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Falls are the top reason for fatal and non-fatal injuries among seniors. Existing solutions are based on wearable
fall-alert sensors, but medical research has shown that they are ineffective, mostly because seniors do not wear
them. These revelations have led to new passive sensors that infer falls by analyzing Radio Frequency (RF) signals
in homes. Seniors can go about their lives as usual without the need to wear any device. While passive monitoring
has made major advances, current approaches still cannot deal with the complexities of real-world scenarios. They
typically train and test their classifiers on the same people in the same environments, and cannot generalize to
new people or new environments. Further, they cannot separate motions from different people and can easily miss
a fall in the presence of other motions.

To overcome these limitations, we introduce Aryokee, an RF-based fall detection system that uses convolutional
neural networks governed by a state machine. Aryokee works with new people and environments unseen in the
training set. It also separates different sources of motion to increase robustness. Results from testing Aryokee
with over 140 people performing 40 types of activities in 57 different environments show a recall of 94% and a
precision of 92% in detecting falls.
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1 INTRODUCTION

Falls are the leading cause of accidental death and injury in older adults [46]. One in three adults over the
age of 65 experiences a fall each year, with a significant fraction suffering an injury requiring a hospital
visit [27]. Falls account for nearly 90% of fractures in seniors, and result in $34B of direct medical costs
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annually [40]. The problem is aggravated by the fact that 12 million seniors in the US live alone [50].
Those people are particularly vulnerable to falls, which can go undetected for many hours [14]. Existing
solutions require seniors to wear a pendant or other sensors. Yet, years of medical research has shown
that wearable devices do not work well for the elderly. Seniors are typically encumbered by wearable
technologies, and many of them suffer from memory problems and hence may forget to wear or charge
their devices. Furthermore, those sensors can be dangerous; recently an elderly woman got strangled with
her fall detection pendant [18].

The importance of the problem and the limitations of existing products have motivated researchers to
seek passive fall monitoring solutions. In particular, researchers have proposed systems that transmit a low
power RF signal and analyze its reflections off people’s bodies to infer falls [4, 15, 35, 41, 45, 56, 58, 59].
Such RF-based fall detection systems work without any body contact. Hence, they can relieve seniors
from the burden of wearing and charging devices and deliver safety at zero overhead.

While the research community has made significant advances toward RF-based fall monitoring, past
proposals have significant limitations. State-of-the-art RF-based fall detection systems can be divided
into two categories: The first category is based on Doppler radar [15, 22, 45]. These solutions exploit the
relationship between the Doppler frequency and motion velocity. They associate falls with a spike in
the Doppler frequency due to a fast fall motion. The second category is based on WiFi channel state
information (CSI) [41, 56, 58, 59]. While this category differs in its input signal, it typically relies on the
same basic principle. Specifically, it uses the Fourier transform to compute changes in the WiFi channel.
It associates a burst of fast changes —i.e., a spike in high frequencies — with the fast motion that occurs
during falls. Thus, whether they use Doppler or CSI, past solutions look at variations in the speed of
the moving body, as captured by the RF signal. This approach leaves past work vulnerable to several
practical challenges:

e Dealing with complex falls and fast non-fall movements: Not all falls have to be fast. In many cases,
people catch a piece of furniture or lean against a wall as they fall, which softens the speed of
falling. Also, it is common for elderly to fall off their wheelchair, which exhibits a slower speed
than falling from a standing position. Such scenarios reduce the velocity of falling and the power in
high frequencies, hence undermining the basic principle underlying past work. Furthermore, many
non-fall activities exhibit fast motion and a burst of high frequencies. This includes sitting abruptly
on a chair, or quickly opening a door. Since Doppler radar and CSI-based schemes characterize only
motion velocity, they cannot distinguish such movements from falls.

e (eneralization to new homes and new people: It is unrealistic to require a fall detection system to
be retrained every time it is deployed in a new home or with new people. However, past RF-based
fall detection systems are trained and tested in the same environment and typically with the same
people. This problem is intrinsic to past techniques because they cannot separate reflections from
different sources in space. Thus, the received signal is a combination of all the reflections in the
environment. When the environment changes (e.g., a new home), the signals combine in a different
way compared to the training environment, hence changing how fall and non-fall patterns look.

e Detect falls in the presence of other motion: A fall detection system should detect a fall even if
the neighbor is moving next door. Past systems have no mechanisms to separate reflections from
different people. As a result, RF reflections off the body of a moving neighbor can smear the
frequency patterns associated with falls and prevent detection (as shown in §4).

In this paper, we aim to address the above challenges and deliver a reliable RF-based fall detection
system that generalizes across people and environments, works in the presence of other sources of motion,
and deals with complex activities and fall patterns.
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We introduce Aryokee, a new design for RF-based fall detection. Aryokee departs from past work
along two axes. Aryokee uses an FMCW radio equipped with two antenna arrays: a vertical array and a
horizontal array. The advantage of such radio is that it provides spatial separability. FMCW can separate
RF reflections based on distance from the reflecting body, and the vertical and horizontal arrays separate
reflections based on their elevation and azimuthal angles. By characterizing reflections as a function of
space, the system can differentiate reflections coming from the floor level from reflections coming from
higher elevations.

However, it is not enough to use a different radio. It might seem that once we have spatial information,
we can simply use the elevation of a person’s reflection to detect falls. Such a design does not work
well in practice. It is hard to set a threshold on the elevation of a fall because people fall at places
with different elevations (e.g., stairs). Also, people can sit and lie on the floor to exercise. To design a
robust fall detection system, we need to capture not only the location information but also the diverse
spatio-temporal fall patterns. Such patterns are quite complex due to multiple reasons. As a person moves,
at each point in time, the dominant reflection comes from different body parts and changes frequently
over time [2]. If we only keep track of the locations of those dominant reflections, the radio may receive
at some point strong reflections from the feet but weaker reflections from the upper body, causing it to
incorrectly infer that the person is on the floor. This is further complicated by the fact that the human
body is specular at the frequencies of interest (a few GHz) because the wavelength is larger than the
roughness of the reflection surface [2, 8]. In this case, only signals that fall close to the normal on the
surface are reflected back towards the radio. As a result, the radio senses only a few body parts at any
point in time.

To deal with this complexity, Aryokee leverages convolutional neural networks (CNNs) [31], which have
demonstrated the ability to extract complex patterns from various types of signals, such as images and
videos [16, 20, 30, 51, 52, 57, 60, 62, 63]. Our CNN design is customized for fall detection using RF signals.
Specifically, it uses spatio-temporal convolutions which allow the network to aggregate information across
space and time and abstract complex spatio-temporal patterns. Further, we combine two CNNs: the first
detects a fall event while the second detects a stand-up event. The two networks are coordinated via a
state machine that tracks the transition of a person from a normal state to a fall state, and potentially
back to a normal state. This combination enables Aryokee to estimate whether the person is able to
stand up on their own after a fall, and the duration of fall events. Such information is a predictor of the
person’s overall health and ability to live independently [36]. Further, the amount of time on the floor is
indicative of fall complications including muscle damage, pneumonia, pressure sores, dehydration, and
hypothermia [21].

We have implemented Aryokee and evaluated its performance empirically. Results from testing the
system with over 140 people performing 40 types of activities, including complex falls and fast non-fall
motions, in 57 different environments reveal the following findings:

e Aryokee is highly accurate, even when trained and tested on different people and environments.
Specifically, Aryokee has a recall of 94% and a precision of 92% in detecting a fall. In comparison,
the only prior work that trains and tests on different environments and people shows a recall and
precision in the range of 70% to 76% [41].

e Baselines based on Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) that
are trained and tested on the same dataset as Aryokee cannot generalize to new environments
and people unseen in the training set, and exhibited a precision of 17% and 21%, and a recall of

IWe note that this prior work is evaluated on a different dataset. However, as shown in Table 1, our dataset is more diverse
and challenging.
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16% and 15% respectively. This result emphasizes the importance of Aryokee’s design in ensuring
generalizability.

e Aryokee accurately detects whether the person is able to stand up on their own and the time spent
on the floor. Its mean error in estimating the time spent on the floor is 1.254 seconds.

e Finally, Aryokee maintains its high accuracy in the presence of other people in the environment
and other sources of motion.

Contributions: This paper makes the following contributions:

e It introduces the first convolutional neural network architecture for RF-based fall detection. Our
CNN design extracts complex spatio-temporal information about body motion from RF signals.
As a result, it can characterize complex falls and fast non-fall motions, separate a fall from other
motions in the environment, and generalize to new environments and people.

e It presents a multi-function design that combines fall detection with the ability to infer stand-up
events and fall duration.

e It presents an extensive empirical evaluation with multiple sources of motion, over 140 people, 57
environments, 40 types of activities, and complex fall and non-fall events.

2 RELATED WORK

Past work on fall detection can be divided into two categories: wearable and non-wearable technologies.
Notable examples of wearable devices include accelerometers [12, 33], smart phones [1, 12], RFID [10], etc.
However, prior work has shown that older people feel encumbered by wearable devices, might experience
skin irritation, and tend to forget to wear or charge their sensors [48, 49, 61]. Non-wearable technologies
solve these limitations and enable continuous fall monitoring without the need to wear devices. Among
non-wearable technologies, cameras [32, 39] are accurate but they invade people’s privacy, suffer from
occlusions, and have a narrow field of view. Audio and vibration based sensors [5, 34] have a relatively
low accuracy due to interference from the environment [38]. Pressure mats and pulling cords work only
when the fall occurs near the installed device [37].

Our work is most related to past papers on RF-based fall monitoring [15, 35, 41, 45, 56, 58, 59]. Early
systems use an array of RF sensors deployed around the perimeter of a room [35]. They measure the
received signal strength indicator (RSSI) between all sensor pairs and infer falls based on changes in
the RSSI of various links. However, such RSSI based solutions are difficult to deploy, require detailed
fingerprinting of the environment, and have a relatively low accuracy. Also, some early systems use
FMCW radios [4] but they focus on localization and present fall as a motivating example. They cannot
deal with complex motion and are limited to four actions: fall, walking, sitting on a chair and sitting on
the floor. They do not generalize to new environments or new people. They also cannot deal with other
sources of motion in the environment.

State-of-the-art solutions can be divided into two categories: Doppler radar [15, 45] and CSI-based
solutions [41, 56, 58, 59]. As explained in §1, both methods try to measure motion velocity as a function
of time. Doppler-based approaches directly measure motion velocity by leveraging its relationship with
the Doppler frequency. CSI-based approaches use the Short Time Fourier Transform (STFT) or the
wavelet transform to estimate fast changes in the RF signal. They expect falls to generate a burst of
high frequencies due to the high velocity of falling [41, 59]. They both use traditional machine learning
classifiers (e.g., SVM, random forest) to distinguish high-frequency fall patterns from non-fall events.
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Whether they use CSI or Doppler radar, state-of-the-art RF-based fall detection methods have important
limitations. These cannot separate RF reflections from different people or objects in the environment.?
As a result, they do not work well when a fall occurs in the presence of other sources of motion, and do
not generalize to homes and people that do not appear in the training set.

Finally, one group has recently investigated the use of deep learning for fall detection [25]. Their
approach, however, is intrinsically different from ours. Instead of CNNs, they use fully-connected auto-
encoders with one hidden layer. Because their networks are fully-connected, they cannot scale to a deep
architecture with many layers, making it difficult to learn complex patterns of diverse activities. As a
result, their approach has a lower performance than Doppler-radar or CSI-based schemes. In contrast, our
CNNs with spatio-temporal convolutions leverage locality in space and time to scale to many layers (more
than 10), providing a highly accurate classifier [20, 30]. Further, they do not scale to new environments,
do not work in the presence of more than one person, and are limited to 4 actions (fall, walk, sit, and
bend) that have to be performed in a specific way with a particular orientation with respect to the
radio [25].

3 CNN BACKGROUND

Convolutional Neural Networks (CNN) have been the main workhorse of recent breakthroughs in
understanding images [30], videos [28, 55] and audio signals [7, 53]. Unlike ordinary neural networks
where each neuron is connected to all neurons in the previous layer, in CNNs, each neuron is only locally
connected to a few neurons in the previous layer. Thus, CNNs leverage local dependencies in the data to
reduce the total number of weights that the network needs to learn. This allows them to build deeper
networks and hence learn more complex features.”

CNNs, like other neural networks, are trained by back-propagating the gradient. However, training a
deep CNN is hard due to the notorious gradient vanishing problem. As the gradient is back-propagated
to lower layers, repeated multiplication of small values may make the gradient infinitively small. The
ResNet architecture addresses this problem and allows for efficient training even when the network
is very deep [20]. Instead of trying to learn a direct mapping H(z), ResNet make the layers learn a
residual mapping F'(x) = H(x) — . Then the underlying mapping is recast into F(x) + x, where the first
component is implemented by stacked layers and the second component by shortcut connections between
layers. Such shortcut connections enhance and diversify the flows of gradients, and therefore make the
optimization of very deep CNNs easier. With residual learning, CNNs can be scaled up to hundreds
of layers without causing the gradient to vanish. ResNet has been highly successful and is adopted
by the best-performing models in many tasks including object detection [30], image segmentation [43],
speech synthesis [53], machine translation [26], and AlphaGo [47]. In this paper, we adopt the ResNet
architecture for our CNNs.

4 PRACTICAL CHALLENGES FACED BY PAST RF-BASED FALL DETECTION

We start by examining the main technique underlying state-of-art RF-based fall detection systems. Most
RF-based fall detection systems use either Doppler radar or WiFi CSI. In both cases, it is quite common
to use a technique called time-frequency analysis [6, 41]. This technique applies a STFT to the RF signal.
It produces a spectrogram where high frequencies are associated with fast motions. The intuition that

2Unlike, multi-antenna FMCW radios which separate signal reflections based on the location of the reflector, in these
methods signals reflected from different bodies are superimposed and not separated (see section 9.1 in [23]).

30f course, CNNs like other deep learning models typically require more training data than conventional methods, e.g.,
SVM or random forest. However, given the right amount of data, they tend to outperform such conventional approaches.
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Fig. 1. Spectrograms for falls and non-falls based on time-frequency analysis used in past work. The top row shows fall
events. The bottom row shows non-fall events. The figure shows the limitations of the time-frequency analysis used in
past work, where fast movements such as opening or closing a door or taking a quick step forward can look like fall
events.

those systems rely on is that the motion of falling is faster than sitting or walking. Hence falls tend to
appear in a spectrogram as a burst of high frequencies [41].

To better understand the performance of time-frequency analysis, we run a few fall and non-fall
experiments. We use a software radio to implement a Doppler radar and take the STFT of the wireless
signal with a window size of 0.5 seconds and a time step of 5 milliseconds in a manner similar to [6, 41].
We plot the time-frequency spectrograms in Figure 1.* The figure shows that the time-frequency technique
is highly effective at differentiating falls (Figure la - Figure 1d) from actions like sitting down on a chair
(Figure le) and walking (Figure 1f). However, fast non-fall movements can be problematic. For example,
a quick step forward and the action of opening or closing a door (Figure 1g - Figure 1h) can both produce
a burst of high frequencies and can look like a fall event.

Another limitation of time-frequency analysis is its inability to separate different sources of motion. For
example, if a neighbor walks during a fall event, the spectrogram of the walking motion super-imposes
on the spectrogram of the fall, and can mask the fall event. Figure 2 shows an example of a fall in the
presence of a walking motion. The fall occurs in the 27th second of the experiment but is masked by the
walking motion.

In the following sections, we introduce a new design that can address the above limitations. We also
demonstrate in the evaluation section that our system correctly classifies fast non-fall movements (e.g.,
Figure lg - Figure 1h) and detects falls in the presence of walking or other motion.

4For clarity, we plot frequencies higher than 5 Hz
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Fig. 2. Time-frequency analysis of a fall in the presence of walking motion of another person in the environment. The
fall happened on the 27th second but is masked by the walking motion.
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Fig. 3. An overview of our system. The fall and stand-up detectors detect falls and standing up events based on RF
signals in a time window. The finite state machine integrates the results from these two detectors and generates a
sequence of states ("normal” or "fall") indicating when a person falls and stands up, and the duration of a fall.

5 ARYOKEE SYSTEM OVERVIEW

Aryokee is a passive fall detection system based on RF signals. It is built on a multi-antenna FMCW radio
and takes as input the RF reflections from the environment. The system is integrated with three modules:
a fall detector, a stand-up detector, and a finite state machine to deliver continuous fall monitoring.
Figure 3 illustrates the design of Aryokee.

e The fall detector takes a short time window of RF signals and classifies if a fall occurs in the time
window. The fall detector consists of two cascading CNNs and a none-maximum suppression (NMS)
step. The first CNN filters out easier non-fall examples while the second one refines its predictions
on harder non-fall examples. As the window slides over time, one prediction is made at each time
step. The NMS step removes duplicated detections to pinpoint the precise time of a fall.

e The stand-up detector detects if a person stands up and operates similarly to the fall detector.

e The state machine integrates the window-based predictions from the fall and stand-up detectors to
infer the exact fall time and fall duration.

The next few sections describe Aryokee in detail. We start with a description of the RF signal captured
by the radio then elaborate on the various components of Aryokee.

6 CAPTURING RF SIGNALS IN 3D

Aryokee uses an FMCW radio equipped with a horizontal and a vertical antenna array to separate
reflections from different locations in the 3D space. The FMCW radio separates RF reflections based on
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(a) RF heatmaps when two people are walking. (b) RF heatmaps when one person is falling.

Fig. 4. Visualization of our system’s RF data. The figure shows two people walking in 4a, and one person walking
while the other person is on the floor 4b. We represent RF reflections using a combination of horizontal and vertical
heatmaps. The heatmaps show the reflection power as a function of space where red refers to higher power and dark
blue refers to low power.

the distance of the reflector, whereas the vertical and horizontal arrays separate reflections based on their
elevation and azimuthal angles. Thus, we can represent RF reflections as a function of the 3D space.

We project the 3D reflections on two perpendicular planes: a horizontal plane and a vertical plane.
This generates two heatmaps at each time step. The first heatmap shows reflection powers as a function
of the horizontal angle and depth, while the second heatmap shows reflection power as a function of the
vertical angle and depth. Figure 4 provides two examples of these heatmaps. The figure shows that the
horizontal heatmap separates people based on their location. The vertical heatmap captures elevation
and hence shows a smaller expansion when the person is on the floor, as in Fig. 4b. The combination of
these heatmaps allows Aryokee to separate motion from different sources and hence detect a fall in the
presence of other activities.

7 ARYOKEE'S FALL MONITORING SYSTEM

In this section, we elaborate on each component of Aryokee, and how they are integrated to deliver the
complete multi-function system that can infer falls, the ability to stand-up, and fall durations.

7.1 Fall Detection with Convolutional Neural Network

We formulate fall detection as a binary classification problem, i.e., fall versus non-fall. Such classification
is traditionally dealt with by manually designing hand-crafted features followed by a classifier such as
SVM or Random Forest. However, it is hard to take into account all the complex fall patterns as well as
the diverse non-fall activities in designing such system manually. In this paper, we resort to convolutional
neural networks, which have demonstrated their advantages to capture complex mappings by learning
from labeled examples.

We take into account the property of RF signals in designing the CNN. Specifically, as a person moves,
the dominant reflection come from different body parts and changes frequently over time. Moreover, given
that the human body is specular at the RF frequencies of interest, at each point in time only a small
subset of body parts reflect signals back to the radio. To deal with these issues, we make our CNN model
aggregate temporal information to capture the dynamics of falls as well as the diverse non-fall patterns.
Therefore, our CNN takes a sequence of RF heatmaps as input and applies convolutions over time and
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space to extract complex spatio-temporal patterns. In particular, we take as input a sequence of 112
horizontal and vertical heatmaps, which span 2.5 seconds.

In addition, the CNN model needs to fuse the information from the horizontal and vertical heatmaps.
At the high level, the horizontal heatmap gives us the location of each person while the vertical heatmap
reveals changes in elevations. Therefore, such fusion enables our system to detect fall of one person in the
presence of other people’s motions.

A naive way to fuse the two streams would be stacking the two heatmaps and treating them as two
channels of same image stream before feeding them to the convolutional layers. However, the same pixel
on the two heatmaps corresponds to different 3D positions, which violates the locality assumption of
convolution layer that feature map in each channel should have the same coordinates.

In our design, we adopt two branches to extract features from the horizontal and vertical heatmaps
separately. The weights are not shared across the two branches, since the movement patterns in horizontal
and vertical directions are different. We use a convolutional stride of 2 to reduce the spatial and
temporal dimensions of our data every two layers of convolutions. After 10 layers of spatio-temporal
convolutions, we conduct max pooling along both spatial and temporal axes for each channel to derive a
vector representation for the vertical branch and the horizontal branch. After concatenating the vector
representations, two fully connected layers are employed to fuse the information from the two branches.
Finally, we use a softmax function to obtain probability prediction for each class.

Our final model is illustrated in Figure 5. We trained our model end-to-end to minimize a loss function
that captures the differences between network predictions and the correct labels (i.e., fall or non-fall). We
denote z; as the RF signals in a 2.5 second window around the ith frame, y; as the fall label at timestamp
i, and p(x;, 0) as the prediction of our model with parameters 6. All the parameters of the CNN model,
0, are optimized with a cross-entropy loss:

N
min » | —yilog p(wi, 0) — (1= i) log(1 — p(:,0)) (1)

=1

7.2 Combat Sparsity with Cascading Classifiers

Falls are sparse during continuous monitoring and usually overwhelmed by non-falls. For example, the
ratio of falls over non-fall activities is typically close to 0 in people’s daily life. Such unbalance is
disadvantageous for training a fall classifier. This is because most non-falls are easy samples but they
distract the classifier from recognizing hard samples. Therefore, we use cascading classifiers, a popular
method that deals with sample unbalance for object detection in computer vision [54]. Basically, cascading
is a multistage framework. The lower stages filter out easy negatives, while the higher stages only focus
on samples that are not rejected by lower stages and then recognize hard negatives. For example, our
cascading classifier consists of two stages and each stage is a convolutional neural network. As illustrated
in Figure 6, the first CNN rejects easy non-falls, i.e., green crosses, but retains the hard non-falls, i.e.,
red crosses. The positives and remaining hard negatives are passed to the second classifier where most
of the hard negatives can be further rejected. Increasing the stages of cascade can further improve the
performance but will also bring more computational overhead. In Aryokee two-stage cascading works in
real time and increasing to 3 stages can only bring marginal performance gain.

The benefits of cascading are twofold. First, it improves the overall performance as it tackles with easy
and hard negative samples with two CNNs. Second, it enhances the robustness of Aryokee to environmental
changes. Without cascade, the score boundary — i.e., the threshold — for identifying falls from non-fall
is sensitive to the environment. In the first stage, the confidence scores of positives and hard negative
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Fig. 5. Our 3D convolutional neural network design. This figure shows the network structure of one of the CNN
blocks in Figure 3. The network consists of ten 3D convolution layers and two fully connected layers, followed by a
softmax classifier. The features used for classification have 256 dimensions. The input RF signals have both vertical
and horizontal heatmaps, which are convolved separately in each branch and fused right before the first fully connected
layer.
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Fig. 6. An illustration of our cascading classifiers. The first stage rejects easy negative samples and passes hard ones to
the second stage, which further rejects most of the hard negative samples. The negative and positive examples look
redistributed between the two stages because they are projected in different spaces.

samples are very close, and therefore the boundary between them is susceptible to environmental changes.
However, after the second stage, the score gap between positives and hard negatives is significantly
enlarged. Then all environments can share the same threshold, which enhances the generalization ability.

During training, we start by training the first stage CNN with all training samples. Then we use this
CNN to filter our easy negatives in the training set and train the second stage CNN. During inference,
only samples that pass both stages are recognized as falls by our system.

7.3 Precise Monitoring with Non-Maximum Suppresion

Most past works expect the input to be a set of fall and non-fall examples, and run a binary classifier on
each example. In practice, however, a fall detection device has to perform continuous monitoring —i.e., it
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has to process a continuous stream of RF signals with all types of motion, and identify instances of falls
automatically. It cannot expect that each activity is already segmented into a specific time window.

The objective of Aryokee is to monitor falls continuously and precisely, which requires the CNN to
use a sliding window over the input RF signal. This creates some complications since a single fall can
partially appear in multiple sliding windows. For example, given a 3-second sliding window with a stride
of 0.2 seconds, a fall lasting 3 seconds can partially appear in about 30 windows. This can cause the same
fall to be detected multiple times. Further, it becomes hard to pinpoint the exact time when the fall
happens due to multiple plausible answers from overlapped prediction windows. Therefore, directly using
the output of CNN as detection results is inadequate for precise monitoring.

Fall
Prob l,
1 I 1
—
NMS
—_—

0

Fig. 7. An illustration of the NMS algorithm. Overlapped windows with lower probability will be suppressed by the
local optimum.

To solve this problem, we borrow the idea of non-maximum suppression (NMS), which is widely used
in computer vision for edge detection [9] and object detection [13]. At a high level, NMS preserves the
detection window that is a local optimum in terms of its prediction score compared to its overlapped
neighbors. Figure 7 illustrates the concept, showing multiple overlapping time windows with different
probabilities being a fall event. Only the window with the highest probability is preserved, while other
overlapping windows are ignored. Intuitively, the best-aligned window is expected to have higher prediction
score than its neighbors which are aligned less accurately. Thus, NMS helps output one window for each
fall of interest, each window tightly enclosing the fall.

Computationally NMS is performed as follows. Each window is associated with a score estimated by the
CNN. We first sort all the detected windows by their prediction score in a descending order. Afterwards,
we greedily select the highest scoring windows while skipping windows that are at least 50% covered by a
previously selected window. Such operations are implemented in a matrix format. Therefore, NMS is
efficient and the computational overhead is negligible.

7.4 State Machine and Stand-up Detection

In addition to detecting and pinpointing the time of a fall, it is helpful to also keep track of the status
of the person, i.e., whether the person is able to stand up on their own after a fall. This information
is an important predictor of a person’s overall health and is indicative of potential fall complications.
In principle, the longer the person stays on the ground, the more alarming the situation is. It either
indicates the person is unconscious or incapable of getting up on their own.

To estimate if the person is able to stand up on their own, we build a stand-up detector using a similar
design as the fall detector described in Section 7.1. In addition, a state machine is designed to track the
state of a fall event by incorporating the predictions of the fall and stand-up detectors. The state machine
includes two states: a normal state and a fall state. Figure 8 illustrates the operation of the proposed
state machine. When a fall is detected, the state is transitioned from the normal state to the fall state.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 137. Publication date: September 2018.



137:12 e Y. Tian et al.

P(fall) > 6,

P(fall) < 91@ @ P(stand) < 6,

) P(stand) > 6,

Fig. 8. An illustration of the proposed state machine. We maintain a normal state and a fall state, where state transition
is coordinated by fall and stand-up detectors, which are built based on the techniques in previous sections. P(fall) and
P(stand) are predictions from the detectors, and the two parameters 6, and 0> determine the thresholds that induce
state transitions.

Once in the fall state, the state will not transition back to the normal until the stand-up detector detects
a stand-up event. We estimate the person’s ability to stand up and the duration of a fall by keeping track
of the state transitions.

Combining the predictions of both detectors with a state machine also helps improve the performance of
our system. For example, many activities involve movements similar to standing up. If we simply use the
predictions of the stand-up detector to estimate the fall duration, we can easily over-estimate it because
of many falsely predicted stand up events. With the regulation of our state machine, we simplified the
problem to predict stand-up events conditioned on a fall happened. This design helps Aryokee estimate
fall duration accurately.

8 IMPLEMENTATION AND DATASET

In this section, we describe our implementation and dataset.

8.1 Implementation

Neural Network Architecture. Our CNN architecture is based on the design of ResNet [20]. ResNet
has been shown to perform well in a wide range of different tasks in computer vision. We incorporate
its architecture with various design choices discussed in Section 7.1. As shown in Figure 5, both the
vertical branch and horizontal branch have the same structure (10 layers) and independent parameters.
All convolutional layers have a kernel size of 5. These two branches are merged and fed into two fully
connected layers before the final softmax classification.

Training Details. All CNN models are trained with ADAM optimizer [29] with a learning rate of 0.002.
Weight decay is not used. Batch Normalization [24] is adopted to accelerate training. To stabilize the
learning process for unbalanced dataset, we sample 40% positives (falls) and 60% negatives (non-falls) for
each batch. We augment positive samples by jittering windows around each fall. We subtract the median
over time for each sample to remove reflections from static objects.

8.2 Radio Hardware

We built an FMCW radio on a printed circuit board (PCB) using off-the-shelf circuit components, and
based on the design in [3]. The resulting radio can be operated from a computer via the USB port.
It generates a frequency chirp that repeatedly sweeps the band 5.46 — 7.24 GHz. The radio has an
average power of 0.08 p Watts, which complies with the FCC regulations for consumer electronics in that
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band [11]. At this power the radio has a typical coverage that is about 30 to 40 feet, which is similar
to past work with FMCW radios [3, 4]. The radio is equipped with a horizontal and vertical antenna
arrays. Each array has 12 antennas. The output of the antennas is processed using standard FMCW
and antenna array equations [44] to produce the vertical and horizontal heatmaps. The frame rate of
the heatmaps is 45 frames per seconds. Finally, while we built our radio to provide better compatibility
with past FMCW-based research, a variety of FMCW radios with antenna arrays are available on the
market [19, 42].

8.3 Dataset

We collected a large scale dataset of RF signals with fall labels from both male and female subjects with
age between 20 and 50 year old. The subjects are faculty, students, and their partners. In our experiments,
the radio device is either located on the wall or on a cart. As explained in the hardware section, the radio
can sense people up to 30 to 40 feet away.

(a) Scale. The collected dataset is both large and diverse. To demonstrate the scale of our dataset, we
compare its statistics with that of past work in Table 1. As shown in the table, our dataset contains 541
falls and around 0.5 million non-fall samples.

Table 1. Dataset statistics and comparison with past work.

number of number of number of number of number of number of
falls non-falls fall patterns non-fall patterns people environments
Ours dataset 541 550,000 18 40 145 57
Palipana et al. [41] 326 744 4 8 3 5
Jokanovié et al. [25] 117 291 4 (different angles) 3 3 2

(b) Environment diversity. Our dataset is collected from 57 different environments, including typical
scenarios in homes, offices, classrooms, and modern buildings. Past work contains at most 5 different
environments. Examples of our testing environments can be seen in Figure 9 and Figure 10. Further, our
dataset covers scenarios with different levels of occlusion, including monitoring people who are occluded
from the radio by a wall.

(c) Fall diversity; We collect 18 different patterns of falls, covering both basic falls and more challenging
ones. To collect realistic fall patterns, we show each subject videos of real falls on YouTube and ask the
subject to emulate those falls as realistically as possible. Subjects can fall in any orientation, i.e., forward,
backward, lateral and on-position. Figure 9 shows some of the fall patterns. About 40% percent of the
falls are relatively difficult to classify, such as falls from chairs, falls onto chairs, falls backward, falls in
the presence of other moving people, slow or gradual falls, falls while trying to catch an object, etc. The
remaining 60% are relatively easier falls and include slipping, tripping, sprained ankle, falling in place,
etc. The full list of collected fall patterns is available in Appendix A.1.

(d) Non-fall diversity: We included 40 indoor non-fall activities. Examples non-falls are shown in
Figure 10. Activities involving small or medium motion and small changes in elevation are covered
in Figure 9i-9n. Activities with both medium motion and medium changes in elevation are shown in
Figure 90-9v. Activities with large or fast motion with drastic changes in elevation are shown in Figure 9w-
9. We can divide the non-fall examples to relatively easy or relatively hard. The relatively easy negative
examples include walking, siting, and standing. they occupy about 75% of the data. The remaining 25%
are relatively harder samples. They include squatting, bending to pick up something, going down stairs,
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sitting on the floor, jumping, lying down, etc. These examples are harder since they either have low
elevation or fast motion similar to a fall.” By including all of these activities, the robustness of our system
can be thoroughly assessed. We attach the full list of collected non-fall patterns in Appendix A.2.

(e) Human subject diversity: Our dataset involves more than 140 subjects, while past work includes
up to 3 participants. 18 out of all the subjects contribute to falls and all subjects contribute to non-fall
activities. All experiments are approved by our institutional review board (IRB).

9 EVALUATION

We first describe our experimental set-up and evaluation metrics, then evaluate Aryokee and compare it
with a few baselines.

9.1 Evaluation Setup

The performance of the fall detector is evaluated by comparing its output with the human labeled ground
truth. We ensure that data used for training and testing are from different environments except for the
comparison study in Section 9.2.2.

Train/Test Split. We split our dataset into 5 and 16.5 hours for training and testing, respectively. We
train our model in 5 environments and evaluate it in the remaining 52 environments. The total number
of falls and non-fall examples used in training are 248 and 100, 000, respectively. This leaves 293 fall
examples, and 450, 000 non-fall examples for testing.

Metrics. To emulate a realistic fall detection scenario, the ratio between fall and non-fall examples in
our dataset is extremely unbalanced. In such a case, classification accuracy is not an ideal metric. A naive
classifier can classify every window as non-fall and get an accuracy greater than 99% (i.e., nearly 300 falls
vs. 450,000 negative examples in the testing set), but be meaningless. Thus, we use the following metrics
that can express the sensitivity and specificity of fall detection in the presence of unbalanced data. To
explain the metrics, for simplicity, we abbreviate True Positives, False Negatives, True Negatives and
False Positives as TP, FN, TN, and FP, respectively.

e Accuracy: The ratio of correctly classified samples over all samples, i.e., a = %. When

negative samples (i.e., non-falls) dominate, a ~ 7x+5p and measures mainly the accuracy of
negative samples, ignoring the accuracy of detecting falls.

e Precision: The fraction of correctly detected falls over all detected falls, i.e., p = #PFP.
e Recall: The fraction of correctly detected falls over the total number of falls, i.e., r = TPE_%.

2:p-r
> optr

e F'1 score: The harmonic mean of precision and recall, i.e.

9.2 Evaluation of Aryokee's Fall Detection

We evaluate Aryokee under various conditions starting with the most general case where it is tested on
new environments and new people unseen during training.

9.2.1 New People and New Environments. 1t is essential for a successful fall detection system to work in
new environments and with new people without having to retrain the model. Thus, we test Aryokee’s
ability to work in such scenarios. We report the results in Table 2 below.

5The definition of relatively easy or hard negatives is subjective. Another definition might follow our cascaded detector.
The first stage detector detects 97% non-falls as easy negatives and filters them out. The remaining 3% relatively hard ones
are fed into the second stage.
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(b) trip

(g) w/ sb. cooking be-(h) w/ sb. jogging be-

hind hind

(e) fall from chair (f) fall with chair

Fig. 9. Sampled fall patterns in our dataset.

(n) hulahoop i chi (r) pick up

(w) soccer

(x) pingpong (y) juggle (2) pool () dance () street dance

Fig. 10. Sampled non-fall patterns in our dataset.
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Table 2. Aryokee's evaluation in cross-people and cross-environment settings. The table demonstrates Aryokee's ability
to work in new environments and with people that it did not see during training.

Precision Recall F1 Score Accuracy
Aryokee 0.919 0.938 0.929 99.96%
FallDeFi [41] 0.76 0.70 0.73 74%

Continuous monitoring requires Aryokee to detect a few hundred falls from half a million examples,
which is very challenging. Nonetheless, the table shows that Aryokee successfully detects 93.8% of the
falls (recall) delivering a precision as high as 91.9%, even though Aryokee never sees the same people and
environments during training. This demonstrates Aryokee’s ability to generalize beyond the training set.
In comparison, the previous best-performing method FallDeFi [41] achieves 76% recall and 70% precision
in cross people and cross environment setting. We note that the performance of FallDeFi is reported on
another dataset. The comparison between their dataset and ours is presented in Table 1, which shows
that our dataset is significantly larger and more diverse. We also note the benefits of our cascaded design.
In particular, around 97% out of the 450, 000 negative samples are detected as easy negatives and filtered
out by the first stage CNN. Most of the remaining 15, 000 hard negatives are rejected by the second stage
CNN.

Finally, the table shows that the classification accuracy is 99.96%. However as explained earlier, accuracy
is not a useful metric when the data is unbalanced; simply classifying every window as a non-fall achieves
99% accuracy. Therefore, we only report precision, recall and F1 score in the following sections.

9.2.2 Comparison of Same vs. Different Environments and People. We also analyze the performance gap of
Aryokee when tested on the same vs. cross environments and people. In this case, we keep the training
dataset as before. Furthermore, we use the same trained model as before (i.e., we do not train a new
model). Recall that the model was trained on 5 hours from 5 environments. We collect 3 additional
hours of test data only from the people who appeared in the training set. This test data is divided
into data from the 5 environments included in training, and data from 6 new environments that do not
appear in training. Table 3 presents the results and compare them against testing on new people and new
environments.

Table 3. Aryokee's Performance under Different Settings.

Precision Recall F1 Score
Cross People, Cross Environment 0.919 0.938 0.929
Same People, Cross Environment 0.934 0.951 0.942
Same People, Same Environment 0.960 0.955 0.958

As reported in the second row of Table 3, Aryokee achieves 93.4%, 95.1% and 94.2% of precision, recall
and F1, respectively, under the same people but in a cross-environment setting. If we further change
cross environment to same environment, precision, recall and F1 obtain a marginal improvement of by
2.6%, 0.4% and 1.6%, respectively. The results confirm expectations that since Aryokee works well across
environments and people, it works also well on the same environments and people, and its performance is
even slightly higher.
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9.2.3 Through Wall Performance. We evaluate our fall detector in through-wall scenarios, where the radio
and monitored people are separated by a wall, and compare the results with the line of sight scenarios.
Again, we evaluate the same fall detection model as before without any new training. Only the test data
is different. In particular, we partition the test data used for testing cross-environment and cross-people
performance into two groups based on whether the monitored person was separated by a wall from the
radio. We then evaluate fall detection in the two cases separately. The results are reported in Table 4. The
table shows that Aryokee’s fall detector works well even when the person is behind a wall. In particular,
for the through-wall case, the precision, recall and F1 are 93.2%, 94.5% and 93.9%, respectively. This is
close to the line of sight setting, of which the precision, recall and F1 are 95.6%, 96.1% and 95.8%.

Table 4. Aryokee's Through-Wall Performance.

Precision Recall F1 Score
Line of Sight 0.956 0.961 0.958
Through Wall 0.932 0.945 0.939

9.2.4 Fall with Other Moving People. We investigate the robustness of our system when other people are
moving or walking in the environment. Again, we evaluate the same fall detection model as before without
any new training. Only the test data is different. In this case, we collect a dataset of people falling in the
presence of nearby moving people. We collect this data in three new environments with three people.
We use this data to test falling in the presence of nearby moving people. To test the case of no other
moving people around, we use the test data from the cross-environment cross-people scenario but we
exclude all examples when there were multiple people in the environment. The results are reported in
Table 5. The precision is similar in both settings, while the recall drops slightly by 3.2% in the presence
of other moving people. Finally, one may notice a small improvement in precision in the case of ”with
moving people” in comparison to the performance results for the case of cross-people cross-environment
in Table 2. This is because the test data collected for scenarios with moving people include some people
in the training set, while the results in Table 2 exclude such scenarios.

Table 5. With vs. without other moving people, under the Same People Cross Environment setting.

Precision Recall F1 Score
w/ other moving people 0.941 0.914 0.928
w/o other moving people 0.936 0.946 0.941

9.2.5 Ablation Study. Our fall detector has a cascading classifier composed of two CNNs and a Non-
Maximum Suppression module. To further understand the effectiveness of each design, we conduct an
ablation study under cross people and cross environment setting.

To fairly evaluate each design, we compare precision under a similar recall of 94%. Results are illustrated
in Table 6. Only a single CNN suffers a low precision of 0.552%, this is because non-falls dominates and
it is hard for a single CNN model to handle all types of non-falls. By adding another cascade CNN, the
precision is improved by 29.1%, because the first CNN can filter out easy non-falls while the second CNN
focuses on hard non-falls. Our full model is obtained by adding the NMS module on top of the cascading
classifier. This further improves the precision by 7.6%.
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Table 6. Ablation study on each module of Aryokee's fall detector, under the Cross People Cross Environment setting.

Model Precision Recall F1 Score
SingleCNN 0.552 0.938 0.695
SingleCNN+NMS 0.758 0.938 0.839
SingleCNN+-cascade 0.843 0.938 0.888

full model (SingleCNN+cascade+NMS)  0.919  0.938  0.929

9.3 Comparison with Baselines

In this section, we compare Aryokee with three baselines: Linear SVM, RBF Kernel SVM and LSTM. All
models are trained and tested on the same dataset. For SVM and Kernel SVM, since the input dimension
of each sample is very high, we reduce the dimension using principle component analysis (PCA). In
particular, we keep the top most PCAs that capture at least 98% of the variance. Since the amount of
training data is too large, we cannot feed all of the samples into memory. Hence, we perform standard
online hard negative mining [13, 17]. For the LSTM model, we use the same input as our CNN model, but
construct a fully connected layer to reduce the dimensions before we feed the data into the LSTM core.
Otherwise, an LSTM with high dimensional core size will require extremely heavy computation even with
GPUs. This is not an issue for a CNN since it has only local connections as explained in the background
section. Note that the fully connected layer and the LSTM are jointly trained in an end-to-end fashion.

We test these models under two different scenarios: (1) same-people same-environment, and (2) cross-
people cross environment. In both cases, the training and testing datasets are the same as those used
in the corresponding evaluation of Aryokee. The results are shown in Table 7. The table shows that for
the same-people same-environment setting, Linear SVM, Kernel SVM and LSTM achieve F1 score of
0.658, 0.790 and 0.864, respectively, while our Aryokee achieves an F1 score of 0.958. However, when
generalizing to the cross-people cross-environment setting, the F1 scores of the three baselines quickly
drop below 0.2, while Aryokee keeps an F'1 score of 0.929. These results show that while the baselines
work well for simple scenarios, they cannot generalize. This emphasizes the benefits of Aryokee specific
CNN-based model which captures complex spatio-temporal patterns in high dimensional data input. In
contrast, traditional classifier and LSTM cannot automatically extract complex features from the data
input.

Table 7. Comparison with Linear SVM, Kernel SVM and LSTM.

Same People Same Environment Cross People Cross Environment

Method
Precision Recall F1 Precision Recall F1
Linear SVM 0.639 0.679 0.658 0.080 0.299 0.127
Kernel SVM 0.785 0.795 0.790 0.173 0.161 0.167
LSTM 0.843 0.886 0.864 0.207 0.148 0.172
Aryokee 0.960 0.955 0.958 0.919 0.938 0.929

9.4 Evaluation of Fall State Machine

Aryokee’s state machine coordinates the fall and stand-up predictions to generate a state transition curve.
Based on the curve, the ability to stand up after a fall and the fall duration can be inferred. Here we first
explain our evaluation metrics and then present our quantitative and qualitative results. Note that we
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Fig. 11. State transition curve of a fall and the evaluation metrics. The blue curve shows the ground truth state
transition and the yellow curve is Aryokee's prediction. Each falling edge and rising edge of the curve represent a
fall and a stand-up event respectively. We measure the absolute offset in time At in detecting a fall and the error in
estimating the fall duration Ad = |d1 — d2|.

use the same dataset for cross-people and cross-environment, but now evaluate our model on it for state
monitoring.

Metrics. We evaluate two aspects of fall state monitoring: fall detection offset and duration of a fall.
The idea is illustrated in Figure 11. We compute the absolute difference between the timestamps of the
detected fall and corresponding ground truth as detection offset error At. Then we compute the duration
of detected fall period dy and corresponding ground truth d;. The duration estimation error is defined as
the absolute error Ad = |dy — da|.
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0.2 1 0.2 1
90 percentile 90 percentile
0.0 T T T 0.0 T T T T
0.0 0.5 1.0 1.5 0 1 2 3 4
Error (seconds) Error (seconds)
(a) CDF of the fall detection offset error. (b) CDF of the fall duration estimation error.

Fig. 12. CDFs of the fall detection offset error and the duration estimation error.

9.4.1 Quantative Result: We evaluate Aryokee based on 293 falls in the testing set from the setting in
Section 9.2.1, and the fall duration time ranges from a few seconds to more than 10 minutes. For the
detection offset error At, Aryokee achieved an averaged error of 0.464 seconds and the 90 percentile error
is 0.914 seconds. To show the distribution of errors, we plot the cumulative distribution function (CDF)
over the detection offset errors in the test dataset in Figure 12a. For the duration estimation error Ad,
the averaged error is 1.254 seconds and 90 percentile error is 2.626 seconds. The CDF of the duration
estimation error is also shown in Figure 12b. The results show that Aryokee can monitor the state of falls
accurately and reliability.
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Fig. 13. An example of our fall state monitoring. The blue curve shows the ground truth while the yellow curve is
Aryokee's prediction. Similar to Figure 11, the curve goes down every time a fall occurs and goes up when the person
stands up. Our system monitors the states of all falls accurately.

9.4.2 Qualitative Results: For qualitative analysis, we ask a participant to perform 15 falls with random
fall durations within a 10-minute experiment. Figure 13 shows the result of our state monitoring along
with the ground truth state sequence. Aryokee accurately detects all state transitions, and the detected
fall times and durations are highly aligned with the ground truth.

10 CONCLUSIONS

In this paper, we introduce Aryokee, a multi-function fall detection system that can detect falls, stand-
up events, and fall duration using RF signals. The system uses an FMCW radio equipped with two
antenna arrays to separate reflections from different locations in space. Our design extracts complex
spatio-temporal information about body motion from RF signals using multiple convolutional neural
networks governed by a state machine. The system is evaluated in a large-scale dataset involving 140
people performing 40 different activities and complex fall events in 57 different environments. Aryokee
is highly accurate even when trained and tested on different people and different environments with a
recall of 94% and a precision of 92%. The results show that our system generalizes across people and
environments, works in the presence of other sources of motion, and deals with complex activities and
fall patterns.

A COMPLETE LIST OF ACTIVITIES
A.1 Fall Activities

We list different types of fall activities collected in Table 8. We note that most activities involve basic
variants as falling forward, backward, on position, and sideways.

Table 8. Fall patterns in our dataset.

slip trip loss of consciousness
loss of balance from chair with chair
from standing on chair from standing on table due to sprained ankle
due to kicking things due to insufficient power due to catching things
due to slippery walker due to slippery crutch due to failure jump

due to getting stricken due to reaching out for things due to lifting heavy furniture
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A.2 Non-fall Activities

We enumerate the collected non-fall activities in Table 9.

Table 9. Non-fall patterns in our dataset.

eating drinking writing using computer
watering flowers ukulele brushing teeth standing
clapping stretching body walking jogging
hula hooping tai chi yoga sleeping on ground
stretching legs squatting picking up stuff benching back
stairs sitting on ground tying shoelaces lying on couch
air hockey pingpong pool standing on hands
juggle soccer dancing street dance
crawling object falling opening door moving furniture
cooking swinging leg rolling on chair taking a bow
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