

Contribution

- We compute PSFs using the lens CAD model, called lens prescription, by geometric-wave hybrid ray tracing
- We can predict PSFs at any positions and focal distances
- We take the spec and measured PSFs at a single distance as input, calibrate the accurate lens prescription for image enhancement

Our Method

- We can predict PSFs at any positions and focal distances
- The lens prescription includes
 - Number of glasses-
 - Dispersion function
 - Radius, xyz positions of each glass
- Calibrate the lens prescription using damped gradient descent

Results

 Fitting set 	Fitted	measured	unfitted	Fitted r	neasured	unfitted
 Unfitted set 						

Image Enhancement Using Calibrated Lens Simulations

Yichang Shih¹ MIT CSAIL¹ Brian Guenter² Neel Joshi² Microsoft Research²

Goal: Remove optical aberrations

- All lenses have optical aberrations [Seidel, 1856]
- Spherical aberration

- The restoration requires lens point spread functions (PSFs)
- PSFs are spatially-variant, and changing with focal distance. Measuring all PSFs is expensive

Chromatic aberration

Cross Validation

and synthesize PSFs at 368 mm

• The simulation is different from the measurement

• The lens manufacturing tolerance can cause the actual lens prescription different from the spec

PSFs measurement

Lens

Camera

Pinhole arrays (light sources) 20x20 holes