Dual-Decomposed Learning with Factorwise Oracles for Structured Prediction of Large Output Domain

Xiangru Huang *

Joint work ¹ with Ian E.H. Yen[†], Kai Zhong^{*}, Ruohan Zhang^{*}, Chia Dai[†], Pradeep Ravikumar[†] and Inderjit Dhillon^{*}.

> * University of Texas at Austin † Carnegie Mellon University

Key Idea

Methodology Sketch

Experimental Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem Setting

• Classification: learn function $g : \mathcal{X} \to \mathcal{Y}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Problem Setting

- Classification: learn function $g : \mathcal{X} \to \mathcal{Y}$
- ► Structural: Assuming structured dependencies on output $g : \mathcal{X} \to \mathcal{Y}_1 \times \mathcal{Y}_2 \times \cdots \times \mathcal{Y}_m$

Example: Sequence Labeling

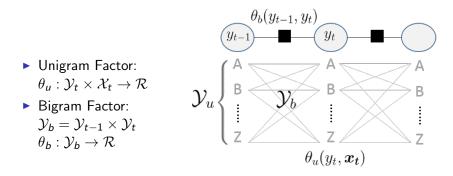


Figure: Sequence Labeling

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

Example: Multi-Label Classification with Pairwise Interaction

- Unigram Factor : $\theta_u : \mathcal{Y}_k \times \mathcal{X} \to \mathcal{R}$
- ► Bigram Factor : $\mathcal{Y}_b = \mathcal{Y}_k \times \mathcal{Y}_{k'}$ $\theta_b : \mathcal{Y}_b \to \mathcal{R}$

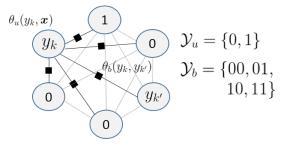


Figure: Multi-Label with Pairwise Interaction

• $g: \mathcal{X} \to \mathcal{Y}_1 \times \mathcal{Y}_2 \times \cdots \times \mathcal{Y}_m$

- $g: \mathcal{X} \to \mathcal{Y}_1 \times \mathcal{Y}_2 \times \cdots \times \mathcal{Y}_m$
- Learning requires inference per iteration.
- ► Exact inference is slow: each iteration takes O(|𝔅_i|ⁿ) for n-gram factor, where |𝔅_i| ≥ 3000.

- $g: \mathcal{X} \to \mathcal{Y}_1 \times \mathcal{Y}_2 \times \cdots \times \mathcal{Y}_m$
- Learning requires inference per iteration.
- ► Exact inference is slow: each iteration takes O(|𝔅_i|ⁿ) for n-gram factor, where |𝔅_i| ≥ 3000.

Approximation downgrades performance.

Key Idea: Dual Decomposed Learning

Structural Oracle (joint inference) is too expensive.

(ロ)、(型)、(E)、(E)、 E) の(の)

Key Idea: Dual Decomposed Learning

- Structural Oracle (joint inference) is too expensive.
- Reduce Structural SVM to Multiclass SVMs via soft enforcement of consistency between factors.

Key Idea: Dual Decomposed Learning

- Structural Oracle (joint inference) is too expensive.
- Reduce Structural SVM to Multiclass SVMs via soft enforcement of consistency between factors.
- (Cheap) Active Sets + Factorwise Oracles + Message Passing (between factors).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Key Idea: Factorwise Oracles

▶ Inner-Product (unigram) Factor: $\theta_w(x, y) = \langle w_y, x \rangle$.

- Reduces to a primal and dual sparse Extreme Multiclass SVM .
- ► Reduce $O(\underbrace{D} |\mathcal{Y}_i|)$ to $O(\underbrace{|\mathcal{F}_u|} |\mathcal{A}_i|)$ (details see [2])².

#uni. fac.

• Indicator (bigram) Factor: $\theta(y_1, y_2) = v_{y_1, y_2}$.

• Maintain Priority Queue on v_{y_1,y_2} .

feat. dim.

• Reduce $O(|\mathcal{Y}_1||\mathcal{Y}_2|)$ to $O(|\mathcal{A}_1||\mathcal{A}_2|)$.

active set sizes

²[2] PD-Sparse: A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification. ICML 2016.

Original problem:

$$\min_{w} \frac{1}{2} \|w\|^2 + \underbrace{C\sum_{i=1}^{n} L(w; x_i, y_i)}_{\text{struct hinge loss}}$$

³Simon Julien et al. Block-Coordinate Frank-Wolfe Optimization for Structural SVMs. ICML 2013.

Original problem:

$$\min_{w} \frac{1}{2} \|w\|^2 + \underbrace{C\sum_{i=1}^{n} L(w; x_i, y_i)}_{\text{struct hinge loss}}$$

Dual-Decomposed into independent problems:

$$\min_{\alpha_f \in \Delta^{|\mathcal{Y}_f|}} G(\alpha) := \underbrace{\frac{1}{2} \sum_{F} \|\sum_{f \in F} \phi(x_f, y_f)^T \alpha_f\|^2 - \sum_{j \in \mathcal{V}} \delta_j^T \alpha_j}_{\text{Independent Multiclass SVMs}}$$

with consistency constraints

$$M_{if}\alpha_f = \alpha_i, \quad \forall (i, f) \in \mathcal{E}.$$

Standard approach ³ finds feasible descent direction, which however needs joint inference.

Dual-Decomposed into independent problems:

$$\min_{\alpha_f \in \Delta^{|\mathcal{Y}_f|}} G(\alpha) := \frac{1}{2} \sum_F \|\sum_{f \in F} \phi(x_f, y_f)^T \alpha_f\|^2 - \sum_{j \in \mathcal{V}} \delta_j^T \alpha_j$$

with consistency constraints

$$M_{jf}\alpha_f = \alpha_j, \quad \forall (j, f) \in \mathcal{E}$$

Augmented Lagrangian Method:

$$\mathcal{L}(\alpha, \lambda) := \underbrace{\sum_{F} G_{F}(\alpha_{F})}_{\text{indep, multiclass SVMs}} + \underbrace{\frac{\rho}{2} \sum_{(j,f) \in \mathcal{E}} \|M_{jf}\alpha_{f} - \alpha_{j} + \lambda_{jf}^{t}\|^{2}}_{\text{multiclass SVMs}}$$

1

messages between factors (sparse)

with incremental updated multipliers

$$\lambda_{jf}^{t+1} = \lambda_{jf}^{t} + \eta (M_{jf} \alpha_f^{t+1} - \alpha_j^{t+1})$$

Augmented Lagrangian Method:

$$\mathcal{L}(\alpha, \lambda) := \underbrace{\sum_{F} G_{F}(\alpha_{F})}_{\text{indep. multiclass SVMs}} + \underbrace{\frac{\rho}{2} \sum_{(j,f) \in \mathcal{E}} \|M_{jf}\alpha_{f} - \alpha_{j} + \lambda_{jf}^{t}\|^{2}}_{\text{messages between factors (sparse)}}$$

with incremental updated multipliers

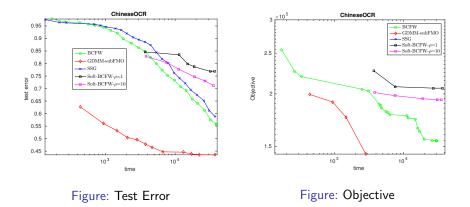
$$\lambda_{jf}^{t+1} = \lambda_{jf}^{t} + \eta (M_{jf} \alpha_f^{t+1} - \alpha_j^{t+1})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Update α and λ alternatively.

Experiments: Sequence Labeling (on ChineseOCR)

- Chinese OCR: N = 12,064, T = 14.4, D = 400, K = 3,039.
- ▶ $|\mathcal{Y}_b| = 3,039^2 = 9,235,521$ (bigram language model).
- Decoding: Viterbi Algorithm.



Experiments: Multi-Label Classification (on RCV1)

- ▶ RCV-1: N = 23,149, D = 47,236, K = 228.
- ▶ $|F_b| = 228^2 = 51,984$ (pairwise interaction).
- Decoding: Linear Program

