, and 5.31% on these three datasets, respectively. We also analyzed
the performance of using the generic convex optimization strategy (shown as Ours-Opt in Table 1) in
Section 3.3. Although we can observe certain reductions in mean errors, e.g., 2.73%, 5.79%, and
1.20%, the reductions are not as salient as the learned regularization module.

Identification of rigid parts. To further understand our approach’s
performance, we can cluster the final optimized local transforma-
tions to see whether the resulting clusters align with semantic parts
of a human model. To this end, we apply mean-shift clustering on
the final local transformations. We then visualize the cluster struc-
tures on the input scan. We can see that the resulting clusters are
consistent with the main parts of a human subject, which indicates
that our approach automatically recovers the underlying articulated
deformations. Please refer to the supp. material for more results.

Full-2-full baseline comparisons. As detailed in the supplemental material, our approach compares
favorably against all four baselines for full-2-full shape matching. These statistics again show
the advantages of using local transformations as the data representation for regularizing dense
correspondences when compared to other data representations.
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5 Conclusions

In this paper, we integrated a new representation into an end-to-end trainable neural network and
proposed a transformation regularization module that instills articulated motion structure. Previous
works are either enforcing predicted correspondences to be smooth, or to preserve geodesic distances
which are hard to compute on partial scans. Our approach builds upon an extrinsic deformation struc-
ture, which gives us a huge advantage in network design and training. Note that any dense descriptor
module tends to work well on areas that possess rich features, while transformation regularization
module tends to propagate good transformations among smooth regions. The complementary nature
of these two modules are critical to our approach.

6 Statement of Broader Impacts

Computing dense correspondences between a partial scan and a template, or between two partial
scans, is a fundamental task for analyzing and understanding 3D data captured from the real world.
Our work is foundational, improving the accuracy and robustness of this important task, and will
benefit downstream applications that rely on the ability to find accurate dense correspondences.

One such application area is human subject tracking, where the correspondences between the partial
scan the the complete template model can be used to deform the template to obtain complete
deformed shape that corresponds to each partial scan. Our research will allow reconstruction of
higher-fidelity animation sequences that better captures nuanced motion from large-scale, real-world
data. Applications that will benefit from this improved tracking include imitation learning, where a
system can learn from motion of each observed subject, especially of fine motor skills not able to be
tracked before; movie/game industry, where one can insert the reconstructed motion of an actor into
virtual environment, with unprecedented expressiveness of the reconstructed actor; and sports, where
one can reconstruct and analyze the athletes’ motions to make recommendations both for improving
athletic performance as well as enhancing athlete safety.

Another application area is full body reconstruction from a few scans. In this setting, the template
mesh serves as an intermediate object to establish dense correspondences between partial scans. Our
research represents an important steps towards allowing ordinary users to scan themselves with high
accuracy at home using commodity hardware. Access to a high-quality digital avatar facilitates many
applications such as virtual fitting for on-line shopping, improved telepresence and telemedicine, and
new forms of entertainment and social media where users can place and animate themselves in a 3D
environment.

Potential abuses and negative impacts of improved tracking and reconstruction include the ability to
identify people without their consent, based on body shape or motion characteristics, in settings where
traditional facial recognition algorithms fail. 3D avatars of a person reconstructed from surreptitious
partial scans might also be used to create “deep fakes” or to otherwise infringe on the privacy rights
of the subject.

From a technical perspective, the problem falls into the category of structure prediction that combines
point-wise predictions and priors on correlations among multiple points. Unlike the standard MRF
formulation, this paper explores a new data representation, which turns structure prediction into a
continuous optimization problem. This methodology can inspire future research on relevant problems,
where the problem space lies in a continuous domain. Moreover, there is growing interest in turning
optimization problems into neural networks with hyper-parameters trained end-to-end. Our approach
contributes to this effort, and we hope the insights we used to design the resulting neural network for
training (including our analysis of robust recovery conditions for the transformation synchronization
problem) can be applied to and stimulate future research on similar problems.

Finally, like any algorithm for computing dense correspondences, our approach is not guaranteed to
generate correct correspondences in all the settings. Additional checks and verification (by humans
using interactive tools, for instance) should be used to validate and rectify the outputs, especially if
the results are used in safety- or health-critical applications such as personalized medicine.
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A Overview of Supplemental Material

We organize supplementary material as follows. In Section B, we present our results compared to
baselines on the full-to-full matching task between two complete shapes. In Section C, we show
a small set of qualitative results for animal shapes. In Section D, we explain the implementation
details of reweighting module, which is an important component of our transformation regularization
module. In Section E, we detail the back-propagation rule for the regression submodule that estimates
local transformations, as described in Equation (2). Finally, in Section F we prove Theorem 1 on the
exact recovery conditions for our transformation sychronization formulation.

B Full-to-full Matching Results

In this section, we compare our method with the four baselines, namely, DeepGeoFunc [11],
DHBC [51], 3D-CODED [13], and three variants of LES [10]: point translation and patch de-
formation 3D (LES-PTD3), point translation 10D (LES-PT10), patch deformation 10D (LES-PD10).
All correspondences are refined by designated algorithms: 3D-CODED and LES use deformation
during prediction, DeepGeoFunc uses ZoomOut [35], and DHBC and our method uses non-rigid
ICP for correspondence refinement. All statistics are reported in Table 2 and qualitative results are
provided in Figure 4.

Overall, our method achieved competitive results when compared against these state-of-the-art
baselines. Specifically, we achieved 1.74cm/1.72cm/1.42cm/3.50cm average correspondence error on
the SURREAL/FAUST-inter/FAUST-intra/SHREC19 datasets, where the top-performing baseline
achieved 2.54cm/1.64cmm/1.45cm/5.02cm. We achieved the most improvement on SHREC19, which
is recognized as the most difficult dataset due to large domain gap. This result demonstrates the
power of our regularization module.

It should be noted that all the baseline approaches involve isometry-invariance constraints (e.g.,
spectral techniques and those preserve geodesic distances) possess strong regularizations in the
full-2-full setting. Still, our approach, which leverages the implicit articulated deformation structure,
outperform them by a considerable margin. This shows the advantages of modeling approximated
piece-wise rigidity constraints for establishing dense correspondences between 3D models of humans.

SURREAL FAUST-inter FAUST-intra SHREC19
Method AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall AE(cm) 5cm-recall 10cm-recall
DHBC / / / 2.35 0.900 0.972 2.00 0.911 0.975 / / /

3D-CODED 2.89 0.958 0.971 2.08 0.956 0.983 1.97 0.964 0.986 6.69 0.740 0.898
LES-PTD3 2.74 0.962 0.971 1.64 0.969 0.992 1.49 0.976 0.992 6.75 0.742 0.894
LES-PT10 2.54 0.962 0.971 1.69 0.971 0.991 1.45 0.976 0.992 6.95 0.733 0.895
LES-PD10 2.75 0.962 0.972 2.05 0.949 0.978 2.32 0.949 0.971 5.02 0.766 0.948

DeepGeoFunc 3.45 0.905 0.971 2.92 0.828 0.972 2.11 0.886 0.975 17.02 0.440 0.727
Ours-Refine-ICP 1.74 0.980 0.990 1.72 0.962 0.990 1.42 0.969 0.992 3.50 0.824 0.968

Table 2: Evaluation of all correspondence computation methods for the full-to-full correspondence
task. We report the average correspondence error, 5cm-recall, and 10cm-recall for all correspondence
computation methods on each dataset. The unit of error is cm. All reported correspondences results
are evaluated after designated refinement methods have been applied. All the results are reported
the same set of datasets reported in this paper by running the code from the authors of the baseline
approaches.

C Qualitative Results on Animal Shapes

As an additional experiment, we train our model on a synthetic dataset utilizing SMAL [61]. We
generate 20K triangular meshes using latent parameters generated from a gaussian distribution. For
each mesh, we rendered 100 depth scans from random viewpoints. The model was trained in a similar
fashion as the human shape and evaluated on the horse class of TOSCA dataset [7] (see Figure 5).
The results indicates the usefulness of our transformation synchronization module. For more results,
please refer to our code base.

D Implementation of Reweighting Module

In this section, we demonstrate the implementation details of reweighting module.
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Figure 4: Qualitative comparisons between our approach and top performing baseline on FAUST-inter,
FAUST-intra and SHREC19. For each dataset, we report from left to right: target mesh, error maps
of two top-performing baselines and our method after refinement. For each method, the error (cm) is
visualized on the source mesh.

Figure 5: Qualitative Results evaluated on the horse class of TOSCA dataset [7]. From left to right:
1) Ground Truth Correspondence on source shape. 2) Initial Correspondence before transformation
regularization. 3) Correspondence after transformation regularization.

The input to this module is a point cloud with vertex-wise correspondences and transformations. The
goal is to update vertex weights and edge weights to prepare for transformation propagation by (6).

The design of reweighting module is illustrated in figure 6. Specifically, we propagate messages
m

(k)
i among vertices and aggregate them by element-wise maximum MAX(·) as in the message

passing framework [12]. This is repeated by kmax iterations, where in the last layer m(kmax)
i is a

scalar indicating the vertex-wise weights.
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Figure 6: Illustration of Reweighting Module. Note that yi ∈ R3 are point locations on template
mesh.

E Back-Propagation Rule for (2)

We consider a general objective function for pose regression:

Rin
i , t

in
i = argmin

R,t

∑
j∈N (i)

wj‖Rpj + t− qcj‖
2 (12)

where wj > 0. Our goal is derive the partial derivatives of Rin
i and tini with respect to wj .

The following proposition, which is due to [18], characterizes a closed-form expression for Rin
i and

tini .
Proposition 1. Let

cp =
∑

j∈N (i)

wjpj/
∑

j∈N (i)

wj , cq =
∑

j∈N (i)

wjqcj/
∑

j∈N (i)

wj .

Denote
S =

∑
j∈N (i)

wj(pj − cp)(qcj − cq)T .

Let S = UΣV T be the singular-value decomposition of S. Then

Rin
i = V

(
1 0 0
0 1 0
0 0 sign(det(S))

)
UT , tini = cq −Rcp. (13)

The following proposition characterizes the derivatives of Rin
i with respect to elements of S, which

then determines the derivatives with respect to wj .
Lemma 1. The derivatives of R with respect to S is given by

dR =
∑

1≤i 6=j≤3

vi · uT
j ·

uT
j · dS · vi − uT

i · dS · vj

σi + σj

+ (sign(det(S))− 1)

2∑
j=1

(
uT
j dSv3 ·

σ3v3u
T
j + σjvju

T
3

σ2
3 − σ2

j

+ uT
3 dSvj ·

σ3vju
T
3 + σjv3u

T
j

σ2
3 − σ2

j

)
(14)

where U = (u1,u2,u3), V = (v1,v2,v3), and Σ = diag(σ1, σ2, σ3).

Proof. It is clear that
Svi = σiui,u

T
i S = σiv

T
i , 1 ≤ i ≤ 3.

Taking the differential on both sides, we obtain

dS · vi + S · dvi = dσi · ui + σi · dui (15)

duT
i S + uT

i dS = dσiv
T
i + σidv

T
i (16)
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Left multiplying both sides of (15) by uj with j 6= i and observing that uT
j ui = 0, we obtain

uT
j dSvi + uT

j Sdvi = σiu
T
j dui. (17)

Similarly right multiplying both sides of (16) by vT
j with j 6= i gives

duT
i Svj + uT

i dSvj = σidv
T
i vj . (18)

It follows that

uT
j dSvi + σjv

T
j dvi = σiu

T
j dui (19)

σj · duT
i uj + uT

i dSvj = σidv
T
i vj (20)

Observe that ujTdui + duT
i uj = 0 and vT

j dvi + dvT
i vj = 0. Combining (19) and (20) to solve

for uT
j dui and vT

j dvi, we obtain

uT
j dui =

σiu
T
j dSvi + σju

T
i dSvj

σ2
i − σ2

j

(21)

vT
k dvi =

σiu
T
i dSvj + σju

T
j dSvi

σ2
i − σ2

j

(22)

Since uidui = 0, we have

dui =
∑
j 6=i

σiu
T
j dSvi + σju

T
i dSvj

σ2
i − σ2

j

uj

dvi =
∑
j 6=i

σiu
T
i dSvj + σju

T
j dSvi

σ2
i − σ2

j

vj

In the case det(S) > 0, we have

dR =
∑(

vidu
T
i + dviu

T
i

)
∑

1≤i 6=j≤3

vi · uT
j ·

uT
j · dS · vi − uT

i · dS · vj

σi + σj
.

The proof for the case det(S) < 0 is similar and it omitted for brevity.

For the network training, at each iteration and for each instance, we fix the nearest neighbors and apply
the expression described above to back-propagation the gradients from the initial transformations to
the descriptor tower.

F Proof of Robust Recovery Condition

This section presents the proof of Theorem. We begin with a few useful lemmas in Section F.1. We
then complete the proof in Section F.2.

F.1 Useful Lemmas

The first lemma concerns the relation between different norms of a symmetric matrix A.
Lemma 2. Given a symmetric matrix A, we have

‖A‖ ≤ ‖A‖1. (23)

Proof. Consider any eigenvalue λ of A. Denote x = (x1, · · · , xn)T ∈ Rn as its corresponding
eigenvector. Let

i? = argmax
1≤i≤n

|xi|.
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Then
n∑

j=1

aijxj = λxi? .

It follows that

|λ||xi? | ≤ |
n∑

j=1

aijxj | ≤
n∑

j=1

|aij ||xj | ≤
n∑

j=1

|aij ||xi? | ≤ ‖A‖1 · |xi? |

It follows that
|λ| ≤ ‖A‖1,

which ends the proof.

The second lemma concerns the L1 norm of (A−B)−1.

Lemma 3. Suppose ‖A− 1
2 ‖21‖B‖1 < 1. Then

‖(A−B)−1‖1 ≤
‖A− 1

2 ‖21
1− ‖A− 1

2 ‖21‖B‖1
. (24)

Proof. First of all, since ‖A− 1
2 ‖21‖B‖1 < 1. It follows that

‖A− 1
2BA−

1
2 ‖ < 1.

In other words, we have

(A−B)−1 = A−
1
2

(
I −A− 1

2BA−
1
2

)
A−

1
2

= A−
1
2 ·
∞∑
i=0

(
A−

1
2BA−

1
2

)i ·A− 1
2 .

Therefore

‖(A−B)−1‖1 ≤ ‖A−
1
2 ‖21 ·

∞∑
i=0

‖
(
A−

1
2BA−

1
2

)i‖1
≤ ‖A− 1

2 ‖21 ·
∞∑
i=0

(
‖A− 1

2 ‖21‖B‖1
)i

≤ ‖A− 1
2 ‖21

1− ‖A− 1
2 ‖21‖B‖1

.

F.2 Completing the Proof

Note that our reweighted least square formulation solves the following linear system at each iteration:

min
vi,1≤i≤n

n∑
i=1

w
(t)
i ‖vi − vin

i ‖2 + λ
∑

(i,j)∈E

w
(t)
ij ‖vi − vj‖2 (25)

where w(t)
i , 1 ≤ i ≤ n and w(t)

ij , (i, j) ∈ E are weights associated with vertices and edges at iteration
t. Define

W
(t)
V := Diag(w

(t)
i |1≤i≤n) ∈ Rn×n, W

(t)
E := Diag(w

(t)
ij |(i,j)∈E) ∈ R|E|×|E|.

Proposition 2. Suppose vi = vgt
i + δi, 1 ≤ i ≤ n and δij = vgt

i −vgt
j , (i, j) ∈ E . Then the solution

x(t) to (25) satisfies
v(t) − vgt := L(t)−1

r(t).

18



where

L(t) := W
(t)
V + λJTW

(t)
E J (26)

r(t) := W
(t)
V mat(δi) + λJTW

(t)
E mat(δij). (27)

where J ∈ R|E|×n is the vertex and edge indicator matrix; mat(δi) ∈ Rn×12 collects the vertex
indicators;mat(δij) ∈ R|E|×12 collects the edge indicators.

Proof. Let V = (v1, · · · ,vn)T ∈ Rn×12. It is clear that (25) is identical to

min
V

Trace
(
V TL(t)V

)
− 2Trace

(
V Tr(t)

)
which ends the proof.

Let V(t) ⊂ [n] and E(t) ⊂ E be the remaining edges at iteration t. By the default setting, we assume
V(t) and E(t) satisfy the recursion properties:

Vg ⊂ V(t) ⊂ [n]

Eg ⊂ E(t) ⊂ E

Moreover,

‖δi‖ ≤ c0ct, ∀1 ≤ i ≤ n
‖δij‖ ≤ c0ct, ∀(i, j) ∈ E

It follows that

‖r(t)‖∞ ≤ max
(
ε0‖Dg

W ‖1 + c0c
t‖Lg,ol

W ‖1, c0c
t(‖Db

W ‖1 + ‖Lb,ol
W ‖1)

)
(28)

Note that the solution at the next iteration satisfies

‖V (t+1) − V gt‖∞ ≤ ‖L(t)−1
‖1‖r(t)‖∞. (29)

Applying Lemma 3, we have

‖L(t)−1
‖1 ≤

‖L− 1
2 ‖21

1− ‖L− 1
2 ‖21‖Lol‖1

≤ ‖L− 1
2 ‖21

1− ‖L− 1
2 ‖21 max

(
‖Lg,ol

W ‖1, ‖Db
W ‖1 + ‖Lb,ol

W ‖1
) . (30)

where L = DW +LW , and Lol collects all the elements of L that are attached to outlier observations.

Combing (28)-(30), we have

‖V (t+1)−V gt‖∞ ≤
‖L− 1

2 ‖21 ·max
(
ε0‖Dg

W ‖1 + c0c
t‖Lg,ol

W ‖1, c0ct(‖Db
W ‖1 + ‖Lb,ol

W ‖1)
)

1− ‖L− 1
2 ‖21 max

(
‖Lg,ol

W ‖1, ‖Db
W ‖1 + ‖Lb,ol

W ‖1
) (31)

Therefore, under the assumptions of the theorem, i.e.,

‖(DW + LW )−
1
2 ‖21 ·max

(
‖ 1

c1
Dg

W + 2Lg,ol
W ‖1, ‖D

b
W + 2Lb,ol

W ‖1
)
≤ c

2 + c

we have
‖r(t)‖∞ ≤

1

2
max(c1ε0, c0c

t+1)

This means the iterative procedure only prunes the outliers, and now we end the proof.
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