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Abstract
Humans view the world through many sensory
channels, e.g., the long-wavelength light channel,
seen by the left eye, or the high-frequency vibra-
tions channel, heard by the right ear. Each view
(such as light or sound) is noisy and incomplete,
but important factors, such as physics, geome-
try, and semantics, tend to be shared between all
views (e.g., a “dog” can be seen, heard, and felt).
We hypothesize that a powerful neural represen-
tation is one that models view-invariant factors.
Based on this hypothesis, we investigate a con-
trastive coding scheme, in which a deep represen-
tation is learned that aims to maximize mutual
information between different views but is other-
wise compact. Our approach scales to any num-
ber of views, and is view-agnostic. The resulting
learned representations perform above the state
of the art for downstream tasks such as object
classification, compared to formulations based on
predictive learning or single view reconstruction,
and their performance improves as more views
are added.

1. Introduction
A foundational idea in coding theory is to learn compressed
representations that nonetheless can be used to reconstruct
the raw data. This idea shows up in contemporary represen-
tation learning in the form of autoencoders (Salakhutdinov
& Hinton, 2009) and generative models (Kingma & Welling,
2013; Goodfellow et al., 2014), which try to represent a data
point or distribution as losslessly as possible. Yet lossless
representation might not be what we really want; instead we
might prefer to keep the “good” information (signal) and
throw away the bad (noise).

To an autoencoder, or a maximum likelihood generative
model, a bit is a bit. No one bit is better than any other. Our
conjecture is that some bits are in fact better than others.
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Some bits code important properties like semantics, physics,
and geometry, while others code attributes that we might
consider less important, like incidental lighting conditions
or thermal noise in a camera’s sensor.

We hypothesize that the good bits are the ones that are
shared between multiple views of the world, for example
between multiple sensory modalities like vision, sound, and
touch. Under this perspective, “presence of dog” is good
information, since dogs can be seen, heard, and felt, but
“camera pose” is bad information, since a camera’s pose has
little or no effect on the acoustic and tactile properties of the
imaged scene.

Our goal is therefore to learn representations that capture
information shared between multiple sensory views but that
are otherwise compact (i.e. throw away the bad informa-
tion). To do so, we employ contrastive learning, where
we learn a feature embedding such that multiple views of
the same scene map to nearby points while views of dif-
ferent scenes map to far apart points. In particular, we
adapt the recently proposed method of Contrastive Predic-
tive Coding (CPC) (Oord et al., 2018), except we simplify
it – removing the recurrent network – and generalize it –
show how to apply it to arbitrary collections of views, rather
than just to temporal predictions. In reference to CPC, we
term our method Contrastive Multiview Coding (CMC).
The contrastive objective in our formulation, as in CPC, is
based on Noise Contrastive Estimation (NCE) (Gutmann
& Hyvärinen, 2010). This objective can be understood as
attempting to maximize the mutual information between the
representations of each view.

The core ideas that we build on: contrastive learning, mutual
information maximization, and deep representation learning,
are not new and have been explored in the literature on rep-
resentation and multiview learning (Li et al., 2018; Xu et al.,
2013; Arora et al., 2019). Our main contribution is to set up
a framework to extend these ideas to any number of views.
We show significant benefits to the learned representations,
in terms of transfer to tasks such as object recognition.

2. Contrastive Multiview Coding
We consider a collection of M views of the data, denoted as
V1, . . . , VM . For each view Vi, we denote vi as a random
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Figure 1. Predictive Learning vs Contrastive Learning. The predic-
tive learning framework (Top) learns representations by predicting
one view from another view. While in the contrastive learning um-
brella, representations are learnt by contrasting paired and unpaired
views in latent space.

variable representing samples following vi ∼ P(Vi).

2.1. Preliminary: Predictive Learning

Let V1 and V2 represent two views of a dataset. For instance,
V1 might be the luminance of a particular image and V2 the
chrominance. We define the predictive learning setup as
a deep nonlinear transformation from v1 to v2 through la-
tent variables z, as shown in Fig. 1. Formally, z = f(v1)
and v̂2 = g(z), where f and g represent the encoder and
decoder respectively and v̂2 is the prediction of v2 given
v1. The parameters of the encoder and decoder models are
then trained using an objective function that tries to bring v̂2
“close to” v2. Simple examples of such an objective include
the L1 or L2 loss functions. The predictive approach has
been extensively used in representation learning, for exam-
ple, colorization (Zhang et al., 2016; 2017) and predicting
sound from vision (Owens et al., 2016).

2.2. Contrasting with Two Views

The idea behind contrastive learning is learning by discrim-
inating, or comparing between samples from different dis-
tributions. The contrastive loss (Hadsell et al., 2006) sets
a margin to embed semantically similar samples close to
each other and dissimilar samples far apart. Recently, the
InfoNCE loss (Oord et al., 2018) trained with softmax yields
a score function in favor of temporally congruent samples.

Given a dataset of V1 and V2 that consists of a collection
of samples {vi1, vi2}Ni=1, we consider contrasting congruent
and incongruent pairs. Formally, we refer to samples from
the joint distribution as positives, i.e., x ∼ p(v1, v2) or
x = {vi1, vi2}, and samples from the product of marginals
as negatives, i.e., y ∼ p(v1)p(v2) or y = {vi1, v

j
2}.

We learn a score function hθ(·) favoring positive samples x
but disfavoring negative samples y. This function is trained

to correctly select a single positive sample x out of a set
S = {x, y1, y2, ..., yk} which contains k other negatives.
The objective we minimize is:

Lcontrast = −E
S

[
log

hθ(x)

hθ(x) +
∑k
i=1 hθ(yi)

]
(1)

We implement this score function hθ(·) as a neural network.
To extract compact latent representations of v1 and v2, we
employ two encoders fθ1(·) and fθ2(·) with parameters θ1
and θ2 respectively. The latent representions are extracted
as z1 = fθ1(v1), z2 = fθ2(v2). On top of these features, the
score is computed as the exponential of a bivariate function
of z1 and z2, which here is a bilinear function parameterized
by W12. Then θ = {θ1, θ2,W12} and hθ(·) is:

hθ({v1, v2}) = efθ1 (v1)
TW12fθ2 (v2) (2)

The contrastive learning paradigm maximizes the mutual
information between the variable z1 and z2. A proof is given
by (Oord et al., 2018), demonstrating that:

I(z1; z2) ≥ log(k)− Lcontrast (3)

We now put recent related work in the above framework.
CPC (Oord et al., 2018) considers 2-view models; our
method coincides with CPC in the specific case of two
views and sequential data. Deep Infomax (DIM) (Hjelm
et al., 2019) maximizes the mutual information between
the input and output of a neural net f , i.e. it maximizes
I(x, f(x)). Both these methods learn a representation from
two views but these are two views of the same underlying
sensory modality. We apply CMC to the case where each
view is of a different physical signal. This approach may
be advantageous as many nuisance factors, such as sensor
noise, are shared within but not across modalities.

2.3. More than Two Views

In this work, we present more general formulations of Eq. 1
which can handle any number of views. Such formulations
include “core view” and “full graph” paradigms, which
offer different tradeoffs between efficiency and effectiveness.
These formulations are visualized in Fig. 2.

Suppose we have a collection of M views V1, . . . , VM . The
“core view” formulation sets apart one view that we want to
optimize over, say V1, and builds pair-wise representations
between V1 and each other view Vj , j > 1, by optimizing
the sum of a set of pair-wise objectives:

LC =

M∑
j=2

Lcontrast(V1, Vj) (4)

A second formulation is the “full graph” where we consider
all pairs (i, j), i 6= j, and build

(
n
2

)
relationships in all. By
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(a) Core View (b) Full Graph

Figure 2. We generalize our CMC to M views following two differ-
ent formulations: (1) “core view” specifies one view, and all other
views are contrasted against that view; (2) “full graph” contrasts
every pair and representations for all views are jointly learned.

involving all pairs, the objective function that we optimize
is:

LF =
∑

1≤i<j≤M

Lcontrast(Vi, Vj) (5)

2.4. Implementation

Better representations using Lcontrast in Eq. 1 are learnt
by using many negative samples. To avoid very large batch
sizes, we consider two practical implementations introduced
by previous methods (Wu et al., 2018; Hjelm et al., 2019).
(1) Memory-based. We maintain a dynamic memory bank
to store latent features for each data sample. Therefore,
during training we can efficiently retrieve large number of
negative pairs from the memory bank without recomputing
the features. This allows us to approximate Eq. 1 with large
amount of negatives by using NCE (Gutmann & Hyvärinen,
2010). (2) Patch-based. Instead of contrasting features
from the last layer, patch-based method contrasts feature
from the last layer with features from previous layers. For
instance, we use features from the last layer of fθ1(·) to
contrast with feature points from feature maps produced
by the first several conv layers of fθ2(·). This is equivalent
to contrast between global patch from one view with local
patches from the other view.

3. Experiments
We first evaluate our CMC framework on image representa-
tion learning benchmarks. Then we extends it to more than
two views and analyze it’s effectiveness.

3.1. CMC on Images

Given a dataset of RGB images, we convert them to the
Lab image color space, and split each image into L and ab
channels, as originally proposed in SplitBrain autoencoders
(Zhang et al., 2017). Each split represents a view of the
orginal image and is passed through a seprate encoder. As in
SplitBrain, we design these two encoders by evenly splitting
a given deep network into sub-networks. By concatenating
representations layer-wise from these two encoders, we
achieve the final representation of an input image. The

Method classifier conv5 fc7 Strided Crop
AE

MLP

62.19 55.78 -
BiGAN 71.53 67.18 -
SplitBrain† 72.35 63.15 -
DIM MLP 72.57 70.00 76.97
CPC - - 77.81
CMC†(Patch) Linear 76.65 79.25 82.58
CMC†(Patch) MLP 80.14 80.11 83.43
CMC†(Memory) Linear 80.69 84.73 -
CMC†(Memory) MLP 83.03 85.06 -
Supervised 68.70

Table 1. Classification accuracy on STL-10. For all methods we
compare against, we include the numbers that are reported in the
DIM (Hjelm et al., 2019) paper, except for SplitBrain, which is
our reimplementation. Methods marked with † only have half the
number of parameters because of splitting.

quality of such a representation is evaluated by freezing
the weights of encoder and training linear or non-linear
classifiers on top of each layer.

3.1.1. STL-10

Setup. We adopt the same data augmentation strategy and
network architecture as those in DIM (Hjelm et al., 2019).
For a fair comparison with DIM, the patch based contrastive
loss is employed during unsupervised pre-training. With the
weights of the pre-trained encoder frozen, a two-layer fully
connected network (MLP) or a linear classifier is trained
on top of different layers to perform 10-way classification.
We also investigated the strided crop strategy proposed in
CPC (Oord et al., 2018). At last, we evaluate the memory-
based implementation for comparison.

The family of contrastive learning methods, such as DIM,
CPC, and CMC, achieve higher classification accuracy than
other methods such as SplitBrain that use predictive learn-
ing; or BiGAN that use adversarial learning. CMC signifi-
cantly outperforms DIM and CPC. We hypothesize that this
outperformance results from the modeling of cross-view
mutual information, where view-specific noisy details are
discarded. Finally, we notice that the predictive learning
methods suffer from a big drop in performance when the
encoding layer is switched from conv5 to fc7. On the other
hand, the contrastive learning approaches are much more
stable across layers. From a practical perspective, this is
a significant advantage as the selection of specific layers
should ideally not change downstream performance by too
much.

3.1.2. IMAGENET

Setup. To compare with other methods, we adopt standard
AlexNet and split it into two encoders. Because of split-
ting, each layer only connects to half of the neurons in the
previous layer, and therefore the number of parameters in
our model halves. Two variants of CMC are considered:
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ImageNet Classification Accuracy
Method conv2 conv3 conv4 conv5
ImageNet-Labels 36.3 44.2 48.3 50.5
Random 17.1 16.9 16.3 14.1
(Krähenbühl et al., 2015) 23.0 24.5 23.2 20.6
(Doersch et al., 2015) 23.3 30.2 31.7 29.6
(Zhang et al., 2016) 24.8 31.0 32.6 31.8
(Noroozi & Favaro, 2016) 30.1 34.7 33.9 28.3
(Donahue et al., 2017) 24.5 31.0 29.9 28.0
(Zhang et al., 2017)† 29.3 35.4 35.2 32.8
(Noroozi et al., 2017) 30.6 34.3 32.5 25.7
(Wu et al., 2018) 26.5 31.8 34.1 35.6
(Gidaris et al., 2018) 31.7 38.7 38.2 36.5
(Caron et al., 2018) 29.2 38.2 39.8 36.1
CMC†(Patch) 30.8 34.2 37.5 38.1
CMC†(Memory) 33.5 38.1 40.4 42.6

Table 2. Top-1 classification accuracy on 1000 classes of ImageNet
(Deng et al., 2009). We compare our CMC method with other
approaches by training 1000-way linear classifiers on top of the
feature maps of each layer, as proposed by (Zhang et al., 2016).
Methods marked with † only have half the number of parameters
compared to others, because of splitting.

patch-based and memory-based.

ImageNet classification task. Following (Zhang et al.,
2016), we evaluate task generalization of the learned rep-
resentation by training 1000-way linear classifiers on top
of different layers. Table 2 shows the results of comparing
the two variants of CMC against other models, both predic-
tive and contrastive. The CMC Memory variant is the best
among all these methods; futhermore the CMC methods
tend to perform better at higher convolutional layers, similar
to the other contrastive model Inst-Dis (Wu et al., 2018).
The memory-based CMC model consistently performs bet-
ter than the patch-based model due to the use of many more
negative examples.

3.2. Extending CMC to More Views

We further extend our CMC learning framework to mul-
tiview scenarios. We experiment on the NYU-Depth-V2
(Nathan Silberman & Fergus, 2012) dataset. We focus more
on understanding the behavior and effectiveness of CMC
rather than competing with current state-of-the-arts. The
views we consider are: luminance (L channel), chrominance
(ab channel), depth, surface normal, and semantic labels.

Setup. To extract features from each view, we use a neural
network with 5 convolutional layers, and 2 fully connected
layer. As the size of the dataset is small, we adopt the
patch-based contrastive objective to increase the number
of negative pairs. Patches with a size of 128 × 128 are
randomly cropped from the original images for contrastive
learning.

To measure the quality of the learned representation, we
consider the task of predicting semantic labels from the rep-

Figure 3. We show the Intersection over Union (IoU) (top) and
Pixel Accuracy (bottom) for the NYU-Depth-V2 dataset, as CMC
is trained with increasingly more views from 1 to 4. As more views
are added, both these metrics steadily increase. The views are (in
order of inclusion): L, ab, depth and surface normals.

Pixel Accuracy (%) mIoU (%)
Random 45.5 21.4
CMC 57.1 34.1
Supervised 57.8 35.9

Table 3. Results on the task of predicting semantic labels from
L channel representation which is learnt using the patch-based
contrastive loss and all 4 views. We compare CMC with Random
and Supervised baselines, which serve as lower and upper bounds
respectively.

resentation of L. We follow the core view paradigm and use
L are the core view, thus learning a set of representations
on L by contrasting different views with L. A UNet style
architecture (Ronneberger et al., 2015) is utilized to perform
the segmentation task. Contrastive training is performed on
the above architecture that is equivalent of the UNet’s en-
coder. After contrastive training is completed, we initialize
the encoder weights of the UNet from the L encoder (which
are equivalent architectures) and keep them frozen. Only
the decoder is trained during this finetuning stage.

Since we use the patch-based contrastive loss, in the 1 view
setting case, CMC coincides with DIM (Hjelm et al., 2019).
The 2-4 view cases contrast L with ab, and then sequentially
add depth and surface normals, but in all cases, the patch
based loss is used because the amount of data is small. The
semantic labeling results are measured by mean IoU over
all classes and pixel accuracy are shown in Fig. 3. We see
that the performance steadily improves as new views are
added. We have tested different orders of adding the views,
and they all follow a similar pattern.

We also compare CMC with two baselines. First, we ran-
domly initialize and freeze the encoder, and we call this
the Random baseline; it serves as a lower bound since the
representation is just a random projection. Rather than
freezing the randomly initialized encoder, we could train it
jointly with the decoder. This end-to-end Supervised base-
line serves as an upper bound. The results are presented in
Table 3, which shows CMC produces high quality feature
maps even though it’s unaware of the downstream task.
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