Massachusetts Institute of Technology

When taking a picture through a window pane, reflections of objects are often captured.

ransmission

Challenge: in the traditional imaging model I = T + Rsolving the transmission *T* and reflection *R* from a single observation *I* is ill-posed, since both *T* and *R* are natural images and appear the same statistical properties.

Our contribution: separate the reflection layer using the double reflection imaging model [1] with patch-based image prior [2].

Key Idea: Break the Symmetry of T and R using Ghosting

Observation: window reflection often appears multiple times. Occur on double- and single- paned windows. In single-paned windows, each side creates a reflection. The two reflections are separated by the thickness of the glass.

Reflection Removal using Ghosting Cues

YiChang Shih MIT CSAIL

Dilip Krishnan Google Research

$=T+R\otimes k$

- Parameterize **k** by the separation of the two reflections **d** and an attenuation factor **a** depending on the camera view angle. $k(\mathbf{x}) = \delta(\mathbf{x}) + \alpha \delta(\mathbf{x} - \mathbf{d})$

- Estimate *d* and *a* from the input image *I* using auto-correlation function.

Optimization

To recover the transmission *T* and reflection *R*, we minimize the following:

$$\frac{1}{\sigma^2} \|I - T - R \otimes k\|_2^2 - \sum_i \log(GMM(P_iT))$$

Reconstruction cost Image prior (Gaussian Mixture Model) Non-negativity [3]

We use patch-based Gaussian Mixture Model [2] to regularize image decomposition. Correct decomposition yields higher likelihood.

(a) (b) (c)

Log-likelihood

Fredo Durand MIT CSAIL

William T. Freeman MIT CSAIL

- Model ghosting phenomenon using a two-pulse kernel **k**.

 $f(x)) - \sum \log(GMM(P_iR)) \quad \text{s.t. } 0 \le T, R \le 1$

Synthetic input

constraints

14.01 dB 0.5499

26.76 dB 0.9083

The non-negativity constraint regularizes the low-frequency components in the output, and leads to better colors. The above energy is minimized by bounded L-BFGS optimization.

Input image (I)

Limitations: we assume sparially-invariant ghostings. Performance suffers when the transmission layer contains double features. Low frequencies are still challenging.

References

CVPR 2008.

Acknowledgements

This research was supported by grants from Quanta and Qatar Computing Research Institute.

Transmission layer (T)

Reflection layer (**R**)

Comparisons to single image reflection removal

Levin et al. 2007

Li and Brown 2014

Our method

[1] Y. Diamant and Y. Y. Schechner. Overcoming visual reverberations,

[2] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration, ICCV 2011.

[3] R. Szeliski, S. Avidan, and P. Anandan. Layer extraction from multiple images containing reflections and transparency, CVPR 2000.