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Hallucinating scene color variation 
over time 

Input: time A Output: time B 

Image courtesy of Ken Chang 
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• Goal:  use the photo at time A to predict the 
photo at time B. 



Hallucinating scene color variation 
over time 
• Goal:  use the photo at time A to predict the 

photo at time B. 

Image courtesy of Ken Chang 
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Input: time A Output: time B 



46 minutes too early [kenrockwell.com] 4 



perfect [kenrockwell.com] 5 



39 minutes too late [kenrockwell.com] 6 



Hard problem 
• The color change is spatially-variant! 

Colors are close at day 

Image courtesy of Adrian Dalca 

Become very different at sunset 
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Hard problem 

• The color change depends on object 
- water and building become different color 

building water building water 8 



Related work: global color transfer 

• Works on simple scenes [Reinhard et al, 2005] 

[Pouli and Reinhard, 2011] [Pitie et al. 2005] 

• But complex scenes require spatially-variant 
color transfer 

Input at daytime Example at sunset Output at sunset 
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Related work: image relighting 
• Intrinsic images [Laffont et al., 2012] 

- need image collection of the scene 

 

 

 
 

• Deep Photo [Kopf et al., 2009]   
- need 3D information 

 

 

• We want a general machinery,  
not rely on data for specific input image 

 

Relit results 

Inputs 
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Input Relit result 



Related work: analyzing time-lapse 
sequence 

• Produce good results, but need manually 
modeling the scene [Lalonde et al, 2009] 

 

Input at daytime Time A Time B Time C 
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Problem statement 

• Input: single photo + target time of day 

• Output: the same scene as if it was taken at 
the target time of day 

 

 

 

 

• Requirement: fully automatic, no user input 
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Output at new time  

? 
Input: single photo 



Key idea: using time-lapse videos 

 

 

 

 

 

 

 

• 500 videos at various scenes 

• Labeled with time of day 
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Containing videos 



Overview 

Input 

Target time: 9pm 



Matched time-lapse video 

Matched frame 

Overview 
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Input 

Target time: 9pm 

1. Match input to video from database 



Matched time-lapse video 

Matched frame 

Overview 
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Input 

Target frame 

Target time: 9pm 

1. Match input to video from database 



Matched time-lapse video 

Match frame 

Overview 
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Input 

Transfer color change Output 

Target frame 

Target time: 9pm 

1. Match input to video from database 

2. Transfer color change 



Matching step 1: video level 

• Video retrieval with off-the shelf scene 
matching technique [Xiao et al, 2010] 

Input 

HOG 

HOG 

©Image courtesy of Mark D Andrea 

Output:  
video of similar  scene 

Database 
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Matching step 2: frame level 

Input Matched frame 

R G B

• Select the best match frame by color histogram 
metric 
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Matching step 3: pixel level 

• Goal: respect scene semantic 

– E.g., sky to sky, building to building 

 

 

 

 

 

 

• Dense correspondence using Markov random field 

Input  Matched frame 



Markov Random Field for dense matching 

 

   max(                              ,  ,                          …    ,                        ) 

• Data term: standard L2 norm  

• Regularization term: aggregate over the entire 
sequence, not just the matched frame 

– Consistency over all time of day 
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Validating the matching  

warp 

Warped matched frame Matched frame 

Input • Warp the matched frame 
to input using the dense 
correspondence 



Naïve transfer:  
warp the target frame to the input 
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Warped target frame 
Target frame 

Input 

warp 

• Using the same correspondence 
 

• The texture in the warped image 
is wrong 
 

• Actually, the input already told 
us the texture. 



Our approach: locally affine color transfer  

• Local to handle complex scenes 

 

• Affine color transfer in each patch   

– preserve the structure of the input 

– match ground truth data; see paper. 
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R G 

B 

Input Final output 

Locally affine model 



Locally affine model explains the color 
change of time-lapse data  

• In particular, explain matched frame and target 
frame 
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Warped target frame Warped match frame 

R G 

B 

Locally affine model 



The transfer needs to be locally affine 
everywhere 

 

• The patches are overlapping, so we cannot 
estimate the affine model independently on 
each patch 

 

26 



Color transfer as an optimization 

• We are looking for color remapping function 

– Objective #1: explain time-lapse data 

– Objective #2: locally affine everywhere 
 

• We design a least-squares energy 

– Sparse linear system 

– Formula and detailed analysis in the paper 



Recap 
1. Match input to video 

i. scene matching 

ii. frame matching 

iii. dense matching 

 

2. Locally affine color transfer 

Input 
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Matched video 

Input 
28 

Match frame Target frame 

R G 
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Output 

Locally affine model 



Input at sunset 
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Input at sunset 
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Matched frame 



Our result at night 
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31 

Target frame 



Results 
• Same input for four different times of day 

Input Day Before sunset (golden hour) 

After sunset (blue hour) Night 
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Day Before sunset (golden hour) 

After sunset (blue hour) Night 
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Ground truth  
validation 

Input at blue hour Ground truth at night 

Our result at night 
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Our transfer is spatially-variant 
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Input at day Output at golden hour 

• Our transfer is local. 



Our transfer is object-dependent 

building sky building sky 36 

Input at day Output at night 

• We respect semantic in the scene. 



Run-time Performance 

• Image size: 700-pixels width.  

 

• Matching takes 25 seconds 
- 2 seconds for scene matching. 
- 23 seconds for dense correspondence 
 

• Locally affine transfer takes 32 seconds.  

 

• Implemented with unoptimized Matlab 
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Various input image types: cloudy 

Cloudy input Output at after sunset 



Various input image types: after sunset 
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Input at after sunset Output at night 
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Results for different input 
scenes:  mountain 

Output at blue hour Input at day 
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Input at day Output at night 
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Results for different input scenes:  lake 



Comparison with other methods: 
translate to night 

[Reinhard et al. 2001] [Pitié et al. 2005] Our method 

Input 

Target frame 
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Input Our method 

[Reinhard et al. 2001] [Pitié et al. 2001] 
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Color Transform vs Color Distribution 

• Our result is more golden  

Matched frame Target frame at golden hour Input 

Our result: use both frames Photoshop color match: only use target frame 
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Application: continuous control 

Containing videos 



Application: translate the time of day 
of a painting 

Input at day 

“In the Auvergne”,  Jean-Francois Millet 

Output at blue hour 
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Application: lighting transfer 

Light transfer (more sunshine) 

Input (cloudy) 

Match frame 

Hand-picked target frame 

47 



Limitations 

• Dynamic scenes are challenging 

• We do not turn on lights 

• Night-to-day case does not work well 

• Plausible but not physically accurate 

Night to Day 

Target frame 

Match frame 

Output: color and shadow  
are wrong Input 



Conclusion 

• We introduce time hallucination: render an 
image at another time of day 

• We use a time-lapse database, and propose a 
locally affine model to transfer the color 
change between two frames 
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output Input Output 
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