
FAST SPOKEN QUERY DETECTION USING LOWER-BOUND DYNAMIC TIME WARPING
ON GRAPHICAL PROCESSING UNITS

Yaodong Zhang, Kiarash Adl, James Glass

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, Massachusetts 02139, USA
{ydzhang, kiarash, glass}@csail.mit.edu

ABSTRACT

In this paper we present a fast unsupervised spoken term

detection system based on lower-bound Dynamic Time Warp-

ing (DTW) search on Graphical Processing Units (GPUs).

The lower-bound estimate and the K nearest neighbor DTW

search are carefully designed to fit the GPU parallel comput-

ing architecture. In a spoken term detection task on the TIMIT

corpus, a 55x speed-up is achieved compared to our previous

implementation on a CPU without affecting detection perfor-

mance. On large, artificially created corpora, measurements

show that the total computation time of the entire spoken term

detection system grows linearly with corpus size. On average,

searching a keyword on a single desktop computer with mod-

ern GPUs requires 2.4 seconds/corpus hour.

Index Terms— spoken term detection, GPU, dynamic

time warping, CUDA

1. INTRODUCTION

Graphical Processing Units (GPU) have been increasingly

used for general purpose computing in the speech research

community. As a parallel computing architecture, GPUs are

especially designed for dealing with intensive, highly parallel

computations that are often encountered in speech tasks. For

example, in [1] a large vocabulary speech recognition engine

was implemented on GPUs with a significant speed-up ob-

served. [2, 3, 4] have demonstrated how GPUs can be used to

rapidly calculate acoustic likelihoods for large mixture mod-

els. Sart et al. provided a Dynamic Time Warping (DTW)

search algorithm for GPUs in [5], claiming that they could

speed up the run time by up to two orders of magnitude.

Inspired by their success, in this paper we propose a fast

unsupervised spoken query detection system based on lower-

bound K nearest neighbor (KNN) DTW search on GPUs.

The lower-bound estimate as well as the KNN-DTW search

are carefully designed to utilize GPU’s parallel computing ar-

chitecture. On the TIMIT corpus, a 55x speed-up of a spoken

term detection task is achieved when compared to our previ-

ous CPU implementation [6], without affecting the detection

performance. On a large, artificially created corpus, experi-

ments indicate that the total computation time of the spoken

query detection system is linear with corpus size. On aver-

age, searching a keyword on a single desktop computer with

modern GPUs requires 2.4 seconds/corpus hour.

2. BACKGROUND

2.1. GPU and CUDA

GPUs represent a category of specially designed graphical

processors. The main purpose of GPUs is to facilitate fast

construction and manipulation of images intended for output

to a display. Since images can be decomposed into blocks of

pixels and each block can be processed independently, GPUs

are designed to contain a highly parallel computing architec-

ture which is more effective than CPUs that are designed for

general purpose computing. An additional advantage of mod-

ern GPUs connected via a PCI Express interface is that they

can access main memory faster than the CPUs themselves [4].

In order to facilitate the fast-growing application of GPUs

to non-image processing tasks, NVidia has released the Com-

pute Unified Device Architecture (CUDA) as a library provid-

ing APIs for using GPUs to perform general purpose comput-

ing [7]. When programming on GPUs with CUDA, CUDA

defines a kernel as an abstraction of instances that can be run

in parallel. Within each kernel instance, multiple threads can

be issued to finish the task assigned to that instance. There-

fore, CUDA can be viewed as a two-layer parallel computing

architecture. In each CUDA run, one GPU core is assigned to

run several kernel instances, and within each kernel instance,

multiple threads are running simultaneously [8]. In order to

achieve maximum benefit, it is naturally important to take this

architecture into consideration when adapting speech process-

ing algorithms to the GPU/CUDA framework.

2.2. Spoken Term Detection using KNN-DTW

We briefly review the unsupervised spoken query detec-

tion framework in [6, 9]. Given a spoken query Q with N
frames, let �x1, . . . , �xN represent MFCCs for each speech

5173978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

frame. A D-mixture GMM G is trained on all N frames

without using any labels. Subsequently, for each speech

frame, �xi, a posterior probability, pji = P (gj |�xi), can be

calculated where gj denotes j-th Gaussian component in

GMM G. Collecting D posterior probabilities, each speech

frame �xi is then represented by a posterior probability vec-

tor �pi = {p1i , . . . , pDi } called a Gaussian posteriorgram.

After representing the spoken query and speech documents

using Gaussian posteriorgrams, an efficient KNN-DTW is

used to find the top K nearest neighbor document matches.

Specifically, if Q = {�q1, . . . , �qM} denotes the query pos-

teriorgram and S = {�s1, . . . , �sN} denotes a speech seg-

ment, an upper-bound envelope sequence U is calculated

on Q, where U = {�u1, · · · , �uM}, �ui = {u1
i , · · · , uD

i } and

up
i = max(qpi−r, · · · , qpi+r). U can be viewed as a sliding-

maximum on Q with window size r. Then, a lower-bound

estimate of the DTW distance DTW(Q,S) is computed by

L(Q,S) =

l∑

i=1

d(�ui, �si) (1)

where l = min(M,N) and d(·) represents an inner prod-

uct distance. If there are C speech segments, C lower-

bound estimates are calculated and ranked. The KNN search

starts from the segment with the smallest lower-bound esti-

mate and performs DTW alignment. In [6] we proved that

L(Q,S) ≤ DTW (Q,S), guaranteeing that the KNN search

can stop when the current lower-bound estimate is greater

than the DTW distortion score of the Kth best match.

3. SYSTEM DESIGN

In this section, we describe the proposed parallel spoken

query detection system. The entire implementation consists

of four CUDA kernels. The first two kernels correspond to

implementation of a parallel lower-bound estimate, while the

last two kernels are used for parallel DTW calculations. Since

we believe that the proposed method can be implemented in

parallel architectures [10] other than CUDA, our focus will be

on describing how to decompose the framework into parallel

modules rather than using too many CUDA specific terms

(e.g. grid, block). Moreover, since CUDA can run multiple

kernel instances on one GPU core, in order to avoid confusion

and without loss of generality, in the following description,

we assume that each kernel instance runs on one GPU core.

Figure 1 illustrates the parallel implementation.

3.1. Parallel Lower-bound Estimate

The parallel lower-bound estimate computation consists of

two kernels. The first kernel computes the frame-wise inner-

product distance, while the second kernel sums the inner-

product distances. Specifically, suppose the upper bound en-

velope of the spoken query Q is U with length l and one of the

Fig. 1. System flowchart

speech segments is Sj with length l. By applying Eq. (1), the

lower-bound estimate of Q and Sj is essentially the summa-

tion of the frame-by-frame inner-product distance of U and

Sj . The summation calculation can be divided into two inde-

pendent steps. In the first step, the inner-product distance di
for each frame pair �ui and �si is computed. The second step

sums over l distances to obtain the lower-bound estimate.

In order to maximize GPU efficiency, two separate ker-

nels are designed for each step respectively. The first ker-

nel takes two posteriorgram vectors as input, and outputs the

inner-product distance of these two vectors. Since each ker-

nel can run multiple threads simultaneously, the vector-wise

inner-product calculation is further decomposed into element-

wise products. Since each posteriorgram is a D-dimensional

vector, the inner-product can be written as

d(�ui, �si) =
D∑

k=1

uk
i · ski . (2)

Therefore, as illustrated in Figure 2, each thread in the ker-

nel corresponds to one product, so that the D products can be

computed simultaneously. After the D threads finish comput-

ing, the summation of D products is parallelized by using a

parallel-sum-reduction method [8]. When the first kernel fin-

ishes computing, l inner-product distances are stored in on-

device memory. The second kernel then launches to sum over

l inner-products. This summation is also performed via the

parallel-sum-reduction technique.

3.2. Sorting and KNN Search

After the lower-bound estimates have been computed, each

speech segment Sj is associated with a lower-bound distance

estimate LBj . Since the number of the target speech seg-

ments can potentially be very large, a CUDA library called

5174

Fig. 2. Parallel frame-wise inner-product calculation

Thrust is used to perform high-performance parallel sorting

of these lower-bound estimates [11].

When sorting is complete, the KNN search starts from the

speech segment with the smallest lower-bound estimate and

calculates the actual DTW distance. In theory, in order to ob-

tain K best matches, at least K DTW alignments need to be

performed [6]. Therefore, instead of going through the sorted

speech segments one by one in the CPU implementation and

calculating one DTW alignment at a time, K speech segments

are considered and K DTW alignments are performed simul-

taneously in the GPU implementation. If the current best

DTW matching score is less than the lower-bound value of the

(K + 1)th speech segment, the KNN search terminates and

outputs the best K matches. Otherwise, the next K/2 speech

segments are considered and K/2 new DTW alignments are

computed. The search iterates until the termination condi-

tion is met. In summary, the parallel KNN search strategy is

to aggressively run K DTW alignments in the first round of

search, and subsequently to perform K/2 DTW alignments to

be more conservative and avoid wasting DTW calculations.

3.3. Parallel DTW

In order to maximize the use of the parallel computing ar-

chitecture, DTW calculations are divided into two steps. In

the first step, given two posteriorgrams Q and Sj , an absolute

distance matrix A(Q,Sj) (which uses the inner-product as lo-

cal distance metric) is computed. The second step performs

the DTW alignment on A and outputs the distortion score. A

kernel is designed for each respective step.

Specifically, if Q and Sj have the same length l, the size of

the absolute distance matrix A(Q,Sj) is l × l. Each instance

of the first kernel computes a single element in A. Note that

because of the DTW beam width constraint, only valid el-

ements are computed. Since the input to the first kernel is

two D-dimensional posteriorgram vectors, in a manner simi-

lar to the first kernel in the previous step, each thread in each

kernel instance computes a scalar product so that D products

can be performed simultaneously. Since the DTW alignment

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2000

4000

6000

8000

10000

12000

DTW

T
im

e
(m

s)

Sart et al.

Proposed

Fig. 3. Comparison of computation time for parallel DTW

is a 2-D sequential dynamic search, it cannot be completely

parallelized. Therefore, in the second kernel, each thread in

each kernel instance corresponds to the entire warping pro-

cess given an absolute distance matrix A.

In [5], the DTW GPU implementation was to use each

thread in each kernel instance to compute the absolute dis-

tance matrix A as well as the DTW alignment. In order to

compare the two approaches, we implemented both methods

and report the results of the comparison in the next section.

4. EVALUATION

4.1. Spoken Term Detection Task

The spoken query detection task was evaluated on the 630

speaker TIMIT corpus that includes a training set of 3,696

utterances and a test set of 944 utterances. As in [6], 10

query keywords were randomly selected and extracted from

the training set. For each keyword example, the query de-

tection task was to rank all 944 utterances from the test set

based on the utterance’s possibility of containing that key-

word. Overall performance was measured by the average

equal error rate (EER): the average rate at which the false

acceptance rate is equal to the false rejection rate.

All spoken term detection experiments were performed

on a computer equipped with an Intel R© Quad 6600 Processor

(2.66 GHz, 4 cores), 8 GB RAM and a NVidia R© GTX 580

graphic card (512 GPU cores with 1.5 GB on-board RAM).

The graphic card cost 500 USD in June, 2011.

4.2. Experimental Results

In order to validate the correctness of the GPU implementa-

tion of the spoken query detection algorithms, we first com-

pared the detection results with the corresponding CPU im-

plementation. In addition to the intermediate outputs from

the four kernels being the same, the overall detection EER

remained the same as has been previously reported [6].

5175

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Corpus Size (hour)

T
im

e
(s

)

Lower−bound

Sorting

KNN−DTW

Total

Fig. 4. Decomposition of computation time vs. corpus size

Figure 3 shows a comparison of the computation time for

the two different aforementioned parallel DTW implementa-

tions. In the figure, the x-axis shows the number of DTWs

computed, the red curve represents the time consumed for the

method proposed by Sart et al. [5], while the blue curve shows

the method used in the current implementation. The figure in-

dicates that both methods consumed similar time when com-

puting less than 5,000 DTWs. However, our method out-

performed the previous method by a factor of 2 in terms of

the running time when more than 5,000 DTWs computations

were required. We believe the reason for the greater effi-

ciency is due to the time saved in the absolute distance matrix

calculation. In the current version the entire matrix was de-

composed into individual elements for maximum paralleliza-

tion, while the prior method computed the full matrix in each

thread without parallelization. As the number of DTW cal-

culation increases, the amount of computation time saved be-

comes more and more apparent.

Figure 4 shows the average computation time needed for

searching one keyword using the proposed spoken query de-

tection system as a function of corpus size. Since the original

TIMIT test corpus only contains 48 minutes of speech, in or-

der to measure the computation time on a larger corpus, we

replicated the TIMIT test corpus by adding small amounts of

random noise into each speech frame. The replicated TIMIT

test corpus contained 1,000 hours of speech. In the figure,

the black curve represents the total time consumed, the blue

curve represents the time consumed by the lower-bound es-

timate, the green curve represents the time used by sorting

all lower-bound values, and the red curve represents the time

consumed by the KNN-DTW search. The results indicate that

the KNN-DTW search occupies nearly 80% of the total run-

ning time, which we believe is due to the difficulty in paral-

lelizing the DTW algorithm. It is encouraging to observe that

the total computation time grows linearly with the corpus size.

For 1,000 hours of speech, searching a keyword requires 40

minutes on a single desktop computer, which translates to 2.4

seconds/corpus hour. Note that with multiple desktops and

GPUs, the entire process could be further parallelized with

each GPU searching a subset of the overall corpus.

In terms of computation time for searching the TIMIT

test corpus, the original CPU-based approach [6] took, on

average, 120 seconds per keyword, while the GPU-based

approach takes, on average, only 2.2 seconds per keyword,

which translates to a speed-up factor of 55.

5. CONCLUSION AND FUTURE WORK

In this paper we have described a parallelized implemen-

tation of an unsupervised spoken query detection system

based on lower-bound KNN-DTW search, and tested the im-

plementation on Graphical Processing Units (GPUs). The

spoken query detection algorithm is carefully re-designed

to fit GPU’s parallel computing architecture. In a spoken

query detection task using the TIMIT corpus, a 55x speed-up

is achieved compared to our previous CPU-based imple-

mentation without affecting the detection performance. On

artificially replicated data, experimental results indicate that

the total running time of the entire spoken query detection

system grows linearly with corpus size. On average, search-

ing a keyword on a single desktop computer with modern

GPUs requires 2.4 seconds/corpus hour.

In the future, we plan to investigate additional GPU effi-

ciencies, implementations using GPU farms, as well as other

parallel computing architectures such as FPGAs [5].

6. REFERENCES

[1] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data paral-

lel WFST-based large vocabulary continuous speech recognition on a

graphics processing unit.,” in Proc. INTERSPEECH, 2009, pp. 1183–

1186.

[2] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, “GPU ac-

celerated acoustic likelihood computations.,” in Proc. INTERSPEECH,

2008, pp. 964–967.

[3] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations

using graphics processors,” in Proc. ICASSP, 2009, pp. 4321–4324.

[4] J. Vanek, J. Trmal, J. V. Psutka, and J. Psutka, “Optimization of the

gaussian mixture model evaluation on GPU,” in Proc. Interspeech,

2011, pp. 1737–1740.

[5] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul, “Ac-

celerating dynamic time warping subsequence search with GPUs and

FPGAs,” in Proc. ICDM, 2010, pp. 1001–1006.

[6] Y. Zhang and J. Glass, “An inner-product lower-bound estimate for

dynamic time warping,” in Proc. ICASSP, 2011, pp. 5660–5663.

[7] “NVidia CUDA Toolkit 4.0,” http://developer.nvidia.
com/cuda-toolkit-40/.

[8] “CUDA C Best Practices Guide,” http://developer.nvidia.
com/cuda-downloads/.

[9] Y. Zhang and J. Glass, “Unsupervised spoken keyword spotting via

segmental DTW on Gaussian posteriorgrams,” in Proc. ASRU, 2009,

pp. 398–403.

[10] “ATI Stream,” http://www.amd.com/stream/.

[11] J. Hoberock and N. Bell, “Thrust: A Parallel Template Library,”

http://www.meganewtons.com/.

5176

