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Abstract

After taking pictures, photographers often seek to convey their unique moods by altering the style
of their photographs, which can involve meticulous contrast management, lighting, dodging, and
burning. In this sense, not only are advanced photographers concerned about their pictures’ styles;
casual photographers who take pictures with cellphone cameras also process their pictures using
built-in applications to adjust the image’s luminance, coloring, and details. In general, photographers
who stylize pictures give them new, different visual appearances, while also preserving the original
content. In this context, we investigate problems with novel image stylization, including reproducing
the precise time-of-day where the lighting and atmosphere can make a landscape glow, and making
a portrait style resemble that created by a renowned photographer. Given an already captured image,
however, automatically achieving given styles is challenging. In fact, changing the appearance in
a photograph to mimic another time-of-day requires the analysis and modeling of complex 3-D
physical light interactions in the scene, while reproducing a portrait photographer’s unique style
require computers to acquire artistic tastes and a glimpse of the artist’s creative process. In this
dissertation, we sidestep these Al-complete problems to instead leverage the power of data. We

exploit an image database consisting of time-lapse data describing variations in scene appearance
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during the course of an entire day, and stylish portraits that are already deliberately processed by
artists. To leverage these data, we present new algorithms that put input images in dense and local
correspondence with examples. In our first method, we change the time-of-day with a single image
as the input, which we put in correspondence with a reference time-lapse video. We then extract
the local appearance transformations between different frames of the reference, and apply them
to the input. In our second method, we transfer the style of a portrait onto a new input by way of
local and multi-scale transformations. We demonstrate our methods on public datasets and a large
set of photos downloaded from the Internet. We show that we can successfully handle lightings at

different times of day and styles by a variety of different artists.
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Chapter 1

(a) Input (b) Stylized output

IntrOdUCtlon Figure 1-1: A simple example of image stylization

by brightening the under-exposed input in (a).

Enthusiastic photographers transform a scene into an art form by giving styles to their photos.
Guided by experienced hands, a creative mind breaks the physical limitations of lens and sensors by
carefully managing the picture’s contrast, detail, color, and tone until its messages are faithfully
conveyed through the pixels. Stylizing a picture can include a wide range of image processing tasks.
It can work as simply as modifying the global luminosity of a picture to match the ideal brightness in
the photographer’s mind. Figure 1-1 restores the picture by brightening the under-exposed input that
was erroneously determined by the camera. High-dynamic range (HDR) tone mapping demonstrates
a more sophisticated example of image stylization. To truthfully reproduce a scene on a display
limited by the low-dynamic range, HDR tone mapping techniques bring out the details from dark
regions, while carefully handling bright regions like sky or highlights to avoid over-exposures. For
the majority of camera users who take photos with cellphones, creative filters in phone apps like

Instagram' enable automatic stylization by just a tapping motion.

From a technical point of view, to stylize an input picture, photographers preserve the image

content from the input, and produce an output by giving it a new visual appearance. Examples

'nttp://instagram.com/

23



24 Chapter 1. Introduction

.

(a) Input (b) User-supplied example (¢) Output

Figure 1-2: An example of style transfer algorithm by Pitié et al. [97]. The algorithm renders
an output (c) with the color style from a user-supplied example (b), while preserving the original
content in an input (a).

include photo white balancing, where colors are modified to account for light and human perceptions,
and detail enhancement, where image contrasts are restored to compensate for the intrinsic blur
common in imperfect lenses, among other things. In these examples, the input and output appear
different photographic look while keeping exactly the same content?. People stylize pictures for
many reasons. Advanced photographers stylize their pictures to convey the unique mood at the
moment when shooting the photos. Stylized photos appear to be more memorable. For people in

love with social web sites, sharing stylized photographs becomes a modern way to impress friends.

It is nonetheless challenging to stylize a picture. Without a rigorous definition in mathematics,
style is merely an elusive concept relying on subjective judgement and difficult for computers to
understand. To address the problem, the seminal work by Freeman and Tenenbaum [121] proposes
an algorithm to take an input image and separate the style from the image content. Inspired by the
fact that human eyes have the great ability to recognize styles from an image, their work employs a
bilinear model to mimic the separation process in human brains. Their work demonstrates synthesis
of new pictures by modifying their styles, while retaining the original content. The authors apply the
synthesis to face relighting, where each relit face corresponds to a new style. Similarly, Bae ef al. [6]

employ a bilateral filter to decompose an input into detail and base layer, and output a different

2Modifying input content is beyond this dissertation, e.g., removing unwanted objects or adding accessories in
portraits.
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6:00 PM

Figure 1-3: Scene appearance variation through different times of day depends on materials and
complicated physical interaction, which makes the time-of-day problem challenging. Image courtesy
of Adrian Dalca.

style by altering the detail layer. The resulting clarity in the output reproduces the style created
by Ansel Adams, a famous photographer known for his black-and-white landscape photography.
Bychkovsky et al. [16] resort to a machine learning technique to learn how photographers stylize
their pictures. Based on the content of an input image, their trained classifier predicts the suitable
adjustments on luminance and color channels to stylize the image. All these methods retain the
content from the input, and give the output a better photographic look. To provide users intuitive
controls on image stylization, researchers have proposed the idea of style transfer. In addition
to an input picture, a style transfer algorithm takes a user-supplied example image, and outputs
a picture with a look similar to that of the example. Figure 1-2 illustrates the spirit of style
transfer. Given an input, a style transfer algorithm renders an output with the color style from a
user-provided example, while preserving the content from the input image. State-of-the-art style
transfer algorithms globally match the example histogram [96, 98], or low-order statistics [100] to
produce the output. Previous studies have successfully applied style transfer algorithms to adjusting
color, detail, and contrast [6, 45, 97, 100, 118, 120] on simple scenes like landscape photos, where

the color distributions of input photos are easy.

In this dissertation, we pursue the notion of style versus content to address new problems,

including rendering a different time-of-day from an input picture. Figure 1-3 shows two pictures
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Figure 1-4: Photographers convey a unique
mood by giving an output a different image
style. Image courtesy of Kelly Castro. (a) Input (b) Manually stylized output

taken at the same scene, from the same camera viewpoints, but at different times of day, one
in the afternoon and the other one at sunset. Both images characterize the same image content,
showing the same sky, buildings, and river, located at identical positions, but with different color
styles. We would like to output the picture at the right in Figure 1-3 by giving the left one a
color style plausible at the new time-of-day. Changing time-of-day is a challenging problem, since
predicting scene appearance variations would require knowing the materials of every location in a
scene. The two patches in the left of Figure 1-3 appear the same color in the afternoon, but then
become different colors at sunset because they correspond to different materials. Further, the color
changes rely on the geometries, the lighting, and the complicated physical interactions in a scene.
Changing time-of-day seems equivalent to challenging Al-complete problems since it would require
understanding the complex rules governing the world of physics. In our second problem, we turn
the attention to another more difficult problem, portrait stylization. Although Figure 1-4 captures
the input portrait with decent lighting, colors, and camera settings, what makes the output stylish
is how a photographer processed this picture. The stylization includes deliberate adjustments on
details, colors, and tones. Mimicking the style of a photographer would require understanding her

artist’s mind, which is far more difficult than modeling physics and reminiscent of the challenges in
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(a) Input (b) Example (¢) Our stylized output

Figure 1-5: Our local transfer algorithm employs a dense correspondence that links the objects in
the same categories (yellow arrows) between the input (a) and the example (b), like the sky and the
buildings, to create an output (c) that appears similar photographic look as that of the example.

artificial intelligence.

This dissertation will sidestep Al-complete problems by leveraging the immense power of
data. We will present a data-driven approach as a simple way to understand the world. In computer
graphics, data-driven approaches have achieved success in restoring pixels, such as hole filling [49],
denoising [73], and deconvolution [47]. This dissertation will exploit data for image stylization.
Given an input, we will transfer a desired style from an image database to the input. In the
database, we will search for an example image that shares similar semantics with the input, like
sky and buildings in Figure 1-5. Then we transfer the photographic look from the example to an
output by proposing a local transfer algorithm, which is the main contribution of this dissertation.
Our algorithm uses semantic information between an input and an example, and transfers image
style between the same semantic regions, like sky to sky, buildings to buildings, through a dense
correspondence field between the two images. The output in Figure 1-5c appears to have colors
similar to that in the example, and looks plausible at the time-of-day of the example. By employing
a local correspondence, our method achieves a spatially-variant transfer that is more than just a
global mapping. Figure 1-5c¢ darkens the sky, while brightening the window lights in the input,
resulting in a plausible appearance when changing from day to night. This dissertation investigates

two image categories that are popular and challenging: outdoor photos and headshot portraits,
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separately in Chapter 3 and 4. Here we provide a high-level overview for each work.

Outdoor photos: time hallucination (Chapter 3)

We introduce “time hallucination”: synthesizing a plausible image at a different time-of-day from
an input image. This challenging task often requires dramatically altering the color appearance of
the picture. In this work, we introduce the first example-based approach to automatically create a
plausible-looking photo that appears as though it were taken at a different time-of-day. The time
of day is specified by a semantic time label, such as “night." Our approach relies on a database of
time-lapse videos of various scenes. These videos provide rich information about the variations in
color appearance of a scene throughout the day. Our method transfers the color appearance from
example videos with a similar scene as the input photo. We propose a locally affine model learned
from the example video for the transfer, allowing our model to synthesize new color data while
retaining image details. We show that this model can hallucinate a wide range of different times of
day. The model generates a large sparse linear system, which can be solved by off-the-shelf solvers.
We validate our methods by synthesizing transforming photos of various outdoor scenes to four

times of interest: daytime, the golden hour, the blue hour, and nighttime.

Headshot portraits: style transfer (Chapter 4)

Headshot portraits are a popular subject in photography but to achieve a compelling visual style
requires advanced skills that a casual photographer will not have. Further, algorithms that automate
or assist the stylization of generic photographs do not perform well on headshots due to the feature-
specific, local retouching that a professional photographer typically applies to generate such portraits.

We introduce a technique to transfer the style of an example headshot photo onto a new one. This
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allows one to easily reproduce the look of renowned artists. At the core of our approach is a new
multi-scale technique to robustly transfer the local statistics of an example portrait onto a new one.
This technique matches properties such as the local contrast and the overall lighting direction while
being tolerant to the unavoidable differences between the faces of two different people. Additionally,
because artists sometimes produce entire headshot collections in a common style, we show how
to automatically find a good example to use as a reference for a given portrait, enabling style
transfer without the user having to search for a suitable example for each input. We demonstrate our
approach on data taken in a controlled environment as well as on a large set of photos downloaded

from the Internet. We show that we can successfully handle styles by a variety of different artists.

We will demonstrate our local transfer algorithms on automatic photo retouching. While com-
putational photography has made significant progress in capturing light rays of a scene, such as
high-dynamic range photography [27], light-field photography [87], tone mapping [31], and even
revealing unseen details hidden in an image [108, 131], photo retouching still relies on massive
manual work. In portrait editing, photographers have to work with local editing tools such as
brushes to create individual layers on facial landmarks. These tasks are unfortunately tedious and
time-consuming even using modern editing softwares like Adobe Photoshop®. Meanwhile, the
quality of manual retouching depends on photographers’ own experiences and aesthetics in tone
and detail manipulations. Our method provides an alternative to casual users. Given a target style in
mind, a user provides a semantic label, such as the name of the photographer who originally created
that style. Our method retrieves a few appropriate examples from the photographer’s works, and
then generates a gallery of result photos by applying our local transfer algorithm to each example.
The only remaining task for users is to select good results from the gallery, which is a great deal

easier than creating an output on their own. Benefiting from the increasing number of professional

3 A typical retouching task takes a casual user about ten minutes to follow the corresponding tutorial [10].
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pictures and videos available on photo sharing web sites like Flickr* and Vimeo, our style transfer
becomes more attractive than ever before, since people are better at selecting desired styles from a
collection than creating them from scratch. This dissertation largely consists of the works presented
in ACM Transactions on Graphics (Proceedings SIGGRAPH ASIA 2013 and SIGGRAPH 2014)
[111, 112]. All the the accompanying materials referenced here, including software, videos and

demos, are available for the research community through the thesis web page:

http://people.csail.mit.edu/yichangshih/PhDThesis/

‘http://www.flickr.com/
Shttps://vimeo.com/



Chapter 2

A Survey of Style Transfer

Without enough experience in photographic adjustment, a casual user often finds it challenging
to edit the visual appearance of a photograph. To assist people in image stylization, previous
studies have proposed style transfer algorithms: given an input image, users supply an exemplar
image processed in the desired ways by professional photographers, also called a reference image
or a model, and style transfer algorithms render an output with the similarly high-quality visual
appearance. In this dissertation, we consider photographic features for style transfer, including
colors, tones, contrasts and textureness. By virtue of the idea’s simplicity, style transfer algorithms
have become an active research field over the last few decades. To characterize the related work
in style transfer, we propose a novel two-dimensional taxonomy, as shown in Table 2.1. The first
axis of the spectrum describes how global and local the transfer is. Given an input and an example,
this property often relies on the matching scale between the two images. The second axis describes
the relationship between the input and the example. For instance, a local method often requires
the example to have a similar scene as the input. We found that the proposed two-dimensional
characterization helps to classify most state-of-the-art style transfer algorithms, and reveal the

correlation between these two properties. The recent trend in style transfer algorithms is evolving

31
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from global methods to local methods that form the foundation of our approach.

2.1 The focus and the scope of this survey

A recent survey of color mapping technologies [36] classifies the existing methods into three
categories: geometry-based methods [35, 45, 127], transferring statistical properties, e.g., the
seminal work by Reinhard et al. [100], and user-assisted solutions such as using manual scribbles [4,
71, 81]. In this survey, we focus on methods working on automatic stylization as our approach,
and leave user-assisted methods aside. We found that both geometry-based methods and statistical
transferring methods can be better characterized by how global the transfer is. In particular,
statistical transferring methods tend to be global, while geometry-based methods often require a
notion of local correspondences. Our characterization offers a finer-grained classification based on
the amount of local notions used in style transfer algorithms. For example, the methods based on
foreground and background matching [25] are more global than those based on semantic region
correspondences [120] and super-pixel matching [69]. We are interested in how similar a user-
supplied example and an input need to be with each other. From experience, most histogram-based
approaches only require the input and the example to have a similar color palette, while dense
correspondence methods are more restricted, since they require precisely the same instances across
the input and the example. This aspect serves as a constraint on choosing examples when applying
a specific style transfer algorithm. Interestingly, we observed correlations between these two
dimensions, which implies a trade-off: global methods tend to accept large differences on image
content between the input and the example, while local approaches demand similar semantics or
instances between the two images. Our method belongs to the latter, which requires the example to

share the same object categories as the input, like sky, buildings, and faces.

Starting from colors, we extend the survey to multi-scale and data-driven processing tech-

niques that inspire our approach for depicting visual styles. We include state-of-the-art multi-scale
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tonal transfer algorithms [6, 90, 112, 118]. We review methods that take both a single example and
multiple examples [132]. Some methods leverage the immense power of a large image database
such as the Internet pictures [21, 111]. Style transfer on videos requires special treatments for the
temporal coherence, which is outside the scope of this survey. We leave aside texture synthesis [53]
and non-photorealistic rendering [54], which are often applied in painterly arts but beyond the
goal of our approach. Learning-based approaches that require training on a large dataset [16] are
outside the scope of this survey. This chapter starts by reviewing the state-of-the-art style transfer
methods in the order from global approaches to local approaches (§2.2). These methods are then

characterized according to the differences between input content and example content (§2.3).

2.2 C(lassifications based on matching scales

We survey sixty-one recently published style transfer works related to our approach. Each work is
labeled by how global the transfer algorithm is, and the relationship between a required example and
input. Table 2.1 groups together the publications with similar features. The papers are annotated
with their publication years to show the research trend over time. These works are first reviewed
from global methods to local approaches. Style transfer algorithms often employ parametric models
or a correspondence field as in our method to transfer image statistics. Given a style transfer
algorithm, we determine its scale according to the scale at which the employed parametric models
apply, or the scale the correspondence field is computed. For example, the global method by
Reinhard et al. [100] applies a single affine model on the entire output (§ 2.2.1), while a local
method like our time hallucination [111] builds an affine model for each pixel (§ 2.2.5). Global
and local methods form the range of our characterization. Between the two opposites, parametric
transfers can be established between segmented regions (§ 2.2.2), super-pixels (§ 2.2.3), and sparse

feature points (§ 2.2.4).
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2.2.1 Global matching

Global style transfer algorithms process an input by employing a spatially-invariant color map-
ping function, such as an affine transformation or a color lookup table. These algorithms are

computationally efficient, and achieve high-quality results on simple scenes like landscape photos.

Statistical matching Reinhard er al. [100] stylize an output by matching its mean and standard
deviations to that of an example in a decorrelated color space. To circumvent the color palette
differences between the input and the example, they propose to manually associate regions of
interest on both images, which motivates our algorithm to employ a dense correspondence field.
Their statistical matching leads to a simple but effective color mapping function mathematically
modeled by a global affine transform. There are some freedoms in designing this affine transform.
Pitié and Kokaram et al. [96] propose an optimal transformation by minimizing the earth movement
distance, and formulate the problem by the classical transportation optimization. Similarly, our style
transfer approach is formulated as an optimization problem, resulting in a large sparse linear system.
The result quality of statistical matching methods is sensitive to the choice of color spaces. Reinhard
and Pouli [101] study style transfer in various color spaces on a range of input ensembles, including
indoor, outdoor, and night pictures, and suggest that the covariances of an input image forms an
informative predictor of result quality. Abadpour and Kasaei [1] found that no perfectly decorrelated
color space exists, and determine a sub-optimal color space by principle component analysis. Xiao
and Ma [135] work directly on a correlated color space, and transfer the color correlation matrix
from the example to the output. The works by Wang et al. [126] and Bonneel et al. [11] show the
quality of color grading is sensitive to the color space used in the algorithms. Compared to global
transfer algorithms, our local approach is more robust to the choice of color spaces, since our locally

affine model is sufficient to capture local statistics.
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Histogram transfer Histogram transfer algorithms build a non-linear global color mapping
function to match the output histogram to that of the example. For gray-scale images, the mapping
functions are computed by simply inverting cumulated probability functions. For color images,
previous studies carefully deal with the correlations between color channels to transfer the histogram.
Inspired by the Radon transform, Pitié et al. [97] iteratively perform a series of one-dimensional
histogram matching on randomly projected distributions. Histogram transfer methods often leave
unwanted color artifacts on the output, since they ignore local spatial relationships in the input.
To address the problem, these methods restore the final results using edge information in the
input image either by Poisson editing [98], gradient domain image processing [135], or edge-
aware filtering [116]. Likewise, to ensure natural looks on final results, our method enforces local
consistency on the output, forming a Laplacian regularization. Further, we preserve the fidelity
of output details by processing them separately. To give users control of artistic manipulations,
Pouli and Reinhard [99] progressively match histograms from low- to high-order image statistics
by a coarse-to-fine scheme. Similarly, our local style transfer employs a multi-scale processing to

capture contrasts at different scales.

Mood transfer People tend to interpret color styles by subjective feelings, like “calm,” “vivid,”
and “elegant,” among other things. From an image database pre-labeled with feeling words, Yang
and Peng [138] learn the image statistical models for these words, also called color moods, and
ask users to select a target color mood for style transfer. Feng et al. [37] divide color styles into a
set of pre-defined categories, and assign the best category to the input image by minimizing the
earth movement distances between the input and the category. In the same spirit, our data-driven
approach saves users from the troubles of looking for examples, and instead transfers target styles

according to the semantic labels given by the users.
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Multi-scale transfer In the old days of film photography, burning and dodging tools were com-
mon for changing the moods of pictures. In digital photography, photographers achieve similar
effects by carefully manipulating image contrasts and details. To transfer photographic looks from
an example to an input, Bae et al. [6] decompose both pictures into details and low-passed bands,
and globally match these bands by way of histogram transfer. Sunkavalli ez al. [118] improve match-
ing quality by employing a multi-scale decomposition constructed by Laplacian stacks. Recently,
Paris et al. [90] address the halo artifacts in multi-scale processing with a novel local Laplacian
filter, which is later sped up to realtime by Aubry et al. [S]. At the core of our portrait style transfer
is a similar multi-scale processing technique based on Laplacian stacks to capture facial textures at

different ranges, from large scales like eyes and noses to minute details like facial pores.

Discussion Although global style transfer algorithms generate high-quality results on simple
scenes like landscape photos, unfortunately, when applying the same techniques to complex scenes
like cityscapes, which contain more object classes like buildings and streetlights, they work in-
sufficiently. In complex scenes, scene appearance variation is challenging because it depends on
local image content. Limited by one-to-one color mappings, global style transfer algorithms cannot
perform content-aware color transfer. In the later chapters we will show that our local methods

perform better on challenging stylization problems.

2.2.2 Segment-level matching

Global transfer algorithms fail when the color palette of the example consists of a great deal more
colors than that of the input, because they are incapable of expressing one-to-many color mappings.
Rather than relying on global models, segment-level style transfer algorithms divide the input and
the example into a few regions (typically five to ten regions), and transfer the styles between these

regions after the correspondences are established.
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Color categories Chang et al. [18] study color concepts among major languages, and conclude
that eleven color categories are common across most cultures. Their method segments the input and
the example according to the RGB color distances to the centers of these color categories. Later, the
same authors [19] extend the method to color grading. Murray et al. [85] divide the input regions
by applying a set of pre-defined color statistical models, called color concepts, and transfer color
styles between regions of the same color concepts. These methods avoid the artifacts caused by

unconstrained color mappings typical in global transfer methods.

Color segmentation Instead of relying on pre-defined models, Shapira et al. [106] segment an
input and an example using Gaussian mixture models learned from both images, and transfer
color styles by matching the modes between the two models. He et al. [51] adapt Expectation-
Maximization (EM) algorithm to identify main colors in the input and the example, and transfer
these main colors through a gradient-preserved optimization scheme. Similarly, Dong et al. [30]
match dominant colors by minimizing the earth movement distance (EMD), and transfer pixel colors
by a set of affine mappings [100] between matched regions. Wang et al. [125] apply pre-trained
color enhancement models on segmented regions. They demonstrate that a complex transfer over an
entire image can be broken into multiple simpler transfers described by linear models on segmented
regions. In our stylization problems, however, we have found that color segmentation is insufficient,

since scene appearance variations depend on not only colors but also materials and semantics.

Coarse bin matching To make histogram matching robust to the differences between the color
palette of input and example, previous studies have divided the histogram into fewer but coarser bins,
and transfer pixel colors between these bins through plain models like affine models. Freedman and
Kisilev [39] match these coarse bins by an EMD optimization, and apply a novel affine transform
that minimizes color distortions. Liu ef al. [80] extend the coarse matching to multiple examples to

leverage the Internet images. Compared to their coarse matching methods, our method uses a dense
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matching to capture the example styles more accurately.

Spatial segmentation Recent studies in image statistics have shown that natural images appear
spatially coherent in color distribution. Tai et al. [120] improve image segmentation with a modified
Gaussian mixture model (GMM) that leverages the spatial coherence. Their method demonstrates
improved color transfer by grouping together pixels of the same object classes, e.g., sky, trees,
and water. Xiang et al. [132] extend their method to multiple inputs. Yoo et al. [140] extract
dominant colors from segmented regions for region matching. Wu et al. [129] transfer spatial
color distributions from the example, by enforcing scene layout of the output during segment
matching. Oliveira et al. [89] parse the input and a coarsely registered example into several regions

and compute a set of transfer functions from the segments.

Semantic segmentation Since image foregrounds show very different statistical properties from
backgrounds, Dale et al. [25] match the two regions separately to restore images. Instead of
image restoration, we work on image stylization. Using automatic scene parsing techniques,
Cusano et al. [23] annotate each pixel with a semantic label, such as sky, tree and road. Then they
use the semantic information to transfer colors between the regions of the same object classes.
Wang et al. [124] use texture descriptors for image segmentation, and transfer colors between similar
objects like grass-to-grass, sky-to-sky. In this dissertation, we found that semantic information
is critical to color transfer. We consider spatial and object information by leveraging a locally-

consistent dense correspondence field that respects scene semantics.

2.2.3 Super-pixel Matching

Recently, super-pixels [2], an over-segmentation on an input image, have been proposed to offer

local matching, which improves classical correspondence problems, such as depth-from-stereo [142].
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To capture image semantics, Chia et al. [21] apply super-pixels to color transfer. They over-segment
an input and an example to super-pixels, and compute a set of per-segment matching based on the
local descriptors of the super-pixels. Similarly, Wu et al. [130] apply a coarse-to-fine matching
from object levels like sky, buildings, and human faces, to the finer levels defined by super-pixels.
Using super-pixel level matching, their method achieves content-adaptive color mappings and
dramatic appearance changes. In particular, Laffont ez al. [69] demonstrate appearance transfer to
hallucinate different seasons and weather conditions, such as hallucinating a spring picture to a
winter look. Our work shares the same idea with these methods in introducing image local semantics
for content-aware style transfer. Our method computes the correspondences on image pixels, which
offer a fine-grained matching to deal with complex scenes, without worrying about the boundary

artifacts typical in super-pixel processing techniques.

2.2.4 Sparse Matching

Pixel-to-pixel matching provides the finest correspondence between an input and an example. A
plethora of works in computer vision have been proposing sparse correspondence techniques be-
tween image pairs, and demonstrated a variety of photographic applications like image stitching,
registration [119], and 3-D-based photo browsing [113]. For color transfer, Irony et al. [58] prop-
agate colors from an example to an input through the sparse correspondences between the two
images, using an optimization scheme similar to Levin et al. [71]. We formulate our style transfer
as an Ly-optimization problem, and propagate the colors with a patch-based Laplacian regularizer,

which respects local scene structures of the input image.

Intrinsic image relighting Intrinsic image decomposition separates an image into two layers:
the lighting-dependent shading layer, and the reflectance layer invariant to the scene lighting

conditions. Given image collections taken at different times of a day, Laffont et al. [68] estimate



40 Chapter 2. A Survey of Style Transfer

sparse correspondences between these different viewpoints to factor out the scene reflectance layer.
Similarly, Liu et al. [79] solve for the reflectance from an aligned image collection using median
filters. To demonstrate lighting transfer, they replace the input shading with a target shading selected
from the collections. Our method circumvents the intrinsic image problems by transferring the
variations in scene appearance from an example, which is closely related to the lighting layer of a
scene [91, 107]. We demonstrate results of similar quality to those methods using intrinsic image
decomposition, as shown later. Further, rather than relying on image collections for a specific input,

our method uses data that is independent of the input.

Camera calibration In multi-view imaging applications, camera calibration is used to ensure
consistent color appearances across different viewpoints. Camera calibration can be seen as color
mappings from a raw input to an output. Sparse correspondence is often established as reference
points to build the mapping function [35, 48]. Hwang et al. [57] compute a global color mapping
for camera calibration, but an accurate calibration requires spatially-variant color mappings as in our
stylization problem, which is beyond the limitation of global transfer. Recent works have reported
that local methods outperform global transfer on public benchmark in camera calibration [136].
For example, Kagarlitsky et al. [63] use a k-d tree to divide the input and the example into non-
overlapping regions, and compute piece-wise linear mappings between these regions to achieve

one-to-many color mappings as in our method.

2.2.5 Dense Matching

Flat regions in images like sky and water are problematic for sparse correspondences, since they
lack distinguishable features to be matched. To regularize textureless regions, dense correspondence
fields enforce spatial coherence in an input. It is more flexible than sparse matching since it can

match image pairs of different instances as long as the pair share the same semantics, like skylines
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of two distinctly different streets or landscapes of different mountains [78]. Our method is based on

a dense correspondence field between the input and the example for content-aware style transfer.

Full matching Given a patch on the input image, Welsh et al. [127] search for the most similar
patch from the example, and then transfer the chrominance information to colorize the input. To
address the ambiguity at textureless regions, the seminal work by Efros and Freeman [32] enforces
spatial coherence on the output by penalizing the differences between the overlapping patches in the
output. Charpiat et al. [20] assign each output pixel a color from the example pixels by maximizing
the joint probability of the output colors. In our time hallucination [111], we employ a Markov
random field to compute dense correspondences between an input and a reference video. In our
portrait transfer [112], we leverage a coarse-to-fine dense matching scheme starting by detecting
facial landmarks, rigid warping, and dense alignment. However, it can be impractical to precisely
match two different scenes in some cases. For example, a pore on an input portrait could match
multiple pores on an example face of a different person, even if the spatially coherent constraint is
already imposed. Hence, in our portrait stylization, we deal with the outliers with a robust transfer

to achieve high-quality results.

Partial matching In some cases, it is impractical to expect perfect dense correspondences over the
entire input. Partial matching circumvents the problem by rejecting the erroneous correspondences,
and solely relying on the regions of high confidences. HaCohen et al. [45] employ a partial
matching for appearance transfer between an input and an example, which was later extended
to album editing [46]. Their method adapts the General Patch Match [7] to account for scene
appearance variations induced by lenses, lighting, and non-rigid deformation of the input scene.
Our method takes a step further to consider different instances from the same category, e.g., faces
of different individuals, or skylines of different cities. Using images from the same category, we

are able to leverage the rich resources from the Internet images. In our experience, their method is
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limited to the same instance across the input and the example, and often returns null correspondences
when applied to our problems. Further, their works use global mappings, while we propose local
color transfer for stylization. Farbman and Lischinski [34] consider the tonal stabilization of videos.
Given a video taken by a moving camera, they compute a partial correspondence on the shared
objects between two consecutive frames, and apply color remappings to ensure color consistency
along the temporal axis. We follow a similar idea to extend our style transfer algorithms from

images to videos.

2.2.6 Other appearance transfer techniques

Some style transfer algorithms are difficult to characterize by either global or local approaches.
Bychkovsky et al. [16] train predictors for image styles from the image database consisting of
retouched photographs. To train the predictors, they leverage various image features including
histogram bins, adjustment curves, and tones ranging from highlights to shadows. Xue et al. [137]
apply machine learning techniques to video grading using clips filmed by celebrated directors.
Berthouzoz et al. [10] take a completely different approach: transferring the Photoshop edit macros
to a new input image. Our method requires no editing information but only a pair of before-and-after
images, or just an after image as the example. Our method can mimic image editing operations
typically performed with digital brushes, like dodging, burning, and local color adjustments.
However, introducing new textures that were not present on the input is challenging to us, like

adding mustaches on portraits or reflections on windows.

2.3 Constraints on selecting the example

The example supplied in style transfer algorithms are critical to result quality. The guideline for

choosing valid examples varies with the style transfer algorithm. For example, the method by
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HaCohen et al. [45] requires an example that shares the same instance with the input. Conversely,
given an example, we want to know what input images the stye transfer algorithm can take. The
vertical axis in Table 2.1 describes the valid examples given an input image. We label each algorithm
according to the limitations specified by the original paper. If not specified, we assign the label
based on the examples demonstrated in the paper. These labels are ranked by the level of freedom
in selecting the example. For instance, “unrelated content,” which is on the top of Table 2.1, allows
users to freely select examples. In contrast, at the bottom, “same instance” requires users to provide
examples taken from the camera viewpoint similar to that of the input, such as stereo pairs. By
plotting these style transfer algorithms according to their matching scale and constraints on example
selection, Table 2.1 reveals the correlation between the two properties: local methods require
examples similar to the input image. The observation applies to our work, which requires the input

and the example to share the same semantics.

2.3.1 Unrelated contents

Global methods provide users the maximum freedom in selecting examples. They only entail global
properties, such as low-order statistics [96, 100], color palette [37, 138], and histograms [6, 96, 99],
and discard the detailed content information like scene layouts in the input. Nonetheless, it can
lead to weak outputs if applying global transfer to image pairs of entirely different scenes. We
transferred the color from night city views to skylines in the afternoon using a global method [100],
but the resulting output looks artificial — it only darkens the input without rendering it with night
views. Lately, some papers have pointed out that supplying good examples requires aesthetics of

users, and can be challenging to casual users [138].
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2.3.2 Same semantics

Studies on the ImageNet [28] have shown that visual appearance of an object is highly correlated
with its semantics [29]. Semantic information between an input and an example has been recently
exploited in style transfer [69, 129], because it improves the result quality by constraining the color
transfer between meaningful regions. With the help of content-aware image retrieval techniques,
semantic-aware style transfer algorithms could benefit from image databases [28]. To leverage the
semantic information, these methods have to compute dense correspondences between the input
and the example, which is still a challenging computer vision problem [65, 76, 78]. In our time
hallucination, we compute the semantic correspondences between an input and a reference video by

leveraging both the spatial and temporal coherence of the scene.

2.3.3 Same instance under non-rigid deformation

Some style transfer algorithms require exactly the same instance across the input and the exam-
ple [34, 45, 46]. These methods aim for dealing with the lighting and color inconsistency between
cameras. Although these methods allow non-rigid transforms between the input and the example
scene, the constraint of the same instance is too restrictive and impractical for our problems. In our

work, we lift the constraint to allow broader applications and leverage the Internet images.

2.3.4 Different viewpoints

Some style transfer algorithms register the input and the example by homographic transforms, which
require the same instance across the two images. These methods are often used to process landmark
photos. Given a famous landmark, users search for the images taken at the same location by other
photographers, at different times of a day, viewpoints, or scales. These images are then used for style

transfer, by leveraging intrinsic image decomposition [68, 79] or the geometry information extracted
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from the collection [66]. For our approaches, it works best if the input and the example are taken
from similar viewpoints, such as frontal portraits for both images, because the correspondences

between the two images are easier.

2.3.5 Stereo calibration

The most restricted scenarios require the two images to be taken from very similar viewpoints. This
is the scenario for stereo camera calibration, which compensates the color inconsistency across the
two camera views. There are only a limited number of photographic applications that satisfy this

constraints.

2.3.6 Discussion

We have reviewed recent works in photographic style transfer, including color transfer and multi-
scale contrast transfer. We label these algorithms by their global and local properties, and the
constraints on example selections. In Table 2.1, the two features are correlated, showing a trade-off
between the matching scale and the freedom in selecting examples. Local transfer algorithms
often achieve more dramatic appearance change than that by global methods. In contrast to global
methods, which are limited to one-to-one color mappings, local methods employ correspondences to
compute powerful one-to-many color mappings by merging a set of local remapping functions. Our
local methods often output results with good visual realism [102]. In particular, local approaches
in our work [111] and the work by Laffont et al. [69] alter the input appearances strikingly to

synthesize scene variations across distinct weathers and lighting conditions.
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(Unrelated
contents)

Statistical matching

Reinhard et al. 2001

Bonneel et al. 2013(Video)

Kotera 2005

Wang et al. 2006(Video)

Abadpour and Kasaei 2007

Pitié and Kokaram 2007

Reinhard and Pouli 2011 Color Categories

Xiao and Ma 2006 Chang et al. 2006

Histogram Transfer Chang et al. 2007

Pouli and Reinhard 2011 Murray et al. 2011
Entirely Qrgfldland and Dodgson 2005 Unsupervised segmentation Image analogy
different gigz Zt Zi 5882 IS-I};ag r; e;g 1'42009 Huang and Chen 2009 Hertzmann et al. 2001
§2.3.1 : ) Efros and Freeman 2001

Same semantics
§2.3.2

Same instances,
non-rigid
transform
§2.33

Same instances,
different
viewpoints
§2.34

Same instances,

Xiao and Ma 2009
Su et al. 2014

Pichon et al. 2003
Morovic and Sun 2003
Mood transfer

Yang and Peng 2008
Feng et al. 2013
Multi-scale transfer
Bae et al. 2006
Sunkavalli et al. 2010
Paris et al. 2011
Aubry et al. 2014

Suetal. 2012

Dong et al. 2010

Wang et al. 2011

Coarse bin match
Freedman and Kisilev 2010
Liuet al. 2014

Spatial segmentation
Tai et al. 2005

Xiang et al. 2009

Wu et al. 2011

Yoo et al. 2013
Semantic segmentation
Dale et al. 2009

Cusano et al. 2012
Wang et al. 2010

Transient attribute
Laffont et al. 2014
Content-aware

Wu et al. 2013

Chia et al. 2011

Feature matching
Oliveira et al. 2011

Full matching
Charpiat et al. 2008
Welsh et al. 2002
Shih et al. 2013
Shih et al. 2013
Hwang et al. 2012

Colorization
Irony et al. 2005

Partial matching
Farbman and Lischinski 2011
HaCohen et al. 2011
HaCohen et al. 2013
Intrinsic image
Liu et al. 2008
Laffont et al. 2012
Camera calibration
Faridul et al. 2013

Stereo calibration

different Hasan et al. 2012
lightings Hwang et al. 2014
§2.3.5 Kagarlitsky et al. 2009
(Similar
examples)
Full image Region-based Super-pixel Sparse Dense
§2.2.1 (segmentation) §2.23 correspondence correspondence
§222 §2.24 §22.5
(Global matching) (Local matching)

Exceptions: Learning-based: Xue et al. 2013, Bychkovsky et al. 2011, By demonstration: Berthouzoz et al. 2011.

Table 2.1: Classifications of photographic look transfer techniques.



Chapter 3

Hallucinating Different Times of a Day

3.1 Introduction

Time of day and lighting conditions are critical for outdoor photography (e.g. [17] chapter “Time
of Day”). Photographers spend much effort getting to the right place at the perfect time of day,
going as far as dangerously hiking in the dark because they want to reach a summit for sunrise
or because they can come back only after sunset. In addition to the famous golden or magical
hour corresponding to sunset or sunrise ([104] chapter “The Magical Hour”), the less-known “blue
hour” can be even more challenging because it takes place after the sun has set or before it rises
([104] chapter “Between Sunset and Sunrise”) and actually only lasts a fraction of an hour when the
remaining light scattered by the atmosphere takes a deep blue color and its intensity matches that
of artificial lights. Most photographers cannot be at the right place at the perfect time and end up
taking photos in the middle of the day when lighting is harsh. A number of heuristics can be used to
retouch a photo with photo editing software and make it look like a given time of day, but they can
be tedious and usually require manual local touch-up. In this chapter, we introduce an automatic

technique that takes a single outdoor photo as input and seeks to hallucinate an image of the same

47
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Input image at blue hour A database of time-lapse Hallucinate at night
videos

Figure 3-1: Given a single input image (courtesy of Ken Cheng), our approach hallucinates
the same scene at a different time of day, e.g., from blue hour (just after sunset) to night in the
above example. Our approach uses a database of time-lapse videos to infer the transformation for
hallucinating a new time of day. First, we find a time-lapse video with a scene that resembles the
input. Then, we locate a frame at the same time of day as the input and another frame at the desired
output time. Finally, we introduce a novel example-based color transfer technique based on local
affine transforms. We demonstrate that our method produces a plausible image at a different time of
day.

scene taken at a different time of day.

The modification of a photo suggests the lighting of a different time of day is challenging
because of the large variety of appearance changes in outdoor scenes. Different materials and
different parts of a scene undergo different color changes as a function of reflectance, nearby
geometry, shadows, etc. Previous approaches have leveraged additional physical information such
as an external 3D model [66] or reflectance and illumination inferred from a collection of photos of

the same scene [68, 70].

In contrast, we want to work from a single input photograph and allow the user to request a
different time of day. In order to deal with the large variability of appearance changes, we use two
main strategies: we densely match our input image with frames from a time-lapse database, and we

introduce an edge-aware locally affine RGB mapping that is driven by the time-lapse data.

First, rather than trying to physically model illumination, we leverage the power of data and
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use a database of time-lapse videos. Our videos cover a wide range of outdoor scenes so that we can
handle many types of input scenes, including cityscape, buildings, and street views. We match the
input image globally to time-lapse videos of similar scenes, and find a dense correspondence based
on a Markov random field. For these steps, we use state-of-the-art methods in scene matching and
dense correspondence, modified to fit our needs. These matches allow us to associate local regions
of our input image to similar materials and scenes, and to output a pair of frames corresponding to

the estimated time of the input and the desired times of day.

Second, given a densely-aligned pair of time-lapse frames obtained from our first strategy, we
still need to address remaining discrepancies with our input, both because the distribution of object
colors is never exactly the same and because scene geometry never allows perfect pixel alignment.
If we apply traditional analogy methods such as Hertzmann et al. [53] and Efros and Freeman [32]
designed to achieve a given output texture and simply copy the color from the frame at the desired
time of day, the results exhibit severe artifacts. This happens because these methods do not respect
the fine geometry and color of the input. Instead, our strategy to address variability is to transfer
the variation of color rather than the output color itself. Our intuition is simple: if a red building
turns dark red over time, transferring this time of day to a blue building should result in a dark blue.
We leverage the fact that time lapse videos provide us with registered before-and-after versions
of the scene, and we locally fit simple affine mappings from RGB to RGB. Because we use these
models locally and because our first step has put our input in dense correspondence with a similar
scene, we are able to use a simple parametric model of color change. This can be seen as a form of
dimensionality reduction because the RGB-to-RGB mappings have less variability than the output
RGB distribution [42, 117]. In addition, we need to make sure that the affine color changes are
coherent spatially and respect strong edges of the image. We thus build on ideas from the matting
[72] and intrinsic decomposition fields [12] and derive a Laplacian regularization. We perform the
transfer by optimizing an L, cost function that simultaneously forces the output to be locally affine

to the input, and that this affine model should locally explain the variation between the two frames
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in the retrieved time lapse. We derive a closed-form solution for the optimization, and show that
this yields a sparse linear system. Figure 3-1 previews the result of day-to-night hallucination by

our approach.

Contributions Our contributions include the following:

> We propose the first time-of-day hallucination method that takes a single image and a time label

as input, and outputs a gallery of plausible results.

> We introduce an example-based locally affine model that transfers the local color appearance

variation between two time-lapse frames to a given image.

3.2 Related Work

Image Relighting and Color Transfer In computer graphics, physically rendering a picture at a
certain time of day requires meticulous modeling and manual works [60], and becomes impractical to
photographic applications. In contrast, current study suggests that a human vision system is far from
accurate, and offers a opportunity for image-based rendering. Deep Photo [66] successfully relights
an image when the geometric structure of the scene is known. Laffont er al. [68] demonstrates that
the intrinsic image derived from an image collection of the same scene enables the relighting of an
image. In both cases, the key to producing high-quality results is the availability of scene-specific
data. While this additional information may be available for famous landmarks, this data does not
exist in many cases. Our method targets a more general case that does not need scene-specific data.

It only relies on the availability of time-lapse videos of similar-looking scenes.

Approaches for color transfer [97, 99, 100] apply a global color mapping to match color
statistics between images. They work well in style transfer, but cannot be applied to time hallucina-

tion problem because the problem requires dramatic color appearance change. In comparison, our
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transfer is local and can distinguish the difference in color change between different image regions
in the input even if they have a similar color. Our experiments show that our approach yields better

results than global transfer.

Similarly to Lalonde et al. [70], we use time-lapse data to study color appearance variation at
different times of a day. Lalonde ef al. ’s work creates successful relit images by modeling the scene
geometry manually. In contrast to their technique, our method hallucinates images by automatically

transferring the color information from a time-lapse.

Example-based Image Colorization Example-based colorization [58] automatically generates
scribbles from the example image onto the input gray image, and then propagates colors in a way
that is similar to colorization using optimization [71]. In our problem, the scene color appearance is
usually different from the input, so the color palette in the time-lapse video is not sufficient. For
this, instead of direct copying the color palette from the example, we employ a locally affine model

to synthesize the unseen pixels from the time-lapse video.

Image Analogies Our work relates to Image Analogies [32, 53] in the sense that

input : hallucinated image :: matched frame : target frame

where the matched and target frames are from the time-lapse video. However, we cannot simply
copy the patches from target frame onto input image, because the texture and color in input are
different from time-lapse video. To accommodate the texture differences, we introduce the local

affine models to transfer the color appearance from the time-lapse video to the input.

Image Collections Recent research demonstrates convincing graphics application with big data,

such as scene completion [49], tone adjustment [16], and super-resolution [41]. Inspired by the
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(1) From the database, retrieve time-lapse videos similar to the input image (Sec 3.5.1)

(2) Compute a dense
correspondence across the input B

image and the time-lapse video, and M T
then warp the video (Sec.3.5.2)

Warped match frame

™

Affine color mapping learned
from the time-lapse video

(3) Locally affine transfer from the time-lapse video to the input image (Sec. 3.6).

Figure 3-2: Our approach has three steps. (1) We first retrieve videos of similar scene with the input
image (§ 3.5.1), and then (2) find the local correspondence between the input and the time-lapse
video (courtesy of Mark D’Andrea) (§ 3.5.2). (c) Finally we transfer the color appearance from the
time-lapse video to the input (§ 3.6).

previous success, our method uses a database of 495 time-lapse videos for time hallucination.

3.3 Overview of our method

The input to our algorithm is a single image of a landscape or a cityscape and a desired time of day.
From these, we hallucinate a plausible image of the same scene as viewed at the specified time of
day. Our approach exploits a database of time-lapse videos of landscapes and cityscapes seen as
time passes (§ 3.4). This database is given a priori and independent of the user input, in particular, it

does not need to contain a video of the same location as the input image.
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Our method has three main steps (Figure 3-2). First, we search the database for time-lapse
videos of scenes that look like the input scene. For each retrieved video, we find a frame that
matches the time of day of the input image and another frame at the target time of day (§ 3.5.1). We

achieve these two tasks using existing scene and image matching techniques [133].

Next, to locally transfer the appearance from the time-lapse videos, we need to locally match
the input and each video. We employ a Markov random field to compute a dense correspondence

for each time-lapse video (§ 3.5.2). We then warp the videos to match the input at the pixel level.

Finally, we generate a gallery of hallucinated results, one for each retrieved time-lapse video.
To transfer the appearance variations of a time-lapse video onto the input image, we introduce
an example-based transfer technique that models the color changes using local affine transforms
(§ 3.6). This model learns the mapping between the output and input from the time-lapse video, and

preserves the details of the input.

3.4 Database and Annotation

Our database contains 450 time-lapse videos, covering a wide range of landscapes and cityscapes,
including city skyline, lake, and mountain view. Figure 3-3 shows a mosaic of all the scenes in the
database Unlike most web-cam clips [70] or surveillance camera videos [59], our time-lapse videos
are taken with high-end setups, typically a DSLR camera on a sturdy tripod, that are less prone to
over-and under-exposure, defocus, and accidental shake. Our database is available at the project

website: people.csail.mit.edu/yichangshih/time_lapse/

The most interesting lighting for photographers are daytime, golden hour, blue hour (occurs
between golden hour and night), and nighttime [17]. For each time-lapse, we label the transition
time between the above four different lightings, so that the user can specify the hallucination time

by these semantic time labels.
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Figure 3-3: A snapshot of our time-lapse video database.

3.5 Matching Between the Input Image and Time-lapse Data

The first step of our algorithm is to determine the correspondence between the input image and the

time-lapse data. We first find a set of time-lapse videos with a similar scene as the input image, and
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then compute a dense correspondence between the input image for each matched time-lapse video.

3.5.1 Global Matching

The first step of our algorithm is to identify the videos showing a scene similar to the given input
image. We employ a standard scene matching technique in computer vision, adapting the code from
Xiao et al. [133] to time-lapse data. We sample 5 regularly spaced frames from each video, and
then compare the input to all these sampled frames. To assign a score to each time-lapse video,
we use the highest similarity score in feature space of its sampled frames. We tried the different
descriptors suggested in Xiao et al. ’s paper, and found that the Histograms of Oriented Gradients

(HOG) [24] works well for our data. We show some sample retrieval results in Appendix A.

Now that we have a set of matching videos, for each of them, we seek to retrieve a frame that
matches the time of day of the input image. We call this frame the matched frame. Since we already
selected videos with a similar content as the input image, this is a significantly easier task than the
general image matching problem. We use the color histogram and L, norm to pick the matched
frame. We show sample results in Appendix A. Our approach finding matching videos and frames

produced good results for our database but we believe that other options may also work well.

3.5.2 Local Matching

We seek to pair each pixel in the input image / with a pixel in the match frame M. As shown later
in Figure 3-11, existing methods such as PatchMatch [7] and SIFT Flow [76] do not produce
satisfying results because they are designed to match with a single image and are not designed
for videos. We propose a method exploiting the additional information in a time-lapse video by
constraining the correspondence field along time. For this, we formulate the problem as a Markov

random field (MRF) using a data term and pairwise term.
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Similarly to PatchMatch and SIFT Flow, for each patch in I, we seek a patch in M that looks
similar to it. This is modeled by the data term of the MRE. We use the L, norm over square patches
of side length 2 + 1. Formally, for pixels p € I and the corresponding pixel ¢ € M, our data term
is: r

By =" |y + i,y +5) = M{zg + 1,95+ )| 3.1)

i=—r j=—r
We then leverage the information provided in a time-lapse video. Intuitively, we want the adjacent
patches to look similar at any time of the video. This is captured by the pairwise term of the MRF.
Formally, we introduce the following notations. For two adjacent pixels p; and p; in I, we name
(2 the set of the overlapping pixels between the two patches centered at p; and p;. For each pixel
o € (1, we define the offsets 9, = o — p; and §; = o — p,. For the energy we use L, norm within
each frame ¢, but L., norm across frames so that the assigned compatibility score corresponds to

the worst case over the video V. This gives the pairwise term as:

Es(qs, Qj) = m?‘XZ”‘/If(qi +0;) — Vt(CIj + 5]')H2 (3.2)

0€QN

Denoting A\ parameter controlling the importance of the compatibility term compared to the

data term, /V; the neighboring pixels of i, one could find ¢ by trying to minimize the energy:

Y Eipna) + A Bagiq) (3.3)
i€l i€l jEN;
by considering all possible pairings between a pixel in [ with a pixel in V. However, this would
be impractical because of the sheer number of possible assignments. We now explain below how
to select a small number of candidate patches so that the optimization of Equation 3.3 becomes

tractable.
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Candidate Patches A naive way to select a few candidate patches for each location would be
to pick the top n patches according to the data term £;. However, this tends to return patches
that are clustered around a small number of locations. This lack of diversity later degrades the

transfer. Instead of picking the top candidates, we randomly sample the candidates according to the

1 Ey

probability:

where Z is a normalization factor and o controls how diverse the sampled patches are. This strategy
yields a candidate set with more variety, which improves the transfer quality. In practice, we sample

30 patches, and use A = 0.5 and 0 = 20. We minimize Equation 3.3 using Belief Propagation [139].

Discussion Our sampling strategy is akin to the seminal work proposed by Freeman et al. [40],
except that we do not explicitly enforce diversity as they do. Testing their approach in our context
would be interesting, but since we obtained satisfying results with the approach described above,

we leave this to future work.

3.6 Locally Affine Color Transfer

The core of our method is the example-based locally affine color transfer. The transfer starts
from the input image /, the warped match frame M, the warped target frame T, and output the

hallucinated image O (See Figure 3-2).
We design the transfer to meet two goals:

e We want it to explain the color variations observed in the time-lapse video. We seek a series

of affine models { A} that locally describe the color variations between T and M.

e We want a result that has the same structure as the input and that exhibits the same color
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change as seen in the time-lapse video. We seek an output O that is locally affine to /, and

explained by the same affine models {Ay}.

A naive solution would be to compute each affine model A, as a regression between the k™ patch
of M and its counterpart in T, and then independently apply A, to the k™ patch of I for each k.
However, the boundary between any two patches of O would not be locally affine with respect to
I, and would make O have a different structure from 7, e.g., allows for spurious discontinuities to
appear at patch boundaries. Instead of this naive approach, we formulate this problem as a least-
squares optimization that seeks local affinity everywhere between O and I. We also specifically

account for the possibility of the data of being corrupted by noise and compression artifacts.

3.6.1 L--optimal locally affine model

We use a matrix formulation to describe our approach. We use vy (+) to denote the k™ patch of an
image given in argument. For a patch containing N pixels, vi () is a 3 x N matrix, each column
representing the color of a pixel as (7, g, b)". We use v(-) to denote the patch augmented by ones,
i.e., 4 x N matrix where each column is (r, g, b, 1)T. The local affine functions are represented by

3 x 4 matrices, Aj. With this notation, the first term in our energy models the need for the Ay

matrices to transform M into 7. With a least-squares formulation using the Frobenius norm | -

F»

i.e., the square root of the sum of the squared coefficients of a matrix, this gives:
= N
D vi(@) = Apwi(M)| 3.5)
k

We also want the output patches to be well explained by the input patches transformed by the A

matrices:

> |vi(0) — Ap (D) (3.6)
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Finally, we add a regularization term on the A matrices for the case when Equation 3.5 is under-

constrained e.g., vy (M) is constant. For this we regularize Ay using a global affine model G, the

regression by the entire picture of M and T, with the Frobenius norm. Formally, we solve

O = argming (4, ZHVk(O) — Ay \_/k,([)H2
k

k k

where € and vy control the relative importance of each term.

Discussion Equation 3.5 alone would correspond to standard local linear regression. With such
formulation, overlapping affine transforms would be independent from each other and they could
potentially predict widely different values for the same pixel. With Equation 3.6, overlapping
transforms are explicitly constrained to produce consistent values, which forces them to produce a

result coherent over the whole image.

Closed-form Solution In this section, we derive a closed-form solution for Equation 3.7. We
follow a strategy similar to Levin ef al. [72] and Bousseau et al. [12] and remove the A functions
from the equations by expressing them as a function of the other variables. That is, assuming that O
is known, Equation 3.7 becomes a standard linear least-squares optimization problem with the Ay

matrices as unknowns. Denoting Id,, an n x n identity matrix, this leads to:

Ai = (vi(O)(D)T + evi(T)w(M)T + 7 G)

(Vi(DVR(D)T + v (M) (M)T +~1dy) " (3.8)
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Then, defining By, = (V4 (I)Vi(I)T + evi (M) vy (M)T +71d,) !, a minimizer of Equation 3.7 is:

O=M"'u
with: M = Zk hftk (IdN — Vk(I)TBka(I))

u = Zk 11ftk((€Vk(T)\_/k(M)T -+ "}/G)Bk\_/k([))

where lift,(-) is an operator that lifts matrices and vectors expressed in the local indexing system of

the k" patch into larger matrices and vectors indexed in the global system of the image.

Model Expressivity We demonstrate the expressivity of our model by taking a frame from a
time-lapse video as input, and hallucinating to another time using the same time-lapse video. In
Figure 3-4 we show this model can express dramatic color appearance, such as day-to-night and
night-to-day. We test on various scenes in the Appendix A. For all results in this work, we use
e = 0.01, v = 1 (pixel value € [0,255]), N = 25 (5 x 5 patch). We compare the choice of affine
model versus linear model in Appendix A. The residuals show locally affine model is better than

linear model.

Link with Illumination Transfer If the patches in [ and the warped time-lapse are Lambertian,
then our method becomes illumination transfer. In this case, the local affine model degenerates to
diagonal matrix with the last row equal to zeros. The non-zero components are the quotient of the
illuminations between the target and the match frame. For non-Lambertian patches, such as sky
and water, our method produces visually pleasing results by using non-diagonal components in the

model.

Link with the Matting Laplacian M in Equation 3.9 is similar to the Matting Laplacian [72],
except that the local scaling factor By, is (v (1) v (1) + evi(M)Tvi (M) + ’yIdk,)_1 whereas for
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the Matting Laplacian, it is (Vk(f )vi(I) + vldk) !, That is, in addition to the covariance of the

input data, our method also accounts for the covariance of the example data.

3.6.2 Dealing with Noisy Input

The affine mapping has a side effect that it may magnify the noise existing at the input image,
such as sensor noise or quantization noise. This problem usually appears when the affine model is
under-constrained, which may lead into large coefficients in the affine model. We propose a simple
yet effective solution to avoid the noise magnification. We first use bilateral filtering to decompose
the input image into a detail layer and a base layers, the latter being mostly noise-free. We then
apply our locally affine transfer to the base layer instead of the input image. Finally, we obtain the
final result by adding the detail layer back to the transferred base layer. Since the base layer is clean,
the noise is not magnified. Compared to directly taking the input image, we significantly reduce the

noise, as shown in Figure 3-5.

3.7 Results and Comparison

Figure 3-6 illustrates the result of our transferring approach, which transfers the color changes
between the target and matched frame to the input. The result produced by our method is more

visually pleasing than using only the target frame.

Figure 3-7 shows our method applied to two day-time images. For each of the two images,
we hallucinate four times of day: “day”, “golden hour” (i.e., just before sunset), “blue hour” (i.e.,
just after sunset), and “night”. We use the top two time-lapse videos retrieved in our database, each
produces a different plausible hallucination, thereby enabling the exploration of various possible

renditions of the desired time of day. These results at four times of day illustrate the ability of

our approach to cope with dramatic appearances. We observed that the appearance of city-scape
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time-lapse usually has larger variability than natural landscape, and so the renditions produced
by cityscape input usually have more variations. Figure 3-8 shows the hallucination works from
various scenes. Figure 3-9 show that our approach also handles input images taken at different times

of day.

Figure 3-10 compares our hallucinated image to an actual photo of the same scene, and shows
that, while our result is different, it is nevertheless plausible. In our project website!, we provide the
results of our technique applied to all the landscapes and cityscapes within the first 101 images of

the MIT-Adobe fiveK dataset [16].

Figure 3-11 shows that in our context, our MRF-based method to compute the dense cor-
respondence field performs better than PatchMatch [7] and SIFT Flow [76]. This is because we
exploit the information across the time-lapse frames, as opposite to only using the target frame.
Figure 3-12 demonstrates that our local affine transform model preserves image details better than

an edge-aware filter like the Joint Bilateral Filter [33, 92] or the Guided Filter [50].

Performance We measure the average performance using 16 inputs in MIT-Adobe fiveK dataset
[16]. We scale all input images to a 700-pixels width. For each input, the matching takes 25
seconds total, split into 23 seconds for local matching and 2 seconds for global matching. For each
hallucinated result, the transfer takes 32 seconds. We use conjugate gradient descent in Matlab and

incomplete Cholesky decomposition as a preconditioner to solve the linear system.

3.7.1 Comparison to Previous Work

Figure 3-13 compares our approach to techniques based on a global color transfer [97, 100].

While these methods succeed to some degree, their results are not always as accurate as ours. In

'http://people.csail.mit.edu/yichangshih/time_lapse/webpage/
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comparison, our results are cleaner. The local nature of our approach allows it to make better

matches, e.g., sky to sky and building to building.

We also tried to compare with the technique of HaCohen et al. [45] that first finds dense
correspondences and then performs a parametric color transfer. We found their method is not
applicable in our case, because our target frame is a different scene from the input image. For all

the examples in Results section, their implementation reported that no match was found.

Another thread in recent research that demonstrates successful image illumination transfer
uses rich information of the scene, such as Deep Photo, which leverages depth map and texture of
the scene [66], or Laffont ef al. [68], which uses intrinsic image and illumination from a collection
of images of the same scene. In Appendix A, we show that our results are on par with these methods
even though our approach uses a generic database of time-lapse videos instead of scene-specific

data.

Discussion While the methods of Piti€ ef al. [97] and Reinhard et al. [100] directly transfer the
colors of the target image, our approach transfers the color transformation from the matched frame
to the target frame. This may produce less intuitive outputs than a direct color transfer. However, in
practice, users do not see the target frame and as a consequence, have no expectation to match its
look. And, more importantly, transferring the color transformation allows us to be less sensitive
to the image content. For instance, Figure 3-6 shows that a direct color transfer produces a weak
golden hour look because it ignores that the input photo has a content that contains warm colors. In
comparison, our approach transfers the color transformation and warms up the image a lot more,
which corresponds to the change observed in the time-lapse video, and produces a more convincing

golden hour rendition.

User Study A successful hallucinated image should look natural to a human observer. Inspired

by image inpainting [49], we performed a user study to quantitatively evaluate whether human
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observers believe our results are real images.

We performed the study with 9 images randomly selected from 9 different time-lapse videos.
For each image, we randomly selected 6 or 7 target frames from the top 10 retrieved videos. Then
we generated hallucinated images with our approach and Reinhard et al. ’s method [100]. As
baseline, we randomly selected 6 or 7 frames from the input image’s time-lapse video. In total, we
used 59 results of 9 different scenes for each method. We then mixed the output from our method,
Reinhard et al. ’s technique with real time-lapse frames, and randomized the order. For each image,

we ask 5 testers if the image is real or fake.

We performed this task on Amazon Mechanical Turk. 55.2% of our results were classified
real. In comparison, the percentage was 66.4% for the real time-lapse frames and 48.8% for
Reinhard et al. ’s method [100]. As expected our approach does not perform as well as actual video

frames, but, nonetheless users prefer our method to Reinhard et al. ’s method.

3.7.2 Applications

In addition to time hallucination, our method can be used for different graphics applications.

Lighting and Weather Transfer In Figure 3-14, the matched and target frames are selected close
in time but the target is more sunny. Our algorithm successfully transfers the sunshine to the input

image to create a sunny output.

Similarly, we can transfer weather conditions by choosing a target with a different weather
from the input. In Figure 3-15, we create a cloudy image from a sunny input by transferring the

color properties of a cloudy target image.



3.8. Discussion and Conclusion 65

Hallucinating Paintings Figure 3-16 shows that our approach also applies to paintings, even

though our method is designed for realistic photos.

Synthetic Time-lapse Video By interpolating between the hallucinations at four different times,
we generate continuous lighting changes. We show several example videos on our project website?.
We envision that this could also be used to enable users to choose an arbitrary time of day, e.g., with

a slider that selects a frame of the synthetic time-lapse video.

3.8 Discussion and Conclusion

The main novelty of this work is the idea of leveraging time-lapse database for light transfer.
Compared to data-driven image completion which leverages millions images [49], it is surprising
that with only 450 videos we can achieve convincing results. This is due to our contributions in a

example-based locally affine model.

Limitation Our method still has some limitations. If an object is not static or nearly static in the
scene, there may be problems finding correspondences. For example, time-lapse videos do not
have humans in the scene, so we do not have a proper model for human skin. Moving clouds in
the sky can also cause flickering when synthesizing a new time-lapse video with our method using
frame-by-frame transfer. Picking a few keyframes and interpolating between them would perform
better as shown in the videos on the project website, but the motion of the clouds would still not be

captured.

Our method can hallucinate results that, while visually plausible, may not be physically

accurate, for example, shadows and highlights that are not consistent. Even if an hallucination is

nttp://people.csail.mit.edu/yichangshih/time_lapse/
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technically successful, the result may not always be visually pleasing. For instance, landscapes
at night may be overly dark due to the lack of lights. The ability to choose among several results

rendered from different time-lapse videos helps mitigate these issues.

Our method can be applied to many graphic applications. For example, in scene completion
and image-based rendering, our approach could hallucinate images from different times of a day

into a similar time as a pre-processing step.

Beyond the graphics application, perhaps a deeper question is this: can we learn the image
feature evolution along time by observing enough time-lapse data? We are excited at more research

using time-lapse data.
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The ground truth The ground truth

Figure 3-4: Our locally affine model is expressive enough to approximate dramatic color change,
such as night-to-day and day-to-night (left and right column). As a sanity check, we pick two frames
from the same video at different times as input and target. We also use the input as matched frame
and apply our model. In this situation, if local affine transforms correctly model the color changes,

the output should closely match the target, which the ground truth in this scenario. Our result shows
that this is the case.
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it

IR 1818 nipic.com/ jiewen W18 nipic.com/ jlewen

(b) Target frame (¢) Locally affine model (d) Our noise reduction transfer

Figure 3-5: The noise in JPEG input (a) results in artifact at the output of locally affine model (c).
Our noise-robust affine model significantly reduces the noise (d). Image courtesy of Jie Wen (a) and
Reanimated Studio https://vimeo.com/34362088 (b).

(a) Matched frame (b) Target frame

(¢) Input (d) Photoshop Match Color (e) Our result

Figure 3-6: Producing a golden hour rendition of a scene that contains warm colors (c) using a
direct color transfer from image (b) generates a weak effect (d). We created this result with the
Photoshop Match Color function. In comparison, our approach transfers the color transformation
between the matched frame (a) and the target frame (b) and captures the strong color change
characteristic of the golden hour (e).
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Figure 3-7: We hallucinate the house and lake at four different times of day. Each time, we show
the results for two retrieved videos.
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Input: a building Output: at night

Input: landscape Output: at blue hour

Input: a landmark Output: at golden hour

Figure 3-8: Our approach works for various scenes, including a building, a mountain, and a
famous landmark. The dramatic changes for different times of day are visually plausible.
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Cloudy input Blue hour output

Blue hour input

Golden hour input Day output

Figure 3-9: Our method can take input at various times of day: cloudy, blue hour, and golden hour.
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(a) Input (b) Our hallucinated result (¢) Actual night photo of the same
scene

Figure 3-10: We hallucinate a photo at night, and compare to a reference photo at the same location
at night. Our result (b) is different from the actual photo (c) but nonetheless looks plausible.
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(a) Input (b) Ground truth

(¢) Target warped by SIFT Flow (d) Output after SIFT Flow warping

(e) Target warped by PatchMatch (f) Output after PatchMatch warping

(g) Target warped by our method (h) Our output

Figure 3-11: We picked a frame in a time-lapse video (a) and hallucinate it at night. We compare
the warped target frame and the final outputs by PatchMatch [7], SIFT Flow [76], and our approach.
Since the input comes from a time-lapse video, we compare the outputs to the ground truth (b).
Warping the target frame using PatchMatch or SIFT Flow produces unsightly discontinuities (c,e)
that are still visible in the final outputs (d,f). In comparison, our algorithm does not introduce
strong discontinuities in the warped frame (g) and produces a better result (h). While none of the
outputs (d,f,h) is similar to the ground truth (b), ours is more plausible and visually more pleasing.
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(a) Input (b) Blue-hour target

A

(c) Warped target (d) Guided Filter using (a) and (c)

(e) Joint BF using (a) and (c)

Figure 3-12: We compare our model to the Joint Bilateral Filter [33, 92] and the Guided Filter [50].
For these filters, we use the warped target as the input, and the original input as guidance. In both
cases, the results exhibit significant loss of details. In comparison, our approach produces sharp
outputs.
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(b) Target frame (¢) Pitié et al. [97]

(d) Reinhard et al. [100] (e) Our result

Figure 3-13: Global methods generate only moderately convincing results (c,d). In comparison,
our local affine transforms provide more flexibility in modeling spatially varying color changes,
which produces a better result (e).
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Figure 3-14: The two target frames shown in the insets are taken at close times but under different
lighting conditions. Our method increase the vibrancy by transferring the lighting to an ordinary
photo.

Figure 3-15: We hallucinate the weather for the right half of this panorama. We transfer the
difference between two kinds of weather in the time-lapse to a photo.
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=

Original painting Hallucinated output

Figure 3-16: Paintings in realism. From top to bottom:- “In the Auvergne", Jean-Francois Millet.
"Lourmarin”, Paul-Camille Guigou. We hallucinate the top one to blue hour, and handpick a cloudy
frame for the bottom one.
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Chapter 4

Portrait Style Transfer

4.1 Introduction

Headshot portraits are a popular subject in photography. Professional photographers spend a great
amount of time and effort to edit headshot photos and achieve a compelling style. Different styles
will elicit different moods. A high-contrast, black-and-white portrait may convey gravity while a
bright, colorful portrait will evoke a lighter atmosphere. However, the editing process to create such
renditions requires advanced skills because features such as the eyes, the eyebrows, the skin, the
mouth, and the hair all require specific treatment. Further, the tolerance for errors is low, and one
bad adjustment can quickly turn a great headshot into an uncanny image. To add to the difficulty,
many compelling looks require maintaining a visually pleasing appearance while applying extreme
adjustments. Producing such renditions requires advanced editing skills beyond the abilities of most
casual photographers. This observation motivates our work: we introduce a technique to transfer
the visual style of an example portrait made by an artist onto another headshot. Users provide an
input portrait photo and an example stylized portrait, and our algorithm processes the input to give

it same visual look as the example. The output headshot that we seek to achieve is the input subject,

79
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) TER S,
(a) Input: a face photo (b) Outputs: new headshots with the styles transferred from the examples in insets

Figure 4-1: We transfer the styles from the example portraits in the insets in (b) to the input in
(a). Our transfer technique is local and multi-scale, and tailored for headshot portraits. First, we
establish a dense correspondence between the input and the example. Then, we match the local
statistics in all different scales to create the output. Examples from left to right: image courtesy of
Kelly Castro, Martin Schoeller, and Platon.

but as if taken under the same lighting and retouched in the same way as the example. We also
support the case in which an artist has produced a collection of portraits in a consistent style. In this
case, our algorithm automatically picks a suitable example among the collection, e.g., matching
beardless examples to beardless inputs. This enables the stylization of a large set of input faces

without having to select an example for each one manually.

From a technical perspective, editing headshots is challenging because edits are made locally
— hair does not receive the same treatment as skin, and even skin may be treated differently over the
forehead, cheeks, and chin. Further, lighting is critical to the face’s appearance: point light sources
generate very different appearance from area lights and similarly for front versus side lighting. For
these reasons, algorithms that automate the editing of generic photographs often perform poorly on
headshots because they are global, or ignore the specificities of headshot retouching. For example,
we show in the results section the limitations of the global style-transfer approach of Bae et al. [6]

when applied to headshots.
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We address these challenges with an approach specific to faces. First, we precisely align
the input and example faces using a three-step process. Then, motivated by the artists’ use of
brushes and filters with different radii to manipulate contrast in different scales, we introduce a new
multiscale approach to transfer the local statistics of the example onto the input. Matching the local
statistics over multiple scales enables the precise copying of critical style characteristics such as
the skin texture, the hair rendition, and the local contrast of the facial features. All these elements
exhibit sophisticated spatial frequency profiles, and we shall see that our multiscale algorithm
performs better than single- and two-scale methods. We designed our algorithm to be tolerant to
the differences that inevitably exist, even after alignment, between the input and example faces.
Another important feature of the algorithm is its ability to exploit a mask to transfer only the face
statistics while ignoring those of the background. We produce the final result by transferring the
eye highlights and matching the example background. Figure 4-1 previews some results by our
algorithm. When a series of consistently stylized headshots is available, we can automatically
estimate the success of this transfer procedure and select the highest ranked example, thereby

automatically selecting a suitable reference portrait among the many available.

Contributions This work introduces the following contributions:

> Given an input unprocessed headshot and a model headshot by an artist, we describe an automatic

algorithm to transfer the visual style of the model onto the input.

> We introduce a multiscale technique to transfer the local statistics of an image. We explain how

to focus the transfer on a region of interest and how to cope with outliers.

> We describe an automatic algorithm to select a suitable example among a collection of consistently

stylized headshots.
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4.2 Related Work

Global Transfer Transferring global statistics from one image to another can successfully mimic
a visual look for cases such as still lifes and landscapes, e.g., [6, 45, 97, 100, 118, 120]. But, as
discussed above, portraits can require a different treatment for each spatial region. That said, our
approach shares some characteristics with those style-transfer algorithms. Like Reinhard et al. [100],
Pitié et al. [97], and Tai et al. [120], we transfer the color palette. Like Sunkavalli ef al. [118], we
use a multiscale image decomposition [15, 88]. We rely on a dense correspondence between
the input and example akin to HaCohen et al. [45] and, like Bae et al. [6], explicitly focus on
photographic style. We transfer the image local contrast, as do Bae et al. , but introduce a fully
multiscale approach instead of using their two-scale method. For portrait stylization, this local and

spatially varying approach matches the desired style much better.

Local Transfer Other authors have applied local stylistic changes in different contexts. Cohen-
Or et al. [22] locally change image colors to produce images with a more harmonious color palette,
Wang et al. locally apply color schemes [124] and transfer the look of specific cameras [125], and
Shih et al. [111] locally remap image colors to render outdoor scenes at a new time of day. All

these methods aim for a different application than ours.

Example-based Face Enhancement Face-specific applications has been gaining interests in
computer graphics [38, 62]. Joshi ef al. [61] and An and Pellacini [4] successfully transfer color
balance and overall exposure. Tong et al. [122] and Guo et al. [44] transfer make-up. Brand
and Pletscher [13] and Leyvand er al. [74] improve face appearance. In comparison, we focus
specifically on photographic style transfer, including aspects such as skin texture, local contrast,

and light properties.
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(a) Input (b) Example (¢) Compute the (d)Locally matchthe (e) Transfer eye
dense correspon- power map between highlights and
dence between (a) (a) and (b). This is background
and (b) the key of our work.

Figure 4-2: Overview of our approach: given an input (a) and an example (b), we start by finding
the dense correspondence field between them. In (c), we visualize the correspondence by warping
(b) to (a). Then we decompose (a) and (b) into Laplacian stacks, and match the local statistics in
each scale. We aggregate the new stack to create (d). Finally, we transfer the eye highlights and the
background (e).

Face Synthesis Our work is related to face synthesis [77, 83] in that we generate a portrait that
can differ dramatically from the input. However, unlike Mohammed et al. [83], we seek to retain
the identity of the person shown in the input photo. Liu et al. [77] do that, but consider the different

problem of resolution enhancement.

Face Relighting Altering the illumination on a face is a common operation for face recognition
and video editing, e.g., [91, 128, 141]. In comparison, we focus on photographic style. While this
may involve some illumination change, it is not a primary objective of our work and we do not

claim a contribution in this area.
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4.3 Multiscale Local Transfer

Our goal is to match the appearance of the input subject to the example. In this work, the styles that
we target are typically achieved by local operations on image intensity, e.g., recolor and contrast,
and some amount of illumination and defocus, but do not include changes of expression, pose,

shape, perspective, or focal length.

Figure 4-2 shows the intermediate results of each step in our method. We start from an
untouched input face photo, typically taken by an untrained user under arbitrary lighting conditions,
and a stylized headshot as the example, typically taken by a professional under studio lighting and
retouched. We assume that the input and example have approximately similar poses and facial
expressions. We first establish a dense correspondence between the input and the model, that is,
each input pixel is put in correspondence with a pixel of the model (§ 4.3.1). Then, we transfer the
local statistics of model onto the input (§ 4.3.2) — this is the core of our approach. Finally, we

transfer the eye highlights and the background (§ 4.3.3).

4.3.1 Dense Correspondence

To obtain correspondences between the input and reference images, we take a coarse-to-fine
approach, using a series of off-the-shelf tools. We detect the facial landmarks using a template
[105]. This gives us 66 facial landmarks as well as a triangulated face template. First, we roughly
align the eyes and mouth of the example with those of the input using an affine transform akin to
Joshi et al. [61]. Then, we morph the example to the input using the segments on the face template
[9]. This initial estimation often successfully aligns the eyes and mouth, but misses important edges
such as the face contour and mouth. The final step is to refine the correspondence using SIFT
Flow [78]. Figure 4-2 (b) and (c) shows an example headshot before and after alignment. The facial

features — eyes, nose, mouth, hair — are put in correspondence with the input but the identity
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remains that of the example photo, i.e., the warped example is not the result that we seek. The next
section explains how to transfer the local properties of the warped example while preserving the

identity of the input.

4.3.2 Multiscale Transfer of Local Contrast

In this section, we seek to transfer the local contrast of the example onto the input. Our goal is to
match the visual style of the example without changing the identity of the input subject. That is, we
want the output to represent the same person as the input with the same pose and expression, but
with the color and texture distribution and overall lighting matching the example. We perform this
operation at multiple scales to deal with the wide range of appearances that a face exhibits, from the
fine-grain skin texture to the larger signal variations induced by the eyes, lips, and nose. Further,
working at multiple scales allows us to better capture the frequency profile of these elements,
akin to the work of Heeger and Bergen [52]. Our technique builds upon the notion of power
maps [6, 75, 82, 114] to estimate the local energy in each image frequency subband. Similarly
to Li et al. [75], to prevent aliasing problems, we do not downsample the subbands. The rest of
this section details our technique. For clarity’s sake, we first assume grayscale images and that
the region of interest is the entire image. We later explain how to adapt our algorithm to deal with

colors and to use a mask.

Multiscale Decomposition As illustrated in Figure 4-3, the first step of our algorithm is to
decompose the input and example images into multiscale Laplacian stacks. We describe the
procedure for the input image [; the same procedure applies for the example image E. The

construction uses a 2D normalized Gaussian kernel G(¢) of standard deviation o. Using ® as the
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convolution operator, we define the level L, at scale ¢ > 0 of the input Laplacian stack as:

[—1®G(2) if =0
LI} = 4.1)

I®GR2H-TeGE2%Y) if>0

and for a stack with n > 0 levels, we define the residual as:

R[I) =1 ® G(2") 4.2)

Local Energy Inspired by power maps [6, 75, 82, 114], we estimate the local energy S in each
subband by the local average of the square of subband coefficients. Intuitively, this estimates
how much the signal locally varies at a given scale. Concretely, since we do not downsample the
Laplacian layers, we adapt the size over which we average the coefficients to match the scale of the

processed subband. For the /" subband, this gives:
SelIl = L7[I) ® G(211) (4.3)

For the example image F, we account for the correspondence field that we have computed previously

(§ 4.3.1). Using W (-) for the warping operator defined by this field, we compute:

Se[E] = W(S([E]) 4.4)

where we compute S;[F] with Equation 4.3. Estimating the energy before warping the data avoids

potential perturbations due to distortion and resampling.

Robust Transfer Using these two estimates (Equations 4.3 and 4.4), we modify the input

subbands so that they get the same energy distribution as the example subbands. Letting O be the
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output image, we formulate a first version of our transfer operator as:

Lg[O] = Lg[]} x Gain (45&)

Sy[E)

th Gain — (| 20
with Gain S +e

(4.5b)
where € is a small number to avoid division by zero (e = 0.012, I is between [0,1]) and the
square root compensates for the square used to define the energy in Equation 4.3. The gain maps
(Equation 4.5b) in Figure 4-3 show how they vary over space to capture local contrast. Intuitively,
gain values below 1.0 mean a decrease of local contrast, and conversely, values greater than 1 mean
an increase. While this version works well overall, it can introduce artifacts where I and £ mismatch.
For instance, if the example has a mole and not the input, the gain map (Equation 4.5b) will spike at
the mole location, generating a mole in the output that does not exist on the input. Another common
case is an input with glasses and an example without. The gain map (Equation 4.5b) has low values
along the glasses, which produces unsightly phantom glasses in the output. Figure 4-4 illustrates
these two cases. These problems correspond to outliers in the gain map. We address this issue by

defining a robust gain map that clamps high and low values, and smooths the gains:
RobustGain = max(min(Gain, 6;), ;) ® G(32%) (4.6)

We use 6, = 2.8, 0, = 0.9, § = 3, and n = 6 for the Laplacian stack in all our examples. Finally,
for the output residual, we directly copy the warped example residual, i.e.: R[O] = W (R[E]). This

step captures the overall lighting configuration on the face as shown by Wen et al. [128]

Discussion  The choice of the neighborhood size that we use to estimate the local energy is

critical. Neighborhoods that are too large make the transfer almost global and poorly reproduce the
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desired style. Neighborhoods that are too small make the transfer similar to a direct copy of the
example values — while this faithfully transfers the example style, it also copies the identity of the
example subject, which is not acceptable. The size that we use in Equation 4.3 strikes a balance and

transfers the example style while preserving the input identity. Figure 4-5 illustrates this trade-off.

Dealing with Colors We work in the CIE-Lab color space because it approximates human
perception, and process each channel independently using the algorithm that we just described. We
use the fact that the human visual system is less sensitive to chrominance variations to not process

the a and b high frequencies; in practice, we skip the first three subbands.

Using a Mask We extend our transfer algorithm to use a mask defining a region of interest.
Intuitively, we truncate the Gaussian convolutions so that they only consider values within the mask.

In practice, we replace each Gaussian convolution (Equations 4.1, 4.2, 4.3, and 4.6) as follows:

(Image x Mask) @ G

Mask @ G S

Image ® G ~

This operation can also be interpreted as convolving premultiplied alphas and unpremultiplying the

result.

In practice, we run GrabCut [103] initialized with a face detection result to find a binary mask
that we refine using the Matting Laplacian [72]. As shown in Figure 4-6, without a mask, the large
differences that may exist in the background region perturb the transfer algorithm near the face

contour, and using a mask solves this problem.
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4.3.3 Additional Postprocessing

The multiscale transfer algorithm that we have just described matches the local contrast, the color
distribution, and the overall lighting direction of the example headshot. In this section, we add two

additional effects: matching the eye highlights and the background.

Eye Highlights The reflection of the strobes in the eyes is often an important factor of a headshot
style. To transfer the eye highlights from the example onto the input, we separate the specular
reflection from the example eyeball and copy that onto the input’s eyes. On the example, we first
locate the iris using circular arc detection around the position given by the face template [26].
Then, we create an approximate segmentation in to iris, highlight, and pupil by running a k-means
algorithm on the pixel colors with k£ = 3. We refine the reflection mask using alpha matting [72]
(Figure 4-7). On the input, we detect the existing highlights as the brightest pixels in the iris region.
In practice, we use a threshold of 60 on the L channel of CIE-Lab colorspace. Then, we erase the
detected pixels and fill in the hole using inpainting. We used the griddata Matlab function that
was sufficient in our experiments. One could use a more sophisticated algorithm, e.g., [8], to further
improve the results if needed. Finally, we compose the example highlights on top of the input eyes.

We center them using the pupils as reference, and scale them in proportion of the iris radius.

Background The background also contributes to the mood of a portrait [93, § 2]. For this purpose,
we directly replace the input background with the example background. We use the previously
computed masks to extract the example background and replace the input background with it. If
needed, we extrapolate the missing data using inpainting — we use the griddata Matlab function

in practice. Figure 4-2e illustrates this process.
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4.3.4 Automatic Selection of the Example in a Collection

Many photographers produce collections of headshots with a consistent and recognizable style. For
such cases, we provide an algorithm for the automatic selection of the best example for a given
input. A good candidate has similar facial characteristics to the input, such as both having beards.
Inspired by research in face retrieval [3, 123], we use the local energy .S in Equation 4.3 as the face
feature vector, and look for the candidate with the closest distance to the input in feature space.
We concatenate Sy over all scales to get the feature vector representing a face image, and use the
normalized cross correlation between the two feature vectors as the similarity function. We found
this choice more robust to image retouching than the L, distance. For computational efficiency, we

do not warp the example image in the searching step.

For our experiments, we use a portrait collections database by three different photographers
who are unaffiliated to us. Each collection has on the order of 50-75 example headshots. In all our

results, we use the example selected automatically unless otherwise specified.

4.4 Results

Figure 4-8 shows our style transfer for compelling styles created by three different photographers.
The examples are selected by our automatic algorithm as the best candidate for each input. We
selected these three styles because they are widely different from each other, with black-and-white
and colors, low key (i.e., dark) and high key (i.e., bright), soft and detailed. Further, they also differ
significantly from the inputs. Our method successfully transfers the tone and details, for input

photos under indoor and outdoor lighting conditions, and subjects of both genders.

Figure 4-9 shows how different styles generate different gain maps. The low-key and highly

contrasted style emphasizes the details on the entire face. The warm color and soft lighting style
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preserves most of the details, and slightly emphasizes the forehead. The high contrast black-and-

white style sharpens the face borderline but smoothes the cheeks.

To verify the robustness of our method, we also tested it on 94 photos collected from the
photography website Flickr. The results are shown on our project website!. To collect the dataset,
we searched for photos with the keywords “headshot" and “portrait," then automatically filtered
out profile faces using a face detector, and removed faces whose eye distance is below 150 pixels
to ensure sufficient resolution. The dataset contains a large variety of casual headshot photos with
various facial features such as beard, accessories, and glasses, as well as people of different gender,
age, skin color, and facial expression. The photos are taken under a variety of uncontrolled lighting
conditions, both indoors and outdoors. This dataset is challenging because some photos are noisy
due to low-light conditions, and the background can be cluttered which makes matting hard. The
full results on this dataset are can be found at people.csail.mit.edu/yichangshih/

portrait_web/

Figure 4-10 shows results with diverse success levels. The output quality depends on the
input data; our method works best on well-lit and in-focus photos in which facial details such as
skin pores are visible. Figure 4-11 shows that our method captures some amount of illumination
change when the lighting setups in the input and example are different. However, our method is not

specifically designed for face relighting and we claim no contribution in this field.

Comparison to the reference image Figure 4-12 compares our style transfer to a reference
portrait of the same subject made by the photographer who created the example. Even though the
example and the reference are different subjects, our method successfully transfers a look that is
visually similar to the reference, including mimicking the highlights, shadows, and the high contrast
style. In Appendix B, we provide the result of using the reference in Figure 4-12 as the example.

This is to test the ideal scenario that the database is sufficiently large so that we can find an example

'http://people.csail.mit.edu/yichangshih/portrait_web/#results
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almost identical to the input.

Automatic example selection Figure 4-13 shows the transfer using the top three examples se-
lected by our automatic algorithm. Given an input with beard and sideburns, our algorithm
successfully retrieves the examples that match the beard on the input. Further, while the transferred
results vary because of using different examples, they are nonetheless all plausible and have similar
tone and details. In Appendix B, we provide the transferred results using the top four candidates on

all the three styles.

Global dynamic range In a few cases, our local statistic matching does not reproduce the example
global dynamic range, as shown in Figure 4-14. A naive solution is to transfer the histogram from
the example but this may lose facial details when the example has wide dynamic range with nearly
saturated regions. Instead, we suggest to balance the local details and global range by averaging the

local statistic matching result with and without histogram transfer applied as a post-process.

Manual correction Figure 4-15 shows examples of manual corrections applied to correct failures
of the automatic method. These are the only results in this work with manual intervention, all the
others are generated automatically. Our correction includes correcting correspondence, face mask,
and eye locations. Out of 94 results in Flickr dataset, we corrected the correspondence 5 times, the

face mask twice, and eye locations 4 times.

Running times With an unoptimized MATLAB implementation, the main algorithm of our style
transfer takes about 12 seconds: 7 seconds in dense matching and 5 seconds in the multi-scale local
transfer. The images we test are about 1300 x 900 pixels, with about 300 pixels between the two

eyes.
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4.4.1 Comparison with Related Work

Figure 4-16 compares our method with related work in multiscale transfer and color transfer. For
Sunkavalli et al. [118], we used the code provided by the authors. They adapted the code to style
transfer by using multiscale histogram matching and disabling the Poisson editing. We also show
comparisons on global color transfer based on histogram and linear color mapping [97, 100]. Our

result captures details more faithfully because our method is local.

Figure 4-17 shows comparisons to Bae et al. [6] that is designed for black-and-white images.
We used the implementation from the author. We also compare to Sunkavalli ef al. because their
method also works in a multi-scale manner. For fair comparisons, we adapted their methods to
incorporate the face mask by replacing the input background with the example background. Note
that without modification, any global method fails in this case, because the input has brighter
background than face, but vice versa on the example. In Appendix B, we provide black-and-white

comparisons to other related methods.

We also attempted to compare with HaCohen et al. [45], because their method uses local
correspondences. However, they solve a different problem of finding repeated image contents such
as the same person in a different pose. Our goal is to match across different persons and styles, so
their matching often does not work for our style transfer. In particular, their implementation reports
empty matches on the face regions of the three styles in Figure 4-8. In Appendix B, we compare to

their result using an example with similar appearance, so that they can find good matches.

In all fairness, all these related methods are designed for general image content, while our
method is tailored for face portraits. Our advantage comes from the dense local matching, which
captures the spatially varying details and lighting on the face. Some of the related methods can
be adapted for our problem by restricting the transfer within the face region. In Appendix B, we
provide comparisons using the adapted methods, as well as the comparisons on all three styles used

in Figure 4-8.
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4.4.2 Extensions

Style transfer on video

Our method can be extended to videos of frontal faces with moderate motion, such as videos of
news anchors or public speeches. Independently transferring the example to each frame results in
flickering due to lack of temporal coherence. This is because the dense matching is often unreliable
when the facial expressions in the example and video frame are very different. To ensure temporal
coherence, we avoid directly computing a dense matching from each frame to the example. Instead,
we leverage the optical flow [14] within the video. First, we choose the exemplar that best matches
the first video frame, using the automatic selection described in § 4.3.4. Then among all the frames
in the video, we pick the candidate that best matches this exemplar, using the same automatic
selection. Next, for each frame, we compute the correspondence to the best candidate frame by
aggregating the optical flow between adjacent frames. Finally, we transfer the style to the best
candidate, and propagate the style representation, i.e. multi-band gains, to the rest of the frames by

using the correspondences to the best candidate frame.

Figure 4-18 shows that we successfully transfer the style to the input video, even with the
frames of very different facial expressions. Our video result at our project website?> shows good

temporal coherence in the presence of extreme facial expressions.

Facial makeup transfer Figure 4-20 shows that our method can transfer facial makeup including
the skin foundation, lip color and eye shadow. In the original method, the green color on the eye
shadow is bled to the sclera (the white region of the eye). We fix this by automatically replacing
the transferred output with the original sclera. The sclera is segmented by GrabCut around the eye
region given by the face detector. In Appendix B, we show a comparison with the state-of-the-art

works [44, 122].

’nttp://people.csail.mit.edu/yichangshih/portrait_web/#video
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4.5 Discussion and Conclusion

The main novelty of our work is a style transfer algorithm that is local and multiscale. Compared
to generic style transfer, our approach is tailored for headshot portraits. First, it is local to capture
spatially-variant image processing typical in portrait editing. Second, it is multiscale to handle
facial textures in different scales. We validate the method using a large dataset of images from the

Internet, and extend the method to videos of frontal faces.

Limitation While our method works on the bulk of the inputs that we collected online, we found
the result quality is often limited by the quality of the matting mask. Also, our method may magnify

the input noise.

It is important to select an example that matches well. Figure 4-19 shows that matching people
of different skin color creates an unnatural look. In general, we require the input and the example
to have similar facial attributes, e.g., beard, skin color, age, and hair style. Further, our method
cannot remove hard shadows, nor can we create them from the example. In some rare cases, part of
the identity of the example may be transferred on the input and causes artifacts. We also tested on
profile headshots, but they failed because the face detector is unable to locate the landmarks. Styles

of non-photorealistic rendering are beyond our scope. For example, cartoon portraits or paintings.

In some cases, the highlight transfer may fail because the input and example have very

different eye color. Disabling eye highlight transfer is better for these cases.

Future work We are interested in style transfer from multiple examples. For instance, using
different face regions from different people to better match the input face. This perhaps can increase
the effective database size, by allowing for multiple matches in cases where there is no single good

match.
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Step 1. decompose input and example into Laplacian stacks

Example '

Step 2. compute
local energy maps

Step 3: transfer
local energy

Step 4: transfer
example residual
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“

Output of Section 3.2

Figure 4-3: Our transfer algorithm starts by (1) decomposing the input and example into Laplacian
stacks. (2) In each band, we compute the local energy map by averaging the coefficients’ Lo norm
in a neighborhood. (3) Using the energy maps, we match the local statistics to create a new stack,
and (4) transfer the input residual to this new stack. (5) Finally, we aggregate the new stack to
create the output. Gain maps capture spatially-variant local information over different scales. At
the finer level, the gain map captures beard and skin. At the coarser level, it captures larger textures,
e.g., eyes, nose, and some amount of highlight.
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(b) Example

(¢) Without robust transfer (d) Our robust transfer

Figure 4-4: Images (a) and (b) do not match on the glasses and the moles (blue and red boxes).
Without robust transfer, a simple gain map leads to over-smoothing on the glass frames and artifacts
on the skin. Our robust transfer in (d) avoids the problem.
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2/

(a) Input (b) Example (¢) Neighborhood too (d)  Neighborhood (e) Our choice
small too large

Figure 4-5: We tested a few different neighborhood sizes for computing local energy. Result (c)
uses a neighborhood size that is too small, so the result’s identity does not look like input subject.
Result (d) uses a neighborhood that is too large, so the result fails to capture the local contrast. (e)
Our choice in Equation 4.3 produces a successful transfer.
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(a) Input (b) Example

(¢) Without adapting to face mask, the face (d) Our Laplacian that is adapted to face
contour disappeared mask

Figure 4-6: (a) shows an input where the face and background have very different colors. Without
using a face mask, the hair and face contour disappear in the background, as shown in the blue
and red insets in (c). We restrict the Laplacian to use the pixels within the face region, defined by
the masks in the insets in (a) and (b). The result in (d) shows the hair and face contour are better
preserved.
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(a) Input (b) Without eye highlights (¢c) Adding eye highlights

Figure 4-7: Taking the input in Figure 4-6, we transfer the eye highlight from the example (a) by
alpha matting. We show the extracted alpha map in the red box in (a). (b) and (c) show the effect of
adding eye highlights.
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Input Outputs of our method, using examples in the inset at bottom right

Figure 4-8: We transfer the examples in the insets to the inputs in column (a). The examples in
each column in (b) are from one photographer. From left to right, the three styles are low-key and
high contrast, warm and soft lighting, and high-contrast black-and-white. We test on indoor male,
female, and outdoor subject.
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2.8
0.0
(a) Gain map at { = 2 for the (b) color style (row 1, col 3) (¢) nearly all-black-and-white
low-key style, (row 1, col 2) in style (row 1, col 4)
Figure 4-8

Figure 4-9: We overlay the gain maps of the first row in Figure 4-8 on the input to show that the
three styles manipulate the details in different ways: (a) emphasizes the details on the entire face,
(b) emphasizes the details on the forehead and near the center, and (c) emphasizes the beard but
smoothes the cheeks.
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(b) An example of typical result (a) An example of good result

(c) An example of not-so-good result

Input Result

Figure 4-10: We show examples of (a) good, (b) typical and (c) poor results. (a) Our method
achieves good results when input is clean and uniformly lit. (b) A typical input usually contains
some amount of noise, which remains on the output. (c) In this input, the hair textures almost
disappear in the background, which results in poor performance on the output. (a) (©)YiChang Shih



104 Chapter 4. Portrait Style Transfer

(a) Input (b) Example (¢) Our result

Figure 4-11: Our method captures some amount of lighting change in the case that the lighting in
the example (b) is different from the input (a).

(a) Input (b) Example (¢) Our result (d) Reference

Figure 4-12: We compare the transfer result in (c) to a reference portrait (d) made by the same
photographer who created the example in (b). While our transfer is not exactly identical, it looks
visually similar.
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Wy

(a) Input (b) Transferred outputs using the top three retrieved examples, shown in the insets.

Figure 4-13: We use our automatic example selection algorithm to retrieve the top three examples
and show the transferred results . All of our examples correctly match the beard on the input. Even
with the variation within the three results, the transferred results are all plausible and have similar
tone and details.
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(a) Input

(¢) Only local matching (d) Transferring histogram from (b) (e) Averaging (c) and (d)
to (c)

Figure 4-14: In a few cases, our local matching (c) does not match the global dynamic range of the
example (b). (d) Transferring the histogram from (b) to (c) may lose important facial details, such
as pores on the skin. (e) In practice, we suggest to balance the local details and global range by
averaging (c) and (d).
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(a) Correct the correspondence

(b) Correct the face mask

(c) Correct the eye locations

Input Output before manual correction After manual correction

Figure 4-15: We propose manual corrections to fix the rare failure cases of the automatic method.
(a) The mismatching between the input hair and the example (in the bottom right inset) results in
artifacts on the output. We correct the correspondence through a user-provided map shown in the
inset in the output. This map constrains the gain on the red regions to be the same as the green
region. (b) We correct the hair on the top by correcting the face mask. The automatic one and
the corrected one are shown in the insets of middle and right column. (c) We correct the right eye
location for highlight transfer.
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(a) Input (d) Sunkavalli et al. 2010

(e) Histogram transfer on  (f) Reinhard et al. 2001 (g) Pitié et al. 2007 (h) Photoshop Match Color
RGB channel separately

Figure 4-16: We compare to related methods on color transfer and multi-scale transfer. Our result
is closer to the example. The readers are encouraged to zoom in to see the details. Because the
backgrounds are of similar color we did not adapt related work here to use the face mask.
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(a) Example (b) Our result (c) Bae et al. 2006 (d) Sunkavalli et al. 2011

Figure 4-17: We compare with Bae et al. that works on tonal (black-and-white) transfer, as well as
the multi-scale transfer of Sunkavalli et al. 2011]. These methods have been adapted to use the face
mask because the input and example have different background colors.

(b) Example

(¢) Output frames

Figure 4-18: We show style transfer on an input sequence in (a), using the example in (b). Our
results in (c) show that we can handle frames with very different facial expressions. Please see the
videos on our project website for more results. (a)(c) (©YiChang Shih.
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(a) Input (b) Failed output

Figure 4-19: A failure case: matching a white male to an African male in the inset creates an
unrealistic result.
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(a) Input

(b) Example (¢) Our makeup transfer result

Figure 4-20: We extend our method to makeup transfer with minor modification. We transfer the
example makeup in (b), taken from a professional makeup book [86]. The result in (c) shows that
skin foundation, lip color and eye shadow are successfully transferred to the input (a).
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Chapter 5

Conclusion

In this dissertation, we have addressed two challenging problems of image stylization that require
dramatic alterations of image appearances. In the first problem, we help users to render their pictures
at their desired times of day, such as converting daytime pictures to the golden hour. In our second
problem, we allow people to enjoy stylized portraits of themselves by rendering an input portrait
with styles created by renowned photographers, such as the bright and warm color styles of Martin
Schoeller. These two popular photo categories, outdoor photographs and portraits, cover most topics
in photo retouching [10]'. In essence, the two works share quite a bit of similarity. Our first key
idea is to leverage the immense power of image data. In time hallucination, we leverage a database
of time-lapse videos taken at more than five hundred different locations, including landscapes
and city skylines. For portrait stylization, we employ image collections retouched by celebrated
photographers. To leverage the data, our second idea proposes a local style transfer algorithm. We
use a dense correspondence field that respects the scene semantics in an input and an example,
and then locally transfers the image style through the correspondences. In both works, our local

approaches achieve spatially-variant and one-to-many color transfer.

!'They randomly sampled 106 tutorials in photo retouching, and found out that 40 of them are about portraits, and 27
of them are about landscape photographs.
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(a) Input (b) Example: before

(d) Multiscale transfer (e) Locally affine

Figure 5-1: Given an input portrait (a) and a pair of exemplar portraits before and after retouching
(b-c), we compare our multi-scale technique in portrait stylization (§ 4) to the locally affine transfer
intended for time hallucination (§ 3). The multi-scale method in (d) successfully reproduces the
style in the example (c), while preserving the identity of the input. Since the transfer in (e) is limited
to a single scale, it fails to capture textures of multiple scales on human faces, resulting in unnatural
looks on facial landmarks like the eyebrows.

5.1 Comparisons between the two works
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Even though at the root level both methods are data-driven, they show many differences from a
technical viewpoint. In time hallucination, the dense correspondence is more challenging than that in
portrait stylization. To align two faces, the spatial continuity on the correspondences provides strong
cues for the task, allowing our method to achieve good results with off-the-shelf techniques like
SIFT flow [78]. In contrast, aligning city skylines may require preserving spatial discontinuity of the
correspondences. To capture long-range correspondences, we need to sample matchings in global
scope, which largely increases the computation complexity and makes the alignment intractable.
We address the challenge with an efficient sampling strategy along with novel regularization terms

on a Markov random field.

In time hallucination, we employ a locally affine transfer, since the appearance variation of
outdoor scenes is low-dimensional [42]. For portraits, we use a multi-scale transfer to capture facial
contrasts at different scales, ranging from large textures likes facial landmarks to minute details
like pores. The locally affine transfer takes input as a pair of before-and-after images, while our
multi-scale transfer only requires a single example image. Figure 5-1 compares the locally affine
transfer intended for time hallucination against the multi-scale transfer on an input portrait. In this
task, the multi-scale transfer performs better since it processes textures separately for different
scales. In contrast, the locally affine transfer uses a single affine model for different scales, and

results in artifacts on the output.

The locally affine transfer is more robust to the choice of color space, since affine mappings
model any linear color transformations of the standard RGB space. In portrait stylization, we
consider human perceptions by using a Lab color space, which is more intricate and requires
non-linear mappings from the RGB space. Both works extend the style transfer algorithms to videos.
While the resulting portrait videos can handle facial expressions in inputs, the synthetic time-lapse
videos, however, are limited to static objects, because object motions and occlusions in input videos

are still challenging to us.
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5.2 Future work

2345 ag has our time

Our portrait transfer work has attained some public media coverage
hallucination work®’. Laffont et al. [69] have applied our work to hallucinate a photograph taken
in springtime to winter renditions, using time-lapse data over the course of a year. From where
this dissertation ends, there are a few possible starts. Our method can benefit from improved
techniques on semantic correspondences, which is still a fundamental problem in computer vision.
Our method is robust to correspondences between inputs and examples, but excessive errors on

the correspondences sometimes result in halo artifacts. The correspondence technique in our time

hallucination work could be applied to semantic segmentation on time-lapse videos.

We could make our databases more compact. In the time-lapse database, we could extract
parametric models to describe scene appearance variations for different object categories, like trees,
sky, roads, and buildings. For portraits, we could pre-process example image collections by warping
their energy maps to a standard face template, and perform the style transfer from the template

without the database.

Our work has potential in cloud processing, since users can share the databases at remote
servers. Further, in our works, the transformation representations — the gain maps in portraits or
the affine models in time-of-day work — are easier than the output images, since they are low-
passed or low-dimensional. Cloud processing could save bandwidth by transferring these simpler

representations instead of outputs at full-resolution.

Our results have achieved good “visual realism,” which means they look plausible although

not guaranteed to be physically correct. With image databases, it is an open question whether we

2 Engadget: http://www.engadget.com/2014/05/3 1/mit-selfie-portrait-project/

3 PetaPixel: http:/petapixel.com/2014/06/01/researchers-turn-average-smartphone-portraits-stylized-pieces-art/

4 MIT News: http://newsoffice.mit.edu/2014/spruce-your-selfie

> TechCrunch: http://techcrunch.com/2014/05/30/mit-researchers-create-an-app-that-turns-selfies-into-works-of-art/
6 Adobe System: http://blogs.adobe.com/conversations/2015/01/light-and-magic.html

7 PetaPixel: http://petapixel.com/2014/10/10/adobe-shows-features-changing-time-day-lighting-removing-fog/
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can extract physical information for other applications, such as accurately predicting the aging
processes of a person by a headshot database of herself or other people. Some recent works have

started to study on this exciting direction [64].
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Appendix A

Additional Results for Time Hallucination

We describe additional results for time hallucination work in Chapter 3. The corresponding sections

are labeled in the following texts.

Time-lapse video retrieval and the match frame Figure A-1 illustrates the time-lapse video
retrieval results and the match frames. The retrieval is based on a standard scene matching technique

[133] (Section 3.5.1 ) and color statistics (Section 3.5.1).

Locally linear vs affine Figure A-2 compares the choices of locally affine model and linear
model. Similar to expressivity test, we hallucinate from one input frame to another ground truth
frame in a single time-lapse video. We perform the transfer with locally linear and affine model.

The difference between the output and the ground truth shows that affine model yields better results.

Expressivity of locally affine transfer Figure A-3 illustrates the expressivity of locally affine
model under various scenes (Section 3.6), including harbor, lake, skyline, river side. As described in

Section 3.6, we take a frame from a time-lapse video as the input, and another frame as the ground
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Input image Retrieved video

Figure A-1: Video retrieval and match frame results under two different input scenes.

truth. We hallucinate the input to the ground truth frame using the same time-lapse video. The
output is visually close to the ground truth, even the lighting between the ground truth and the input

frame is very different.

Compare to Deep photo In Figure A-4, we compare our results to Deep Photo [66], which uses
scene 3D information to relight the image (Section 3.7.1). We use the input and the result relit at
dusk on their web-site. For comparison, we hallucinate the input to “golden hour”. Both results are

plausible, but we do not rely on scene-specific data.
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(a) Input frame (b) The ground truth

-

(¢) Locall affine model (d) Locally linear model

(f) Difference map between (f) and (b)

e

(e) Difference map between (c) and (b)

Figure A-2: We show locally affine model is a better choice than linear model. We hallucinate the
input to another frame (ground truth) in the same time-lapse video with two different models. The
affine model is closer to the ground truth.

Compare to Laffont ef al. In Figure A-5, we compare our results to Laffont ef al. [68], which
uses a collection of photos under the same scene for illumination transfer (Section 3.7.1). They
decompose the image into an intrinsic image and an illumination layer, and then transfer the
illumination from one image to another image. In this experiment, they used 17 images for

decomposition, and transfer the illumination from a photo under faint light. For comparison, we
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Input frame Ground truth Locally affine model Ground truth Locally affine model

Figure A-3: Locally affine model is expressive enough to model different times of a day. For each
row, we pick up a frame from a time-lapse video as input. We choose another ground truth frame
from the same time-lapse video as input, and produce the result using our model. Our result is very
close to the ground truth and shows our model is expressive for time hallucinations even lighting
between input and ground truth is very different.

hallucinate the input to “blue hour”. Again, both are plausible, but we only require a single input

photo.

A.1 Accompanying video

We show synthetic time-lapse videos (Section 3.7.2) on our project website:
http://people.csail.mit.edu/yichangshih/time_lapse/

We generate results at different times from a single input, and then linearly interpolate these

results to simulate a time-lapse video.
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Input Deep Photo Our method
(from Deep Photo paper) (using scene geometry) (from single input)
Figure A-4: Deep photo leverages depth map and texture of the scene to relight an image. Our

method uses less information and produces plausible looking results. We hallucinate the input to
“golden hour” to match their result. We use results directly from Deep Photo project website.

A.2 Accompanying web page

We show our evaluation on MIT-Adobe fiveK dataset [16]. (Section 3.7) at the following webpage:

http://people.csail.mit.edu/yichangshih/time_lapse/webpage/
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Input image » Laffont et al. 1 Our method
(from Laffont et al. s paper) (using 17 images) (from a single input image)

Figure A-5: Laffont et al. use multiple images at the same scene for intrinsic image decomposition,
and then relight the image by transferring illumination to the intrinsic image. We use different data
for relighting. We hallucinate the input to “blue hour” to match their result. Laffont’s result is
directly from their website.



Appendix B

Additional Results for Portrait Style

Transfer

Here we describe additional results for our work on portrait style transfer. In the title of each

paragraph, we put the section number referenced in the original chapter (Chapter 4)

Additional comparisons to related work (Section 4.4.1) Figure B-1 shows the comparisons on
an extreme and low-key style. Without adaptation to the face mask, all the global methods fail
in this case, since the background in the input is brighter than the foreground, but vice versa in
the example. For fair comparison, we adapted the related methods to face mask. We replaced
the input with the example background for Bae et al. [6] and PhotoShop MatchColor. We limit
the transfer in the face region defined by the mask for Sunkavalli et al. [118], Pitié et al. [97], and
Reinhard et al. [100]. For Sunkavalli et al. , we started by their setup demonstrated on face portraits,
and tested a few options. We found that disabling noise matching produces the best result. For
Pitie et al. [97], we ran 30 iterations. We also tried HaCohen et al. [45], but their implementation

reports that no matching is found.
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(a) Input (b) Example (¢) Our result (d) Bae et al. 2006

(e) Sunkavalli et al. 2011 (f) Pitié et al. 2005 (g) Reinhard et al. 2001 (h) Photoshop Match Color

Figure B-1: We show comparisons on an extreme style, using related methods adapted to face
mask. We replaced the input with the example background for Bae et al. and PhotoShop MatchColor.
We limit the transfer in the face region defined by the mask for Sunkavalli et al. Pitié et al. , and
Reinhard et al.. Our method captures the smoothly fall-off lighting on the forehead and details on
the face.

Figure B-2 shows the comparison on a nearly all-black-and-white style. Our method transfers
the right amount of details and brightness without being over-exposed or under-exposed. We
used the same adaptation for the related methods. We also tried HaCohen et al. [45], but their

implementation again reports that no matching is found in this case.

Figure B-3 shows the comparison on a color style to two methods adapted to face mask, as
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described above. The comparisons with the unadapted methods are described in Chapter 4.

Figure B-4 shows a close-up comparison between our result and the example. Our result

matches well on lighting, color, facial details in all scales.

Figure B-5 compares to HaCohen et al. [45] on an example that their method finds non-empty
matchings. The inset in Fig. B-5(d) shows the matching area. Among all the examples used in our

project, this example has the largest matching region.

Comparison to reference image (Section 4.4) Figure B-6 shows comparison to a reference
image. We use the reference as example. This is to show the ideal situation that the database is

sufficiently large such that we can find an example almost identical to the input.

Comparison on makeup transfer (Section 4.4.2) Figure B-7 shows the comparison on our
extension to makeup transfer. Fig. B-7(c) shows our original method before modification. The green
eye shadow is bled to the sclera (the white of the eye). Our adapted method automatically transfers
the sclera from the input to fix the problem, as shown in Fig. B-7(d). The rest of Fig. B-7 compares
our result with two state-of-the-art methods designed for makeup transfer [44, 122]. All three
methods achieve plausible results. Tong et al. require the before image of the example makeup,

which is not shown here. Their results are directly taken from Guo and Sim’s work.

Additional results on automatic selection algorithm (Section 4.4) Figure B-8 shows the style
transfer results using the top four examples selected by our automatic algorithm. We show three

styles.

User correction (Section 4.4) Our dense matching using computer vision techniques often pro-

duces satisfactory results. However, there are cases where matching is challenging, such as matching
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long hair to short hair in Figure B-9. In this case, we provide users a manual correction work flow
by using an user-created constraint map. Then our algorithm re-run the transfer, but this time we
assign the energy gains of each pixel in the red region by the average of the gains in the green region.
This process can be repeated as needed for additional corrections. To avoid discontinuities, we filter
the gain map with a small Gaussian kernel after applying the constraint map. Figure B-9d shows
the successful result after user correction. In our results on Flickr data set, 5 out of 94 are corrected

in such a way. All the results in Chapter 4 are generated automatically; we did not correct them.

The artifacts due to transferring the example identity Figure B-10 shows a failure case that
the identity of the example is transferred to the input. This may occur when the example identity

has different genders or very different skin colors.

Massive results using Flickr data set (Section 4.4) We use inputs downloaded from an online
web site, Flickr, on three different styles, and show the results at our project web page in the

following:
http://people.csail.mit.edu/yichangshih/portrait_web/#results

The data collection workflow is described in Chapter 4. The data set contains 94 images
with various facial contents, expressions, under arbitrary lighting conditions. All inputs are under

creative commons license.

B.1 Accompanying Video (Section 4.4.2)

We show our video style transfer extension at our project webpage:

http://people.csail.mit.edu/yichangshih/portrait_web/#video
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We test two different inputs with moderate motion and extreme facial expressions, using three

different styles. No audio in the video.
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(a) Input (b) Example (¢) Our result

(d) Sunkavalli et al. 2011 (e) Bae et al. 2006 (f) Pitié et al. 2005

(g) Reinhard et al. 2001 (h) PhotoShop Match Color

Figure B-2: We show a comparison on a nearly all-black-and-white style. Our method captures the
right amount of exposure and details on the face and hair.
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(a) Example (b) Our result (¢) Sunkavalli et al. 2011 (d) Pitie et al. 2005

Figure B-3: Using the input in Fig. B-2, we compare two methods adapted to face mask on a color
style. The comparison to the unadapted methods are described in Chapter 4 .
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(a) Example (b) Our result

Figure B-4: Close-up comparison to the example, using the input in Fig. B-2. Our result matches
well on lighting, color, facial details in all scales.
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(a) Input (b) Example
D

(¢) Our result (d) HaCohen et al. 2011

Figure B-5: We compare to HaCohen et al. on a case that their method finds matching region,
shown in the inset in (d). This example is has the largest matching region among all examples used
in this work.
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(a) Input (before editing) (b) Example (after editing), refer- (¢) Our result
ence image.

Figure B-6: We test the “upper bound” of our method by using a pair of before/after editing images
in (a) and (b) as input and example. Our result (c) is visually close to (b). This is to simulate the
ideal situation that we can find an example subject whose look is very close to the input.
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(a) Input (b) Example (¢) Before modification

(d) Our final result (e) Tong et al. 2007, require before (f) Guo et al. 2009
image of (b)

Figure B-7: We extend our method to makeup transfer. Directly using our algorithm results color
bleeding on eyes (c). With minor modification that handles eye sclera (eye white), we can achieve
better result (d). We show comparison with two state-of-art methods designed for makeup transfer.
(e) requires before image of (b), which is not shown here. (f) explicitly models foundation, eye
shadow and lip color. All results achieve plausible makeup transfer. (e) and (f) are directly taken
from their papers, respectively.
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(a) Input

Style 1

Style 3

Figure B-8: We show style transfer results on the input in (a), using different styles in the three
rows. We use the top four examples selected by our automatic selection algorithm, shown in the
insets.
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(a) Input (b) Example

(¢) Result failed on hair (d) Corrected result using a user-provided constraint
mask in the blue box

Figure B-9: Our transfer can fail if the input (a) and example (b) have very different hair styles,
and cause artifacts on the hair in (c). We demonstrate that the user can fix this in (d) by providing a
constraint map in the blue box. This map constrains that the gains of the red region to be the same
as those of the green region
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(a) Input (b) Failed output

Figure B-10: A failure case that the identity of the example (inset in (a)) is transferred to the output.
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