
Learning Preconditioners for Conjugate Gradient PDE Solvers

Yichen Li 1 Peter Yichen Chen 1 Tao Du 2 3 Wojciech Matusik 1

Abstract
Efficient numerical solvers for partial differen-
tial equations empower science and engineering.
One commonly employed numerical solver is the
preconditioned conjugate gradient (PCG) algo-
rithm, whose performance is largely affected by
the preconditioner quality. However, designing
high-performing preconditioner with traditional
numerical methods is highly non-trivial, often re-
quiring problem-specific knowledge and meticu-
lous matrix operations. We present a new method
that leverages learning-based approach to obtain
an approximate matrix factorization to the sys-
tem matrix to be used as a preconditioner in the
context of PCG solvers. Our high-level intuition
comes from the shared property between precon-
ditioners and network-based PDE solvers that ex-
cels at obtaining approximate solutions at a low
computational cost. Such observation motivates
us to represent preconditioners as graph neural
networks (GNNs). In addition, we propose a
new loss function that rewrites traditional pre-
conditioner metrics to incorporate inductive bias
from PDE data distributions, enabling effective
training of high-performing preconditioners. We
conduct extensive experiments to demonstrate
the efficacy and generalizability of our proposed
approach on solving various 2D and 3D linear
second-order PDEs.1

1. Introduction
The conjugate gradient (CG) algorithm is an efficient nu-
merical method for solving large sparse linear systems. CG
iteratively reduces the residual error to solve the linear sys-
tems to a specified accuracy level and does not require
the expensive computation of a full matrix inverse. CG

1MIT CSAIL 2Tsinghua University 3Shanghai Qi Zhi Institute.
Correspondence to: Yichen Li <yichenl@csail.mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1https://sites.google.com/view/neuralPCG

is commonly applied to solve the underlying large sparse
linear systems originating from discretized partial differ-
ential equations (PDEs), as PDEs generally lack analyti-
cal, closed-form solutions. Therefore, developing a high-
quality linear solver is instrumental in solving numerical
PDEs efficiently and effectively.

A naive CG implementation suffers from a slow con-
vergence rate for ill-conditioned matrices. Therefore, it
is typically equipped with a preconditioner that modu-
lates the system matrix’s condition number. Precondition-
ers are mathematically-grounded and problem-dependent
transformation matrices that can be applied to the origi-
nal linear system Ax = b, where A is a sparse matrix,
A ∈ Rn×n, and x,b ∈ Rn are the unknown solution
vector and right-hand-side vector respectively. Precondi-
tioner P ∈ Rn×n transforms the original into an easier
one when applied to both sides of the original linear sys-
tem, P−1Ax = P−1b. Traditional numerical precondi-
tioners use the approximation of A as preconditioners, and
the quality of preconditioning significantly affects the CG
solvers’ convergence rate.

Designing a high-performance preconditioner is challeng-
ing because an ideal preconditioner is inexpensive to solve
and greatly reduces the condition number of the system
matrix. These two desired properties that often conflict.
Decades of research effort in applied math have been de-
voted to addressing this longstanding issue through propos-
ing new sparsity patterns (Schäfer et al., 2021; Chen et al.,
2021c; Davis & Hager, 1999b), matrix reordering tech-
niques (Liu, 1990; Chen et al., 2021a; Brandhorst & Head-
Gordon, 2011), and multi-level approaches (Saad & Zhang,
2001; Buranay & Iyikal, 2019; Liew et al., 2007). Recent
efforts have been made towards leveraging machine learn-
ing and optimization to discover preconditioners (Götz &
Anzt, 2018; Sappl et al., 2019; Ackmann et al., 2020; Azu-
lay & Treister, 2022), but their methods are typically tai-
lored to specific PDE problems. To our best knowledge,
a learning-based solution applicable to general PDE prob-
lems is unavailable, and our work aims to fill this gap.

In this work, we propose a learning-based method for pre-
conditioning sparse symmetric positive definite (SPD) ma-
trices. Recent machine learning works on simulating PDE-
governed physical systems (Pfaff et al., 2020; Sanchez-

1

https://sites.google.com/view/neuralPCG


Learning Preconditioners for Conjugate Gradient PDE Solvers

Gonzalez et al., 2020) demonstrate the efficacy of neural
networks in obtaining cheap approximations of PDE solu-
tions with modest accuracy. The high-level intuition is that
this nature aligns well with the desired role of a precon-
ditioner. With this intuition, we propose to learn an ap-
proximate decomposition of the system matrix itself to be
used as a preconditioner in the context of CG solvers. We
leverage the duality between graph and matrix to propose
a generic preconditioning solution using the graph neural
network (GNN). To facilitate the training of our neural net-
work preconditioner, we propose a novel preconditioner
metric by rewriting classical metrics with considerations of
data distribution. Motivated by the classical projected con-
jugate gradient algorithm (Gould et al., 2001), our new pre-
conditioner metric reveals an interesting interpretation of
preconditioners through the lens of the bias-variance trade-
off in statistics and machine learning. Specifically, when
the problem domain is not full rank, there exist projections
of the system matrix to the solution subspace. Compared
with existing works (Trottenberg et al., 2001; Calı̀ et al.,
2022; Sappl et al., 2019; Ackmann et al., 2020; Azulay &
Treister, 2022) that focus exclusively on the system matrix
A, our proposed method also attends to the data distribu-
tion of solution vector x.

Our approach has several benefits: the learned precon-
ditioner outperforms classical preconditioners because it
adapts to data distributions from target PDE applica-
tions. Additionally, the duality between graph and matrix
grants our learned preconditioners the excellent property of
correctness-by-construction and order-invariance. More-
over, unlike multi-grid preconditioners that specialize in
elliptic PDEs (Trottenberg et al., 2001) or other learning-
based preconditioners (Calı̀ et al., 2022; Sappl et al., 2019;
Ackmann et al., 2020; Azulay & Treister, 2022) that fo-
cus on a single problem or PDE, our proposed method for
preconditioning is generic and applicable to many differ-
ent problems. We demonstrate this property with elliptic,
parabolic, and hyperbolic PDEs.

To showcase the efficacy of our proposed preconditioner,
we evaluate it on a set of 2D and 3D representative linear
second-order PDEs. We compare its performance with (1)
existing learning-based preconditioning methods and (2)
classical numerical preconditioners. Our experiments show
that our proposed method has a speed advantage over both
baselines. It learns a preconditioner tailored to the training
data distribution, which other preconditioning methods do
not exploit. Finally, we also demonstrate the strong gener-
alizability of our proposed approach with respect to varying
physical parameter values and geometrical domains.

In summary, our work makes the following contributions:

• We propose a generic learning-based framework to pre-
condition the conjugate gradient algorithm. Our pro-

posed method guarantees positive definiteness by design
and works with irregular geometric domains.

• We propose a novel and efficient loss function that intro-
duces inductive bias to preconditioning large and sparse
system matrices.

• We conduct extensive experiments to evaluate the effi-
cacy and generalizability of our proposed approach and
demonstrate its advantages over existing methods.

2. Related Work
Numerical preconditioning Preconditioning is a classi-
cal numerical technique in solving linear systems of equa-
tions. It typically applies a carefully chosen matrix to trans-
form a linear system into one with a smaller condition num-
ber. Below, we briefly review representative works from
three technical aspects of a numerical preconditioner: ma-
trix factorization (Golub & Van Loan, 2013; Khare & Ra-
jaratnam, 2012), matrix reordering (Liu, 1990; Davis &
Hager, 1999a; Schäfer et al., 2021), and multiscale ap-
proaches (Chen et al., 2021b).

Matrix factorization inspires several widely used numeri-
cal preconditioners, but they face the problem of speed and
accuracy trade-off. For example, in the extreme cases, the
Jacobi preconditioner is a direct inverse of the diagonal el-
ements of the original matrix A. it is fast to derive but is
very limited in reducing the condition number of the orig-
inal matrix A. The famous incomplete Cholesky (IC) pre-
conditioner (Nocedal & Wright, 1999) originates from the
Cholesky decomposition of SPD matrices. Such precon-
ditioners face the trade-off between speed and accuracy:
a complete factorization essentially solves the SPD matrix
but is very expensive, whereas an incomplete factorization
is cheaper to compute but has a limited impact on improv-
ing the condition number. The more advanced factorization
approach considers fill-in to capture the additional non-
zero entries (Johnson, 2012), but it is more computation-
ally expensive to construct, as it requires multiple rounds of
factorization. Schäfer et al. (2021) address this trade-off us-
ing a Kullback-Leibler minimization approach to speed up
factorization-based methods. Our proposed method tackles
the same challenge using a neural network and leverages
the data distribution of the linear systems.

Matrix reordering techniques (Liu, 1990; Chen et al.,
2021a; Brandhorst & Head-Gordon, 2011) aim to reduce
the matrix bandwidth by reshaping the sparse matrices with
large bandwidths to block diagonal form. They are com-
monly used with other numerical preconditioners, such as
factorization-based ones, to reduce fill-in and improve the
parallelizability when deriving the preconditioners. Fortu-
nately, our proposed method uses a graph-neural-network
(GNN) representation and inherits its excellent property of

2



Learning Preconditioners for Conjugate Gradient PDE Solvers

order invariance and parallelizability by design.

Finally, multi-level approaches help to improve the scala-
bility of a standard numerical preconditioner. A representa-
tive multi-level technique is the multigrid method (Trotten-
berg et al., 2001; Saad & Zhang, 2001; Chen et al., 2021c),
which uses smoothing to communicate between coarser
and finer discretizations. It is a power tool for precon-
ditioning elliptic PDEs but struggles with hyperbolic and
parabolic PDEs (Trottenberg et al., 2001). On the contrary,
our method follows an orthogonal direction by studying
the numerical approximation of a given system and dis-
cretization and is not tailored to specific PDE instances.
Research has shown that it is possible to combine the two
directions (Saad & Zhang, 2001; Chen et al., 2021c).

Learning-based preconditioning More recent works on
preconditioner design borrows inspirations from machine
learning techniques (Belbute-Peres et al., 2020; Um et al.,
2020; Li et al., 2020a;b; Raissi et al., 2019; Karniadakis
et al., 2021). Similar to our work, several recent pa-
pers (Azulay & Treister, 2022; Sappl et al., 2019; Ack-
mann et al., 2020; Calı̀ et al., 2022; Koolstra & Remis,
2022) also model preconditioners with neural networks,
but their convolutional-neural-network (CNN) architec-
tures are strongly correlated with a grid discretization of a
rectangular domain. However, we are different from these
works in three folds. We leverage the GNN architecture
that is mesh-friendly and applicable to irregular geomet-
rical boundaries. In addition, unlike previous works that
uses hard-coded threshold to satisfy the constraint for a
specific problem, our proposed method leverage the duality
between graph and matrix and works on different represen-
tative second-order linear PDEs. Finally, our work differs
from these papers in formulating a novel preconditioner
metric as the training loss function, which incorporates data
distributions often overlooked before into preconditioners.

3. Preliminaries
Linear second-order PDEs We consider linear second-
order PDEs in the following format:

1

2
∇ ·K∇f(p) + a · ∇f(p) = c(p), ∀p ∈ Ω. (1)

Here, Ω ⊂ Rd (d = 2 or 3) is the problem domain,
f : Ω → R is the function to be solved, K ∈ Rd×d and
a ∈ Rd are constants, and c : Ω → R is a given source
function. We assume K to be symmetric, whose eigen-
values classify these PDEs into elliptic (e.g., the Poisson
or Laplace equation), hyperbolic (e.g., the wave equation),
and parabolic (e.g., the heat equation) equations.

Boundary conditions We equip the PDEs with Neumann
and Dirichlet boundary conditions:

∂f(p)

∂n
=N(p), ∀p ∈ ∂ΩN , (2)

f(p) =D(p), ∀p ∈ ∂ΩD. (3)

Here, ∂ΩN and ∂ΩD form a partition of the domain bound-
ary ∂Ω, and N : ∂ΩN → R and D : ∂ΩD → R are two
user-specified functions. The notation ∂

∂n represents the
directional derivative along the normal (n) direction.

Discretization PDEs are continuous problems that must
be discretized before applying a numerical solver. We
adopt the standard Galerkin method from the finite element
theory (Johnson, 2012), resulting in a linear system

Ax = b, (4)

where A ∈ Rn×n, with n the number of degrees of free-
dom (DoFs) after discretization, is the stiffness matrix of
the PDE system, which is sparse and SPD. The vector
b ∈ Rn typically contains information from the source
term and the (discretized) boundary conditions. The goal
is to solve for x ∈ Rn, which approximates the field of
interest f at discretized locations of DoFs in Ω.

PCG algorithm The PCG algorithm takes a system ma-
trix A and a right-hand side vector b to solve for x. It
starts with an initial guess x0 and iteratively updates it by
moving towards conjugate directions for suppressing the
residual r = b−Ax. The preconditioner P transforms the
original problem such that the gradient direction is from
the preconditioned system residual z = P−1r, as shown in
Alg. 1 in Appendix.

The condition number indicates the extent to which the pre-
conditioner can reduce the number of CG iterations,

κ(A) =
λmax(A)

λmin(A)
,

where λmax(A) and λmin(A) denote the largest and small-
est eigenvalue of A, respectively. A good preconditioner
P can transform the original system A into an easy-to-
solve matrix with clustered eigenvalues. Alg. 1 reveals that
a high-performing P needs to be an easily invertible SPD
matrix that is similar to A.

4. Method
4.1. Problem Setup

Our task is to learn a mapping P = fθ(A,b), where A is
a sparse SPD matrix derived from a given PDE problem, b
is the right-hand-side vector, θ are the learned parameters,

3



Learning Preconditioners for Conjugate Gradient PDE Solvers

and P is the resulting preconditioning matrix. We leverage
the duality between graph and matrix to ensure that our
learned P is valid (SPD and easily-invertible).

4.2. Learning Preconditioners

The main consideration for choosing a graph neural net-
work over a convolutional neural network for predict-
ing preconditioner (Sappl et al., 2019; Azulay & Treister,
2022) comes from the duality between graphs and square
matrices. Graphs are composed of a set of nodes and edges
({vi}, {ei,j}) . Each node can correspond to a row or col-
umn in the matrix, and each edge corresponds to an entry
in the matrix. In a sparse matrix, the corresponding graph
edges only run between the nonzero entries in the matrix.
The nice duality also directly transfers to PDE problems
on Ω discretized as a triangle mesh in 2D or a tetrahedron
mesh in 3D. Graph nodes and edges directly correspond to
mesh vertices and edges, respectively.

We store the input A as a one-dimensional edge feature:
If Aij is a nonzero entry in A, we add it as an edge fea-
ture connecting node i to j. Similarly, we store vector x
as a one-dimensional node feature on the graph. A matrix-
vector product such as Ax can be viewed as a round of
message passing on the graph. Each node sends a message
to its neighboring nodes, which in turn pass the message
along to their own neighbors. The message at each node is
updated based on the messages it receives from its neigh-
bors, which can be represented by a weighted sum of the
messages. This operation gives us a new node value corre-
sponding to the resulting vector from the multiplication.

Architecture We use a variant of the encoder-processor-
decoder architecture from previous literature (Pfaff et al.,
2020; Luz et al., 2020; Sanchez-Gonzalez et al., 2020).
There are three main components to this architecture. The
encoder uses an MLP, which takes as input the graph nodes
and edges and outputs a 16D feature. The feature repre-
sentations are updated through a series of MLP message-
passing layers in the processing stage, where nodes and
edge features are updated through aggregating features in
the local neighborhood. We use five message-passing lay-
ers in the processors. Finally, the decoder takes the updated
feature on each edge to predict a real-number value on each
edge which forms a matrix M to be used to construct our
predicted preconditioner P.

Unfortunately, directly assembling the predicted edge fea-
ture into a matrix often fails to serve as a valid precon-
ditioner because there is no guarantee of its symmetry or
positive definiteness. Therefore, we first construct a trian-
gular matrix by averaging a pair of the bidirectional edges
running between the two graph nodes and store the value
on the corresponding lower-triangular indices Li,j|i≥j . We

use LL⊤ as our preconditioner, and this construction en-
sures its symmetry and positive definiteness. Please see
Appendix Section A.3 for more details on the GNN archi-
tecture.

4.3. Loss function

Existing works on learning preconditioners (Sappl et al.,
2019; Calı̀ et al., 2022; Azulay & Treister, 2022; Ackmann
et al., 2020) leverage the loss function that minimizes the
condition number κ of the system matrix A. Condition
number can be a natural choice when designing loss func-
tions to discover new preconditioners since the strength of
preconditioners in reducing CG convergence iterations is
greatly reflected by condition number κ. However, using
condition number as a loss function has two main draw-
backs: 1) condition number is expensive and slow to com-
pute because every data instance of A requires a full eigen
decomposition, which is a O(n3) operation, making it very
restrictive in training for large system of equations. 2) Pre-
vious literature (Wang et al., 2019) has reflected that back-
propagation through eigen decomposition tends to be nu-
merically unstable. Therefore, we relax the objective to the
squared Frobenius norm.

Since our formulation uses matrix decomposition for ap-
proximating the original system matrix A, designing many
classic preconditioners can be cast as a problem of mini-
mizing their discrepancy to the given linear system over a
set of easy-to-compute matrices:

min
P∈P

L(P,A), (5)

where A is the system matrix defined above and the system
that we want to precondition upon, P is the feasible set of
preconditioners, and L(·, ·) is a loss function defined on the
difference between the two input matrices.

The design of classic preconditioners, e.g., incomplete
Cholesky or symmetric successive over-relaxation (SSOR)
(Golub & Van Loan, 2013), is defined on the left-hand-side
matrix A only. Following this classical approach, it is now
tempting to consider the following loss function definition
for our neural-network preconditioner:

min
θ

∑
(Ai,xi,bi)

∥Lθ(Ai,bi)L
⊤
θ (Ai,bi)−Ai∥2F , (6)

where θ is the network parameters to be optimized, L(θ)
is the lower-triangular matrix from the network’s output,
and ∥ · ∥2F represents the squared Frobenius norm. The
index i loops over training data tuples (Ai,xi,bi). This
definition closely resembles the goal of the famous incom-
plete Cholesky preconditioner, especially since L shares
the same sparsity pattern as the lower triangular part of A.

We argue that this design decision unnecessarily limits the
full power of preconditioners because they overlook the

4



Learning Preconditioners for Conjugate Gradient PDE Solvers

right-hand-side vector b and its distribution among actual
PDE problem instances. A closer look at the loss function
can reveal the potential inefficiencies in its design:

L :=
∑
i

∥LθL
⊤
θ −Ai∥2F (7)

=
∑
i

∥(LθL
⊤
θ −Ai)I∥2F (8)

=
∑
i

∑
j

∥LθL
⊤
θ ej −Aiej∥2F (9)

where ej stands for the one-hot vector with one at the j-th
entry and zero elsewhere. This derivation shows that this
loss encourages a well-rounded preconditioner with uni-
formly small errors in all ej directions, regardless of the
actual data distribution in the training data (Ai,xi,bi).

In contrast to these classic preconditioners, we propose to
learn a neural network preconditioner from both left-hand-
side matrices and right-hand-side vectors in the training
data. Therefore, we consider a new loss function instead:

L :=
∑
i

∥LθL
⊤
θ xi −Aixi∥22 (10)

=
∑
i

∥LθL
⊤
θ xi − bi∥22. (11)

Comparing these two losses, we can see that the new loss
replaces ej with xi from the training data. Therefore,
the new loss encourages the preconditioner to ensemble
A not uniformly in all directions but towards frequently
seen directions in the training set. Essentially, this new loss
trades generalization of the preconditioner with better per-
formance for more frequent data.

4.4. Remark

To summarize, we overcome the traditional trade-off be-
tween speed and efficacy by carefully limiting the scope
of our preconditioners by leveraging the speed and approx-
imation ability of neural networks. Our approach lever-
ages the duality between graph and matrix to guarantee
correctness-by-construction (ensure that the learned pre-
conditioner is an SPD matrix). This construction also al-
lows for application to various PDE problems. Finally, we
also exploit the data distribution in our loss function design
for more efficient training and learning of a more effective
preconditioner.

There are two directions for speeding up PCG solvers. One
is by using an efficient and effective precondition method,
as shown in our previous discussion; another direction
comes from using a better starting guess x0. Our proposed
method can achieve both simultaneously. In addition to a
preconditioner, our method can also function as a surrogate
model to offer further speed up without additional com-
putation time cost. This can be achieved by predicting an

initial guess x̂0 for the conjugate gradient algorithm. We
directly regress decoded graph node values to the solution
xi of the linear systems Aixi = bi. The predicted x̂i can
be used as the initial starting point of the CG algorithm. In
the experiments section 5, we show results without using
the predicted x̂0 to focus solely on the effect of precondi-
tioners, and we conduct additional experiments that show
the additional speed up in Section. A.6. in Appendix.

5. Experiments
Our experiments aim to answer the following questions:

1. How does the proposed method compare with classical
and learning-based preconditioners in speed and accuracy?

2. Is our data-dependent loss function effective?

3. Does our approach generalize well to unseen inputs?

We introduce the experiment setup in Sec. 5.1 followed by
answering the three questions from Sec. 5.2 to Sec. 5.4. We
also show additional experimental results and discussion
reflecting condition number of the preconditioned system
using various methods in Sec. A.7, comparing our proposed
method with the multigrid approach in Sec. A.8, and learn-
ing physics simulation works in Sec. A.10 in Appendix.
Training setup can be found in Section A.4. in Appendix.

5.1. Experiment Setup

PDE Environments This work studies solving the three
representative linear second-order PDEs:

Heat equation (parabolic)
∂u

∂t
− α

∂2u

∂x2
= 0 (12)

Wave equation (hyperbolic)
∂2u

∂t2
− c2

∂2u

∂x2
= 0 (13)

Poisson’s equation (elliptic) ∇2u = f, (14)

where α is the diffusion coefficients, c is the wave speed,
and f is the right hand side. Each of these PDEs is defined
on a problem domain with a 2D triangle mesh and/or a 3D
tetrahedron mesh for discretization purposes, as shown in
Fig. 1). More details about the dataset generated for each
environment can be found in Sec. A.2 in Appendix.

Baseline Methods We compare with several general-
purpose classical and learning-based preconditioners:

• Jacobi preconditioner (Jacobi) uses the diagonal element
of the original Matrix A as preconditioner P, and its in-
verse can be easily computed by directly taking the in-
verse of the diagonal entries.

• Gauss-Seidel preconditioner (Gauss-Seidel) is a
factorization-based preconditioner. It constructs the
upper U and lower L triangular matrices directly from

5



Learning Preconditioners for Conjugate Gradient PDE Solvers

Figure 1: Environment Overview. Left to right: heat-2d, wave-2d, poisson-2d, and poisson-3d.

Task Method Precompute time ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.)↓
(s) until 1e-2 until 1e-4 until 1e-6 until 1e-8 until 1e-10 until 1e-12

heat-2d

Jacobi 0.0001 0.657 (32) 2.188 (132) 3.263 (202) 4.105 (257) 5.269 (333) 6.255 (398)
Gauss-Seidel 0.0071 0.645 (27) 1.656 (98) 2.339 (146) 2.995 (193) 3.771 (247) 4.402 (292)

IC 1.5453 1.954 (12) 2.612 (54) 3.061 (83) 3.409 (105) 3.832 (133) 4.271 (161)
IC(2) 2.3591 2.624 (11) 3.094 (40) 3.399 (60) 3.651 (76) 3.965 (96) 4.260 (115)
Ours 0.0251 0.490 (17) 1.284 (71) 1.856 (110) 2.300 (140) 2.831 (177) 3.377 (214)

wave-2d

Jacobi 0.0001 0.141 (0) 0.141 (0) 0.141 (0) 0.176 (6) 0.295 (26) 0.417 (46)
Gauss-Seidel 0.0079 0.089 (0) 0.089 (0) 0.09 (0) 0.1 (2) 0.16 (11) 0.232 (22)

IC 0.7679 0.885 (0) 0.885 (0) 0.885 (0) 0.904 (3) 0.953 (11) 1.007 (20)
IC(2) 1.1831 1.226 (0) 1.226 (0) 1.226 (0) 1.266 (5) 1.326 (12) 1.385 (18)
Ours 0.0147 0.081 (0) 0.081 (0) 0.081 (0) 0.100 (3) 0.156 (12) 0.211 (21)

possion-2d

Jacobi 0.0001 0.980 (275) 1.231 (348) 1.572 (448) 1.822 (522) 2.119 (611) 2.405 (697)
Gauss-Seidel 0.0071 0.699 (194) 0.964 (273) 1.26 (361) 1.518 (438) 1.807 (525) 2.099 (613)

IC 0.7093 1.188 (135) 1.309 (171) 1.468 (219) 1.559 (246) 1.774 (311) 1.900 (349)
IC(2) 1.205 1.308 (60) 1.439 (74) 1.543 (100) 1.604 (115) 1.664 (131) 1.747 (151)
Ours 0.0145 0.639 (175) 0.818 (227) 1.017 (286) 1.118 (316) 1.312 (374) 1.510 (432)

possion-3d

Jacobi 0.0002 1.526 (0) 2.693 (7) 5.496 (25) 9.552 (50) 13.636 (76) 17.080 (97)
Gauss-Seidel 0.3381 5.824 (0) 6.775 (6) 9.074 (19) 12.305 (38) 15.454 (56) 18.333 (72)

IC 9.6878 10.668 (1) 11.353 (6) 12.592 (15) 13.826 (23) 14.954 (31) 15.812 (37)
IC(2) 17.138 18.083 (1) 18.661 (5) 19.667 (11) 20.599 (17) 21.704 (24) 22.560 (30)
Ours 0.4137 3.010 (0) 3.220 (2) 4.815 (13) 6.908 (28) 8.749 (41) 10.406 (53)

Table 1: Comparison between preconditioners with PCG. We report precompute time, total time ( ICl. precompute time)
for each precision level, and the PCG iterations (in parenthesis). The best value is in bold. ↓: the lower the better.

the system matrix A, making P = L+U.
• Incomplete Cholesky preconditioner (IC) is a

factorization-based preconditioner that is formed
by the approximate triangular decomposition P = LL⊤.
The numerical values L is sequentially computed from
left-to-right to minimize ||LL⊤ −A||2.

• Incomplete Cholesky with two levels of fill-in (IC(2)) is
a variant of the standard IC preconditioner that improves
accuracy. It uses the second level of fill-in to capture ad-
ditional non-zero entries in the factorization. It first uses
IC to factorize A into LL⊤. Then, nonzero entries of L
are used to construct a new sparse matrix A2, which is
factorized again using IC, resulting in a new sparse ma-
trix L2. The final preconditioner is L2L

⊤
2 . IC(2) is more

accurate than IC as it captures more of the structure of
A. However, it is also more computationally expensive
to construct, requiring two rounds of factorizations.

• Learning-based preconditioners trained by directly mini-
mizing the condition number (Sappl et al., 2019).

We also include a detailed discussion between our method
and the multigrid preconditioner method in Appendix A.8.

More details about baselines can be found in Appendix.

Evaluation Metrics We quantify the performance by
comparing the total wall-clock time spent for each precon-
ditioner to reach desired accuracy levels.

To ensure a fair comparison between all methods, we sum-
marize the performance of PCG solvers not in a single
number but in the following values: (a) the time spent on
precomputing the preconditioner for the given A and b; (b)
the number of iterations for CG solver to converge, and (c)
the total time (including the precomputing time) to reach
different precision thresholds.

As an additional reference metric, we also show the condi-
tion number that reflects the speed up during the CG solv-
ing stage in Appendix Sec. A.7.

5.2. Comparison with Classic Preconditioners

We compare our approach with the general-purpose pre-
conditioners described above. Table 1 summarizes the time
cost and iteration numbers of PCG solvers using different
preconditioners up to various convergence thresholds.

6



Learning Preconditioners for Conjugate Gradient PDE Solvers

Task Method Precompute time ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.)↓
(s) until 1e-2 until 1e-4 until 1e-6 until 1e-8 until 1e-10 until 1e-12

heat-2d
κ losss ( (Sappl et al., 2019)) 0.0236 0.232 (20) 0.518 (68) 0.652 (98) 0.810 (118) 1.023 (163) 1.251 (180)

Naive loss (Eqn (6)) 0.0218 0.177 (15) 0.732 (181) 1.187 (236) 1.518 (296) 1.885(296) 2.284 (361)
Our loss (Eqn (10)) 0.0271 0.172 (14) 0.420 (57) 0.597 (87) 0.733 (110) 0.909 (140) 1.056 (165)

wave-2d
κ losss ( (Sappl et al., 2019)) 0.0165 0.087 (0) 0.087 (0) 0.087 (0) 0.106 (3) 0.165 (12) 0.220 (22)

Naive loss (Eqn (6)) 0.0120 0.076 (0) 0.076 (0) 0.076 (0) 0.146 (5) 0.190 (21) 0.351 (39)
Our loss (Eqn (10)) 0.0147 0.081 (0) 0.081 (0) 0.081 (0) 0.100 (3) 0.156 (12) 0.211 (21)

possion-2d
κ losss ( (Sappl et al., 2019)) 0.0129 0.769(219) 1.014 (291) 1.417(406) 1.602 (471) 1.990 (572) 2.211 (662)

Naive loss (Eqn (6)) 0.0117 0.827 (231) 1.201 (319) 1.443 (413) 1.634 (470) 1.942 (560) 2.256 (632)
Our loss (Eqn (10)) 0.0145 0.639 (175) 0.818 (227) 1.017 (286) 1.118 (316) 1.312 (374) 1.510 (432)

poisson-3d Naive loss (Eqn (6)) 0.407 2.936 (0) 3.241 (6) 4.017 (21) 8.501 (46) 12.373 (68) 15.719 (87)
Ours (Eqn (10)) 0.413 3.010 (0) 3.220 (2) 4.815 (13) 6.908 (28) 8.749 (41) 10.406 (53)

Table 2: Wall-clock time and iterations: our method with two different loss functions on heat-2d.

Task Method Precompute time ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓
(s) until 1e-2 until 1e-4 until 1e-6 until 1e-8 until 1e-10 until 1e-12

test

Jacobi 0.0001 0.811 (230) 0.983 (281) 1.341 (388) 1.629 (474) 1.832 (535) 2.176 (640)
Gauss-Seidel 0.0065 0.576 (157) 0.757 (211) 1.076 (305) 1.333 (382) 1.6 (461) 1.897 (550)

IC 0.6952 1.079 (100) 1.157 (123) 1.275 (156) 1.437 (203) 1.525 (229) 1.648 (264)
IC(2) 1.1123 1.354 (60) 1.396 (72) 1.491 (98) 1.556 (115) 1.607 (129) 1.707 (156)
Ours 0.0138 0.513 (137) 0.615 (167) 0.814 (226) 0.987 (277) 1.109 (313) 1.297 (369)

test-σ

Jacobi 0.0001 0.904 (253) 1.1 (310) 1.505 (430) 1.756 (505) 2.041 (589) 2.414 (702)
Gauss-Seidel 0.007 0.638 (175) 0.814 (227) 1.195 (340) 1.425 (408) 1.771 (512) 2.046 (594)

IC 0.7093 1.104 (110) 1.178 (132) 1.338 (180) 1.461 (217) 1.551 (244) 1.715 (293)
IC(2) 1.1305 1.362 (57) 1.403 (69) 1.497 (94) 1.562 (112) 1.611 (125) 1.708 (151)
Ours 0.0139 0.603 (165) 0.72 (200) 0.986 (280) 1.14 (326) 1.292 (372) 1.557 (452)

test-3σ

Jacobi 0.0001 0.949 (262) 1.139 (317) 1.566 (441) 1.828 (519) 2.123 (606) 2.485 (714)
Gauss-Seidel 0.0064 0.588 (161) 0.749 (209) 1.133 (323) 1.334 (383) 1.694 (491) 1.942 (565)

IC 0.6992 1.114 (111) 1.198 (137) 1.365 (187) 1.484 (222) 1.578 (251) 1.743 (301)
IC(2) 1.1126 1.354 (60) 1.396 (72) 1.491 (98) 1.556 (115) 1.608 (129) 1.707 (156)
Ours 0.0141 0.56 (153) 0.672 (186) 0.905 (256) 1.051 (300) 1.201 (345) 1.433 (415)

test-5σ

Jacobi 0.0001 1.082 (310) 1.455 (421) 1.761 (512) 2.06 (603) 2.531 (745) 2.763 (816)
Gauss-Seidel 0.0065 0.66 (182) 0.836 (234) 1.218 (347) 1.455 (417) 1.805 (522) 2.08 (604)

IC 0.6939 1.188 (135) 1.311 (171) 1.472 (219) 1.564 (246) 1.783 (311) 1.912 (349)
IC(2) 1.1019 1.317 (53) 1.359 (65) 1.444 (88) 1.513 (107) 1.561 (119) 1.657 (146)
Ours 0.0136 0.728 (203) 0.97 (275) 1.165 (333) 1.334 (384) 1.683 (488) 1.817 (528)

Table 3: Generalization to different physics parameters. We test on test sets with increasing deviation from the training
distribution. σ stands for the standard deviation of training set, test-σ, test-3σ, and test-5σ means test sets that are of 1, 3,
and 5 std. dev away from the training distribution, respectively.

Jacobi conducts the simple diagonal preconditioning, so it
has little precomputation overhead. However, the quality
of the preconditioner is mediocre, and PCG takes many it-
erations to converge. Similarly, the Gauss-Seidel precondi-
tioner directly forms the triangular matrices by taking the
entry values of system matrix A, and thus the computa-
tional overhead is low as compared to IC or IC(2) precon-
ditioners. However, it is limited in speeding up solvers be-
cause of its coarse approximation to the system matrix A.

IC and IC(2) speeds up CG solver significantly. However,
its precomputation process is sequential and therefore ex-
pensive to compute. This comparison reflects the deriva-
tion complexity and approximation accuracy trade-off be-
tween existing numerical preconditioners. By contrast, our
approach features an easily parallelizable precomputation
stage (like Jacobi and Gauss-Seidel) and produces a pre-
conditioner with a quality close to IC. Therefore, in terms

of total computing time, our approach outperforms the ex-
isting general-purpose numerical approaches across a wide
range of precision thresholds.

We can also see from this experiment that our proposed
method is especially beneficial for large-scale problems in
Poisson-3d with a matrix size of 23300 × 23300. We out-
perform baseline methods by a large margin. This reflects
the clear advantage of our approach’s parallelizability as
opposed to sequential approaches such as IC or IC(2).

5.3. Comparison of Loss function

To highlight the value of our loss function targeting data
distributions on the training set, we train the network with
the loss function that reduces the condition number κ as
proposed in (Sappl et al., 2019), the loss function that fo-
cuses only on the system matrix A as shown in Eqn (6), and

7



Learning Preconditioners for Conjugate Gradient PDE Solvers

Method Precompute time ↓ Time (iter.) ↓ Time (iter.) ↓ Time (iter.) ↓ Time (iter.) ↓ Time (iter.) ↓ Time (iter.) ↓
until 1e-2 until 1e-4 until 1e-6 until 1e-8 until 1e-10 until 1e-12

Jacobi 0.0002 2.314 (6) 4.634 (22) 8.395 (48) 12.002 (72) 15.381 (95) 18.332 (115)
Gauss-Seidel 0.3167 0.886 (0) 1.728 (8) 5.54 (29) 8.768 (48) 11.83 (65) 14.847 (82)

IC 8.9818 9.686 (2) 10.549 (12) 11.352 (21) 12.097 (29) 12.721 (36) 13.524 (45)
IC(2) 14.0376 14.688 (2) 15.475 (10) 16.072 (16) 16.706 (23) 17.269 (29) 18.008 (37)
Ours 0.4206 3.591 (4) 4.97 (14) 7.005 (29) 8.978 (43) 10.721 (55) 12.412 (68)

Table 4: Our approach generalizes to unseen armadillo mesh in the poisson-3d environment.

our proposed loss function that introduces inductive bias as
shown in Eqn (10). We show the comparisons across all
four of our experimental settings, and the results are shown
in Table 2. Compared to Eqn (6), We observe that the pre-
conditioner trained with Eqn (10) converges in fewer itera-
tions than Eqn (6).

Compared with the κ loss function, our proposed data-
driven loss function (10) shows a more stable convergence
across various different second-order linear PDEs. We also
observe that κ loss (Sappl et al., 2019) works on par with
our method on the wave-2d setting, but it does not work in
other settings, e.g., heat-2d, poisson-2d. Additionally, the
method using condition number as the loss energy is not
computationally efficient. Computing condition number
scales cubically with problem sizes. Our poisson-3d set-
ting uses a mesh of size 23,300 nodes. We train the κ loss
method for five days (120 hours), but it does not converge,
and it is only trained through less than five percent of the
training set using the same hardware setup. CG algorithm
does not converge when testing on these non-convergent re-
sults. Empirically, we found that using condition number as
loss energy is computationally infeasible with problems of
more than 10,000 nodes. As such, we conclude that enforc-
ing data distribution dependence during training allows us
to achieve better in-distribution inference during test time.

5.4. Generalization

Physics parameters. First, we consider generalizing the
PDEs on their physics parameters, which govern system A.
We use poisson-2d as an example. Our method is trained on
a fixed density distribution between [0.001, 0.005], and we
test the performance of our method on test distributions that
gradually deviates from the training distribution. Results
are reflected in Table 3, with growing deviation from top
rows to bottom rows.

Since changing physics parameters does not affect the ma-
trix sparsity, the pre-computation time remains largely un-
changed across different data distributions (see Table 3
Column 1). We can see that even on the challenging out-of-
distribution datasets, our approach still maintains reason-
able performance. We achieve high precision while using
the least total time to maintain better or comparable perfor-
mance to existing numerical approaches. We also observe

that the performance of our method degrades as the domain
gap between the training and test distribution grows.

Geometry. We test the generalizability of our model
on different problem domains Ω, represented by different
mesh models in our setting. We train our network on the
connector shape on one mesh and test its performance on
unseen meshes. As shown in the poisson-3d environment,
we train the network preconditioner on a “connector mesh”
consisting of 23, 300 nodes. We then test the trained net-
work model on a new mesh “armadillo”, which consists
of 18, 181 nodes. The geometry of the two domains dif-
fers significantly as shown in Fig. 1. We also report the
time and the iteration cost of our approach and classic pre-
conditioners on poisson-3d when testing on the unseen ar-
madillo mesh. The results are shown in Table 4. We notice
that our method can generalize to the unseen mesh. Even
in the challenging case of solving PDE on an unseen test
mesh, we are still able to converge to high precision lev-
els faster compared to existing numerical approaches. We
show additional experiments comparing our method with
pure learning-based methods (Pfaff et al., 2020) on gen-
eralizability in Appendix A.9. Since our approach is em-
bedded inside the PCG framework, we significantly out-
perform these pure learning approaches.

6. Conclusions and Future Work
This work presents a generic learning-based framework for
estimating preconditioners in the context of conjugate gra-
dient PDE solvers. Our key observation is that the precon-
ditioner for classic iterative solvers does not require exact
precision and is an ideal candidate for neural network ap-
proximation. Our proposed method approximates the pre-
conditioner with a graph neural network and embeds this
preconditioner into a classic iterative conjugate gradient
solver. Compared to classic preconditioners, our approach
is faster while achieving the same accuracy.

Currently, our approach is limited to linear systems of
equations Ax = b. Our parallelizability is bounded by
hardware setup, i.e., GPU memory. Future work may con-
sider extending to dynamic sparsity patterns for larger sys-
tems and to more complex PDEs, such as the elastodynam-
ics equations shown in prior end-to-end ML approaches
(Sanchez-Gonzalez et al., 2020).

8



Learning Preconditioners for Conjugate Gradient PDE Solvers

7. Acknowledgement
The work is supported by the MIT Robert Shillman Fel-
lowship.

References
Ackmann, J., Düben, P. D., Palmer, T. N., and Smo-

larkiewicz, P. K. Machine-learned preconditioners for
linear solvers in geophysical fluid flows, 2020. URL
https://arxiv.org/abs/2010.02866.

Azulay, Y. and Treister, E. Multigrid-augmented deep
learning preconditioners for the Helmholtz equation.
SIAM Journal on Scientific Computing, 0(0):S127–
S151, 2022. doi: 10.1137/21M1433514. URL https:
//doi.org/10.1137/21M1433514.

Belbute-Peres, F. D. A., Economon, T., and Kolter, Z.
Combining differentiable pde solvers and graph neural
networks for fluid flow prediction. In International Con-
ference on Machine Learning, pp. 2402–2411. PMLR,
2020.

Brandhorst, K. and Head-Gordon, M. Fast sparse Cholesky
decomposition and inversion using nested dissection ma-
trix reordering. Journal of chemical theory and compu-
tation, 7(2):351–368, 2011.

Buranay, S. C. and Iyikal, O. C. Approximate Schur-block
ILU preconditioners for regularized solution of discrete
ill-posed problems. Mathematical Problems in Engi-
neering, 2019, 2019.

Calı̀, S., Hackett, D. C., Lin, Y., Shanahan, P. E., and Xiao,
B. Neural-network preconditioners for solving the Dirac
equation in lattice gauge theory, 2022. URL https:
//arxiv.org/abs/2208.02728.

Chen, J., Fang, J., Liu, W., and Yang, C. BALS: Blocked
alternating least squares for parallel sparse matrix fac-
torization on GPUs. IEEE Transactions on Parallel and
Distributed Systems, 32(9):2291–2302, 2021a.

Chen, J., Schäfer, F., Huang, J., and Desbrun, M. Multi-
scale Cholesky preconditioning for ill-conditioned prob-
lems. ACM Transactions on Graphics (TOG), 40(4):1–
13, 2021b.

Chen, J., Schäfer, F., Huang, J., and Desbrun, M. Multi-
scale Cholesky preconditioning for ill-conditioned prob-
lems. ACM Trans. Graph., 40(4), jul 2021c. ISSN 0730-
0301. doi: 10.1145/3450626.3459851. URL https:
//doi.org/10.1145/3450626.3459851.

Davis, T. A. and Hager, W. W. Modifying a sparse
Cholesky factorization. SIAM Journal on Matrix Analy-
sis and Applications, 20(3):606–627, 1999a.

Davis, T. A. and Hager, W. W. Modifying a sparse
Cholesky factorization. SIAM Journal on Matrix Anal-
ysis and Applications, 20(3):606–627, 1999b. doi: 10.
1137/S0895479897321076.

Demidov, D. AMGCL: An efficient, flexible, and
extensible algebraic multigrid implementation.
Lobachevskii Journal of Mathematics, 40(5):
535–546, May 2019. ISSN 1818-9962. doi:
10.1134/S1995080219050056. URL https:
//doi.org/10.1134/S1995080219050056.

Fey, M. and Lenssen, J. E. Fast graph representation learn-
ing with PyTorch Geometric. In ICLR Workshop on Rep-
resentation Learning on Graphs and Manifolds, 2019.

Golub, G. H. and Van Loan, C. F. Matrix computations.
JHU press, 2013.

Götz, M. and Anzt, H. Machine learning-aided nu-
merical linear algebra: Convolutional neural networks
for the efficient preconditioner generation. In 2018
IEEE/ACM 9th Workshop on Latest Advances in Scal-
able Algorithms for Large-Scale Systems (scalA), pp.
49–56. IEEE, 2018.

Gould, N. I. M., Hribar, M. E., and Nocedal, J. On the
solution of equality constrained quadratic programming
problems arising in optimization. SIAM J. Sci. Comput.,
23:1376–1395, 2001.

Johnson, C. Numerical solution of partial differential equa-
tions by the finite element method. Courier Corporation,
2012.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Khare, K. and Rajaratnam, B. Sparse matrix decomposi-
tions and graph characterizations. Linear Algebra and
its Applications, 437(3):932–947, 2012.

Koolstra, K. and Remis, R. Learning a preconditioner to
accelerate compressed sensing reconstructions in mri.
Magnetic Resonance in Medicine, 87(4):2063–2073,
2022.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart,
A., Bhattacharya, K., and Anandkumar, A. Multipole
graph neural operator for parametric partial differential
equations. Advances in Neural Information Processing
Systems, 33:6755–6766, 2020b.

9

https://arxiv.org/abs/2010.02866
https://doi.org/10.1137/21M1433514
https://doi.org/10.1137/21M1433514
https://arxiv.org/abs/2208.02728
https://arxiv.org/abs/2208.02728
https://doi.org/10.1145/3450626.3459851
https://doi.org/10.1145/3450626.3459851
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S1995080219050056


Learning Preconditioners for Conjugate Gradient PDE Solvers

Liew, K. M., Wang, W., Zhang, L., and He, X. A com-
putational approach for predicting the hydroelasticity of
flexible structures based on the pressure poisson equa-
tion. International Journal for Numerical Methods in
Engineering, 72(13):1560–1583, 2007.

Liu, J. W. The role of elimination trees in sparse factoriza-
tion. SIAM Journal on Matrix Analysis and Applications,
11(1):134–172, 1990.

Luz, I., Galun, M., Maron, H., Basri, R., and Yavneh,
I. Learning algebraic multigrid using graph neural net-
works. In International Conference on Machine Learn-
ing, pp. 6489–6499. PMLR, 2020.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In International Conference on Learning Rep-
resentations, 2020.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework
for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Compu-
tational physics, 378:686–707, 2019.

Saad, Y. and Zhang, J. Enhanced multi-level block ilu
preconditioning strategies for general sparse linear sys-
tems. Journal of Computational and Applied Mathemat-
ics, 130(1):99–118, 2001. ISSN 0377-0427.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR,
2020.

Sappl, J., Seiler, L., Harders, M., and Rauch, W.
Deep learning of preconditioners for conjugate gradi-
ent solvers in urban water related problems, 2019. URL
https://arxiv.org/abs/1906.06925.

Schäfer, F., Katzfuss, M., and Owhadi, H. Sparse Cholesky
factorization by kullback–leibler minimization. SIAM
Journal on Scientific Computing, 43(3):A2019–A2046,
2021.

Trottenberg, U., Oosterlee, C. W., and Schüller, A. Multi-
grid, volume 33 of Texts in Applied Mathematics. Bd.
Academic Press, San Diego [u.a.], 2001. ISBN 0-12-
701070-X. With contributions by A. Brandt, P. Oswald
and K. Stüben.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative PDE-solvers. Advances in
Neural Information Processing Systems, 33:6111–6122,
2020.

Wang, W., Dang, Z., Hu, Y., Fua, P., and Salzmann,
M. Backpropagation-friendly eigendecomposition. Ad-
vances in Neural Information Processing Systems, 32,
2019.

10

https://arxiv.org/abs/1906.06925


Learning Preconditioners for Conjugate Gradient PDE Solvers

A. Appendix
The Appendix section includes the following:

• Algorithm Description for PCG
• Details of the Experiment Environment
• Technical Details of our Method
• Training Setup and Convergence Time
• Additional Experiments on Large Matrices
• Comparison with Start Guess x0 Prediction
• Condition Number Comparison
• Comparison and Discussion on Multigrid Precondition-

ers
• Generalizability Comparison with Learning Physics

Simulation Works
• Error Accumulation Comparison with Learning Physics

Simulation Works

A.1. PCG Algorithm

We describe the Preconditioned Conjugate Gradient Algo-
rithm Here:

Algorithm 1 PCG

Require: System Matrix A, right-hand-side vector b, ini-
tial guess x0, Precondtioner P
r0 = b−Ax0

Solve Pz0 = r0
p1 = z0
w = Ap1

α1 = rT0 z0/(p
T
1 w)

x1 = x0 + α1p1

r1 = r0 − α1w
k = 1
while ∥rk∥2 > ϵ do

Solve Pzk = rk
βk = rTk zk/(r

T
k−1zk−1)

pk+1 = zk + βkpk

w = Apk+1

αk+1 = rTk zk/(p
T
k+1w)

xk+1 = xk + αk+1pk+1

rk+1 = rk − αk+1w
k = k + 1

end while
Return x = xk

A.2. Environment Details

Our dataset is constructed by simulating trajectories of each
PDE on a given mesh domain with various initial condi-
tions and boundary conditions. Each trajectory has about
20-100 time steps depending on the equation and initial
condition. These trajectories are split into training and test
set. Ai,xi,bi is one single time step in the trajectory. The
training set is of size 3000, meaning that it contains 3000

PDE Number of Nodes Number of Elements Boundary Condition

heat-2d 7454 14351 varying
wave-2d 4852 8839 varying

poisson-2d 3167 6117 varying
poisson-3d 23300 129981 fixed
poisson-3d 18181 97476 fixed

Table 5: Environment setup for experiments.

Ai ·xi = bi tuples, and the test set contains 200 instances.

Table 5 lists the environment details for the experiment
section. Figure 2 shows examples demonstrating vary-
ing boundary conditions. For heat-2d and wave-2d, vary-
ing lengths and positions of mesh geometric boundary
nodes are selected as Dirichlet boundaries. For poisson-
2d equation, we use the inviscid-Euler fluid equation as a
demonstration. All solvers are only responsible for solv-
ing the pressure that makes the velocity field incompress-
ible, which is a Poisson equation. The advection and ex-
ternal force steps are then applied to generate the data vi-
sualization. For poisson-2d, two sets of varying length and
position of mesh geometric outer border boundary nodes
are selected as influx and Dirichlet boundary. The remain-
ing mesh geometric border nodes, including the remaining
outer border and all nodes in the inner border, are obstacle
boundaries.

For experiment 5.4 across different physics parameters, we
consider the same mesh domain used in other poisson-2d
experiments with a mesh size of 3167 and element size of
6117. We train on training sets with density distribution
from [0.001, 0.005], and our test environment test-1σ is of
density 0.006. Test environment test-3σ is of density 0.008.
Test environment test-5σ is of density 0.01.

A.3. Technical Details and Justification

Encoders operate on graph nodes and edges. Graph Node
Encoder is a l layer MLP with h hidden dimensions
that takes each graph node input (rhs vector b) to a 16-
dimensional feature vector. Graph Edge Encoder is an
MLP also with l layers and h hidden dimensions. It op-
erates on graph edges input (matrix A) to a 16-dimensional
latent feature.

Message passing of nmp iterations is conducted where
the neighboring nodes are updated through the connected
edges. vi,t+1 = fmp,v(vi,t,

∑
j ei,j,tvj,t) where fmp,v is

implemented as an MLP with lmp layers and hmp hid-
den dimensions. The Edge features are also updated
by combining the updated information of the two con-
nected nodes through the message passing layers such that
ei,j,t+1 = fmp,e(ei,j,t, vi,t+1, vj,t+1), where fmp,e is also
implemented as an MLP with lmp layers and a hmp hidden
dimensions. We then update the two-way edges ei,j,t+1 and

11



Learning Preconditioners for Conjugate Gradient PDE Solvers

Heat 2D Wave 2D Poisson 2D

Figure 2: Varying boundary conditions: For heat-2d and wave-2d, the black vertices represent the Dirichlet boundary. The poisson-2d
example shows the red vertices are the obstacle boundary, the blue vertices are the influx boundary, and green vertices are the Dirichlet
boundary.

ej,i,t+1.

The decoder converts the updated edge features ei,j into a
single real number Li,j .Li,j = fdec(ei,j), where fdec a l
layer MLP with h hidden dimensions. To ensure the de-
coded L is a lower triangular matrix, we average the value
on the pair of bi-directional edges ei,j = 1

2 (ei,j + ej,i)
and store the value on the corresponding lower-triangular
indices Li,j|i≥j . The output of the GNN is L. ReLU acti-
vation is used in all MLPs.

Env Heat-2D Wave-2D Poisson-2D Poisson-3D

l 1 1 2 2
h 16 16 16 16

nmp 5 5 5 3
lmp 1 1 2 2
hmp 16 16 16 16

Table 6: GNN architecture hyper-parameter.

We follow the diagonal decomposition LDL⊤ as a way
of lower triangular decomposition for the original system
K. It is easy to see that this diagonal decomposition is
equivalent to lower triangular decomposition.

K = LθL
⊤
θ (15)

= Lθ′
√
D
√
DLθ′ (16)

= Lθ′DLθ′ (17)

The diagonal decomposition LDL⊤ has several advan-
tages, similar to lower triangular decomposition LL⊤, it
is easy to invert, and guarantees symmetry. Additionally,
we enforce the diagonal element D to be the diagonal ele-
ments of the original system K. This way, we enforce the
value and gradient range for the lower triangular matrix Lθ′

to ensure the positive definiteness of the learned decompo-
sition.

A.4. Training Time and Training Setup Details

Training Setup. All experiments are conducted using the
same hardware setup equipped with 64-core AMD CPUs

and an NVIDIA RTX-A8000 GPU. We use Adam opti-
mizer with the initial learning rate set to 1e-3. We use a
batch size of 16 for all Heat-2d, Poisson-2d, and Wave-2d
experimental environments. We use a batch size of 8 for
the Poisson-3d environment. All learning-based methods
are written using the Pytorch (Paszke et al., 2019) Frame-
work with the Pytorch-Geometric (Fey & Lenssen, 2019)
Package and CUDA11.6. We use the same set of GNN ar-
chitecture hyperparameters as described in Sec. 6 for all
four experimental environments.

All learning-based methods are trained to full convergence
unless otherwise specified. All learning-based and tra-
ditional baselines use parallelized tensorized GPU imple-
mentations unless otherwise specified. All experimental
data are reported by averaging the test sets of size 200.
Each experiment is run 12 times, and the reported time
averages the fastest five runs. We trained our proposed
method for 5 hours on all experimental environments and
observed full convergence. All learning baseline methods
discussed in Sec. A 5.3 are trained for 72 hours and ob-
served convergence except for the Poisson-3d environment,
which is trained for 120 hours and does not converge.

Training Time. Figure 3 reflects the convergence speed
for training each PDE environment. We train each PDE
environment for 5-6 hours. We observe that training for all
environments converges within one hour of training. Heat-
2d environments converge within 5 minutes, and Wave-2d
environments converge within 8 minutes. The Poisson-2D
and Poisson-3d environments converge within about 30 and
60 minutes of training, respectively. It is noted that we want
the wall-clock time value reported in all tables to be one
single simulation time step. A full simulation trajectory
is normally composed of thousands of or even millions of
such time steps. Therefore, the small time difference for
each simulation time step can quickly add up to pay off the
training cost.

12



Learning Preconditioners for Conjugate Gradient PDE Solvers

Figure 3: Training Convergence (in normalized loss value)

A.5. Additional Experiments on Large Matrices

We provide several additional large-scale examples (>
10, 000 mesh nodes/matrix dimension) to show the advan-
tages of our method. The experimental results are shown
in Table 7. We can see from the table that our proposed
method surpasses the classical baseline methods by a large
margin, especially on the low-accuracy requirement tasks
(1e− 2 ∼ 1e− 6).

A.6. Comparison with Starting Guess x̂0 prediction

Here, we provide an additional experiment using both our
predicted preconditioner P and the initial value of x̂0 for
the PCG algorithm. x̂0 is obtained by regressing the de-
coded graph node values to the x in Ax = b. The starting
guess x̂0 can be obtained with no additional computation
time cost. We compare with existing classical precondi-
tioning methods as mentioned in Section 5.2. Experimental
results are shown in Table 8.

A.7. Condition Number Comparison

We show the condition number comparison in Table 10. We
observe that IC(2) is the most powerful approach in reduc-
ing the condition number of the system matrix A, but it is
the most computationally expensive approach to derive. Ja-
cobi Method is the least powerful approach in reducing the
condition number, and thus the CG iteration, as shown in
the Table. This clearly presents the speed-accuracy trade-
off. Our method is relatively fast to compute, as shown
in Table. 1, and also reduces condition number by a rela-
tively large amount. The results reflect and explain that we
outperform other numerical baseline methods in total time.

A.8. Discussion and Comparison with MultiGrid
Preconditioners

We compare it with the algebraic multigrid method (AMG).
We adopt the implementation of the commonly used open-
source package AMGCL (Demidov, 2019). Results are

shown in 9. We can see from the table that AMG does
not perform well on non-elliptic PDEs, such as the hyper-
bolic PDE (wave-2d). AMG results in the largest number
of CG iterations as compared with other baseline numerical
approaches, Jacobi, Gauss-Seidel, IC, and IC(2), demon-
strating that the multigrid approach is not designed to be
general purpose. We also observe that AMG improves the
CG iteration number for the elliptic PDE and results in the
best CG iteration, as shown in the comparison on Poisson-
3d. However, AMG is more computationally expensive
and less parallelizable compared to our proposed approach,
and thus the derivation time is 10 times longer than our ap-
proach. Therefore, AMG takes more total time compared
to our proposed approach.

A.9. Generalizability Comparisons with Learning
Physics Simulation Works

We also compare the generalizability of our proposed ap-
proach with the learning physics simulation work, Mesh-
GraphNet (MGN) (Pfaff et al., 2020). Both our method
and MeshGraphNet are trained on connector-shaped mesh
and tested on armadillo mesh, as shown in Fig. 1. The re-
sults are shown in Fig. 4. By comparing the bottom and
middle rows in Fig. 4, we first see that the end-to-end net-
work method (MGN) struggles to generate accurate solu-
tions when deployed on the unseen mesh (0.5315 error),
whereas our approach achieves arbitrary accuracy by con-
struction (1e − 9 error threshold here). This result reflects
leveraging neural networks to obtain fast but inaccurate so-
lutions can have more benefit when the solution is not taken
as given but used in the context of traditional approaches
can have more benefit.

A.10. Error Accunumation Comparisons with
Learning Physics Simulation Works

In this experiment, we demonstrate the advantage of our
approach over end-to-end network methods: We ensure ac-
curate solutions while end-to-end networks accumulate er-
rors over time. To show this quantitatively, we solve the
wave-2d equation for 100 consecutive time steps using our
approach and MGN. Fig. 5 shows that while our approach
agrees exactly with the ground truth (1e − 10 precision),
MGN deviates from the ground truth over time. At time
step 100, MGN has an error of 517.4%. We can expect
MGN to be faster in wall-clock time, as MGN only needs
to run network inference once, while we need to run net-
work inference to compute the preconditioner followed by
running PCG solvers.

To summarize, MGN is good at estimating solutions
rapidly while our approach has the flexibility of achieving
arbitrary solution precision, just like a standard CG solver.
Therefore, network methods are suitable for applications

13



Learning Preconditioners for Conjugate Gradient PDE Solvers

Task Mesh Shape Method Precompute time ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓
problem size (s) until 1e-2 until 1e-4 until 1e-6 until 1e-8 until 1e-10

heat-2d
(13260)

Jacobi 0.0001 2.036 (33) 6.93 (136) 10.403 (210) 13.427 (274) 16.931 (348)
Gauss-Seidel 0.0688 1.931 (23) 6.385 (95) 9.545 (147) 12.297 (191) 15.486 (244)

IC 3.4732 4.911 (13) 6.947 (56) 8.428 (87) 9.541 (110) 10.852 (138)
IC (2) 5.8823 7.332 (9) 8.961 (39) 10.146 (61) 11.036 (77) 12.085 (96)
Ours 0.0478 1.607 (17) 4.088 (73) 5.222 (115) 7.084 (146) 8.057 (184)

possion-2d
(13436)

Jacobi 0.0001 18.929 (496) 27.988 (733) 35.38 (927) 45.646 (1194) 52.419 (1371)
Gauss-Seidel 0.0594 12.577 (327) 18.558 (484) 23.454 (612) 30.192 (788) 34.659 (905)

IC 3.7626 11.859 (212) 13.776 (262) 17.958 (371) 20.042 (426) 23.042 (504)
IC (2) 6.6974 13.008 (144) 14.514 (178) 17.876 (252) 19.241 (290) 21.941 (343)
Ours 0.0427 9.607 (256) 10.115 (306) 15.07 (443) 11.477 (524) 16.924 (576)

Table 7: Comparison between preconditioners for PCG on large examples. We report the precompute time, total time (
ICl. precompute time) for each precision level, and the corresponding PCG iterations (in parenthesis). The best value in
each category is in bold. ↓: the lower the better.

Figure 4: Poisson-3d on unseen mesh: MGN (middle), our method (bottom), training mesh (top). Left to right: solution
fields at different cross-section heights.

where speed dominates accuracy, while our approach is
better for applications that require high precision, e.g., in
scientific computing and engineering design.

Figure 5: MGN Error accumulation. Field values vs. time
step (wave-2d): the ground-truth field solved using PCG
with 1e-10 convergence threshold (top), the field predicted
by MGN (middle), and their difference (bottom), all evalu-
ated at time step 1, 5, 30, 70, 100 (left to right).

14



Learning Preconditioners for Conjugate Gradient PDE Solvers

Task Method Precompute time ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.)↓
(s) until 1e-2 until 1e-4 until 1e-6 until 1e-8 until 1e-10 until 1e-12

heat-2d

Jacobi 0.0001 0.657 (32) 2.188 (132) 3.263 (202) 4.105 (257) 5.269 (333) 6.255 (398)
Gauss-Seidel 0.0071 0.645 (27) 1.656 (98) 2.339 (146) 2.995 (193) 3.771 (247) 4.402 (292)

IC 1.5453 1.954 (12) 2.612 (54) 3.061 (83) 3.409 (105) 3.832 (133) 4.271 (161)
IC(2) 2.3591 2.624 (11) 3.094 (40) 3.399 (60) 3.651 (76) 3.965 (96) 4.260 (115)
Ours 0.0251 0.490 (17) 1.284 (71) 1.856 (110) 2.300 (140) 2.831 (177) 3.377 (214)

Ours with x̂0 0.0237 0.413 (14) 1.24 (72) 1.782 (110) 2.219 (141) 2.766 (180) 3.284 (216)

wave-2d

Jacobi 0.0001 0.141 (0) 0.141 (0) 0.141 (0) 0.176 (6) 0.295 (26) 0.417 (46)
Gauss-Seidel 0.0079 0.089 (0) 0.089 (0) 0.09 (0) 0.1 (2) 0.16 (11) 0.232 (22)

IC 0.7679 0.885 (0) 0.885 (0) 0.885 (0) 0.904 (3) 0.953 (11) 1.007 (20)
IC(2) 1.1831 1.226 (0) 1.226 (0) 1.226 (0) 1.266 (5) 1.326 (12) 1.385 (18)
Ours 0.0147 0.081 (0) 0.081 (0) 0.081 (0) 0.100 (3) 0.156 (12) 0.211 (21)

Ours with x̂0 0.0143 0.079 (0) 0.079 (0) 0.079 (0) 0.097 (3) 0.147 (11) 0.201 (20)

possion-2d

Jacobi 0.0001 0.980 (275) 1.231 (348) 1.572 (448) 1.822 (522) 2.119 (611) 2.405 (697)
Gauss-Seidel 0.0071 0.699 (194) 0.964 (273) 1.26 (361) 1.518 (438) 1.807 (525) 2.099 (613)

IC 0.7093 1.188 (135) 1.309 (171) 1.468 (219) 1.559 (246) 1.774 (311) 1.900 (349)
IC(2) 1.205 1.308 (60) 1.439 (74) 1.543 (100) 1.604 (115) 1.664 (131) 1.747 (151)
Ours 0.0145 0.639 (175) 0.818 (227) 1.017 (286) 1.118 (316) 1.312 (374) 1.510 (432)

Ours with x̂0 0.0137 0.588 (167) 0.701 (203) 0.952 (282) 1.083 (322) 1.276 (383) 1.494 (451)

possion-3d

Jacobi 0.0002 1.526 (0) 2.693 (7) 5.496 (25) 9.552 (50) 13.636 (76) 17.080 (97)
Gauss-Seidel 0.3381 5.824 (0) 6.775 (6) 9.074 (19) 12.305 (38) 15.454 (56) 18.333 (72)

IC 9.6878 10.668 (1) 11.353 (6) 12.592 (15) 13.826 (23) 14.954 (31) 15.812 (37)
IC(2) 17.138 18.083 (1) 18.661 (5) 19.667 (11) 20.599 (17) 21.704 (24) 22.560 (30)
Ours 0.4137 3.010 (0) 3.220 (2) 4.815 (13) 6.908 (28) 8.749 (41) 10.406 (53)

Ours with x̂0 0.4068 2.997 (0) 3.209 (2) 4.803 (12) 6.882 (27) 7.915 (40) 10.020 (51)

Table 8: Comparison between preconditioners for PCG. We report precomputing time, total time (including the precompute
time) for each precision level, and the corresponding PCG iterations (in parenthesis). The best value in each category is in
bold. ↓: the lower the better.

Task Method Precompute time ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.) ↓ time (iter.)↓
(s) until 1e-2 until 1e-4 until 1e-6 until 1e-8 until 1e-10 until 1e-12

wave-2d AMG 0.0753 0.44 (15) 0.527 (19) 0.615 (23) 0.7 (27) 0.781 (30) 0.869 (34)
Ours 0.0147 0.081 (0) 0.081 (0) 0.081 (0) 0.100 (3) 0.156 (12) 0.211 (21)

possion-3d AMG 4.1097 5.877 (0) 10.045 (4) 13.733 (8) 17.399 (11) 20.954 (14) 24.479 (18)
Ours 0.4137 3.010 (0) 3.220 (2) 4.815 (13) 6.908 (28) 8.749 (41) 10.406 (53)

Table 9: Comparison between the Algebraic MultiGrid preconditioner (AMG) and Our proposed preconditioner. We report
precompute time, total time (including the precompute time) for each precision level, and PCG iterations (in parenthesis).
↓: the lower the better.

Method Wave-2d Poisson-2d Heat-2d Poisson-3d

A (original system) 540272.25 43658.16 181.56 1008.79
Jacobi 96.35 18712.16 165.71 225.86

Gauss-Seidel 25.20 13902.30 117.94 168.75
IC 23.22 5662.48 42.83 43.23

IC(2) 21.37 3742.01 34.05 37.04
Ours 23.89 8384.31 64.23 136.86

Table 10: Condition number comparison between various
methods

15


