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Language Model

Language Model (LM): probability distribution over a sequence of words.

p(w1, . . . ,wT ) for any sequence of length T from a vocabulary V (with
wi ∈ V for all i).

Important for many downstream applications:

machine translation

speech recognition

text generation
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Count-based Language Models

By the chain rule, any distribution can be factorized as

p(w1, . . . ,wT ) =
T∏
t=1

p(wt |w1, . . . ,wt−1)

Count-based n-gram language models make a Markov assumption:

p(wt |w1, . . . ,wt) ≈ p(wt |wt−n, . . . ,wt−1)

Need smoothing to deal with rare n-grams.
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Neural Language Models

Neural Language Models (NLM)

Represent words as dense vectors in Rn (word embeddings).

wt ∈ R|V| : One-hot representation of word ∈ V at time t
⇒ xt = Xwt : Word embedding (X ∈ Rn×|V|, n < |V|)

Train a neural net that composes history to predict next word.

p(wt = j |w1, . . . ,wt−1) =
exp(pj · g(x1, . . . , xt−1) + qj)∑

j ′∈V
exp(pj ′ · g(x1, . . . , xt−1) + qj ′)

= softmax(Pg(x1, . . . , xt−1) + q)

pj ∈ Rm, qj ∈ R : Output word embedding/bias for word j ∈ V
g : Composition function
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Feed-forward NLM (Bengio, Ducharme, and Vincent 2003)
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Recurrent Neural Network LM (Mikolov et al. 2011)

Maintain a hidden state vector ht that is recursively calculated.

ht = f (Wxt + Uht−1 + b)

ht ∈ Rm : Hidden state at time t (summary of history)

W ∈ Rm×n : Input-to-hidden transformation

U ∈ Rm×m : Hidden-to-hidden transformation

f (·) : Non-linearity

Apply softmax to ht .
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Recurrent Neural Network LM (Mikolov et al. 2011)
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Recurrent Neural Network LM (Mikolov et al. 2011)
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Recurrent Neural Network LM (Mikolov et al. 2011)
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Word Embeddings (Collobert et al. 2011; Mikolov et al. 2012)

Key ingredient in Neural Language Models.

After training, similar words are close in the vector space.

(Not unique to NLMs)
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NLM Performance (on Penn Treebank)

Difficult/expensive to train, but performs well.

Language Model Perplexity

5-gram count-based (Mikolov and Zweig 2012) 141.2
RNN (Mikolov and Zweig 2012) 124.7
Deep RNN (Pascanu et al. 2013) 107.5
LSTM (Zaremba, Sutskever, and Vinyals 2014) 78.4

Renewed interest in language modeling.
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NLM Issue

Issue: The fundamental unit of information is still the word

Separate embeddings for “trading”, “leading”, “training”, etc.
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NLM Issue

Issue: The fundamental unit of information is still the word

Separate embeddings for “trading”, “trade”, “trades”, etc.
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NLM Issue

No parameter sharing across orthographically similar words.

Orthography contains much semantic/syntactic information.

How can we leverage subword information for language modeling?
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Previous (NLM-based) Work

Use morphological segmenter as a preprocessing step

unfortunately ⇒ unPRE − fortunateSTM − lySUF

Luong, Socher, and Manning 2013: Recursive Neural Network over
morpheme embeddings

Botha and Blunsom 2014: Sum over word/morpheme embeddings
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This Work

Main Idea: No morphology, use characters directly.

Convolutional Neural Networks (CNN) (LeCun et al. 1989)

Central to deep learning systems in vision.

Shown to be effective for NLP tasks (Collobert et al. 2011).

CNNs in NLP typically involve temporal (rather than spatial)
convolutions over words.
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Network Architecture: Overview
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Character-level CNN (CharCNN)
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Character-level CNN (CharCNN)

C ∈ Rd×l : Matrix representation of word (of length l)

H ∈ Rd×w : Convolutional filter matrix

d : Dimensionality of character embeddings (e.g. 15)

w : Width of convolution filter (e.g. 1–7)

1. Apply a convolution between C and H to obtain a vector f ∈ Rl−w+1

f[i ] = 〈C[∗, i : i + w − 1],H〉

where 〈A,B〉 = Tr(ABT ) is the Frobenius inner product.
2. Take the max-over-time (with bias and nonlinearity)

y = tanh(max
i
{f[i ]}+ b)

as the feature corresponding to the filter H (for a particular word).
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Character-level CNN (CharCNN)
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Character-level CNN (CharCNN)

C ∈ Rd×l : Representation of absurdity
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Character-level CNN (CharCNN)

H ∈ Rd×w : Convolutional filter matrix of width w = 3
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Character-level CNN (CharCNN)

f[1] = 〈C[∗, 1 : 3],H〉
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Character-level CNN (CharCNN)

f[1] = 〈C[∗, 1 : 3],H〉
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Character-level CNN (CharCNN)

f[2] = 〈C[∗, 2 : 4],H〉
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Character-level CNN (CharCNN)

f[T − 2] = 〈C[∗,T − 2 : T ],H〉
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Character-level CNN (CharCNN)

y [1] = max
i
{f[i ]}
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Character-level CNN (CharCNN)

Each filter picks out a character n-gram
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Character-level CNN (CharCNN)

f ′[1] = 〈C[∗, 1 : 2],H′〉
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Character-level CNN (CharCNN)

y [2] = max
i
{f ′[i ]}
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Character-level CNN (CharCNN)

Many filter matrices (25–200) per width (1–7)
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Character-level CNN (CharCNN)

Add bias, apply nonlinearity
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Character-level CNN (CharCNN)

Before

Word embedding

PTB Perplexity: 85.4

Now

Output from CharCNN

PTB Perplexity: 84.6

CharCNN is slower, but convolution operations on GPU have been very
optimized.

Can we model more complex interactions between character n-grams
picked up by the filters?
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Highway Network
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Highway Network

y : output from CharCNN

Multilayer Perceptron
z = g(Wy + b)

Highway Network
(Srivastava, Greff, and Schmidhuber 2015)

z = t� g(WHy + bH) + (1− t)� y

WH ,bH : Affine transformation

t = σ(WTy + bT ) : transform gate

1− t : carry gate

Hierarchical, adaptive composition of character n-grams.
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Highway Network

Input from CharCNN 

Input to LSTM 
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Highway Network

Model Perplexity

Word Model 85.4

No Highway Layers 84.6
One MLP Layer 92.6
One Highway Layer 79.7
Two Highway Layers 78.9

No more gains with 2+ layers.
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Results: English Penn Treebank

PPL Size

KN-5 (Mikolov et al. 2012) 141.2 2 m
RNN (Mikolov et al. 2012) 124.7 6 m
Deep RNN (Pascanu et al. 2013) 107.5 6 m
Sum-Prod Net (Cheng et al. 2014) 100.0 5 m
LSTM-Medium (Zaremba, Sutskever, and Vinyals 2014) 82.7 20 m
LSTM-Huge (Zaremba, Sutskever, and Vinyals 2014) 78.4 52 m

LSTM-Word-Small 97.6 5 m
LSTM-Char-Small 92.3 5 m
LSTM-Word-Large 85.4 20 m
LSTM-Char-Large 78.9 19 m
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Data

Data-s Data-l
|V| |C| T |V| |C| T

English (En) 10 k 51 1 m 60 k 197 20 m
Czech (Cs) 46 k 101 1 m 206 k 195 17 m
German (De) 37 k 74 1 m 339 k 260 51 m
Spanish (Es) 27 k 72 1 m 152 k 222 56 m
French (Fr) 25 k 76 1 m 137 k 225 57 m
Russian (Ru) 62 k 62 1 m 497 k 111 25 m

|V| = Word vocab Size
|C| = Character vocab size
T = number of tokens in training set.
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Data

Data-s Data-l
|V| |C| T |V| |C| T

English (En) 10 k 51 1 m 60 k 197 20 m
Czech (Cs) 46 k 101 1 m 206 k 195 17 m
German (De) 37 k 74 1 m 339 k 260 51 m
Spanish (Es) 27 k 72 1 m 152 k 222 56 m
French (Fr) 25 k 76 1 m 137 k 225 57 m
Russian (Ru) 62 k 62 1 m 497 k 111 25 m

|V| varies quite a bit by language.

(effectively use the full vocabulary)
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Baselines

Kneser-Ney LM: Count-based baseline

Word LSTM: Word embeddings as input

Morpheme LBL (Botha and Blunsom 2014)

Input for word k is

xk︸︷︷︸
word embedding

+
∑
j∈Mk

mj

︸ ︷︷ ︸
morpheme embeddings

Morpheme LSTM: Same input as above, but with LSTM architecture

Morphemes obtained from running an unsupervised morphological tagger
Morfessor Cat-MAP (Creutz and Lagus 2007).
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Perplexity on Data-S (1 M Tokens)
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Perplexity on Data-S (1 M Tokens)
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Perplexity on Data-S (1 M Tokens)
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Perplexity on Data-S (1 M Tokens)
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Perplexity on Data-L (17-57 M Tokens)
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Learned Word Representations
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Learned Word Representations
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Learned Word Representations
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Learned Word Representations (In Vocab)

(Based on cosine similarity)

In Vocabulary
while his you richard trading

although your conservatives jonathan advertised
Word letting her we robert advertising

Embedding though my guys neil turnover
minute their i nancy turnover

chile this your hard heading
Characters whole hhs young rich training

(before highway) meanwhile is four richer reading
white has youth richter leading

meanwhile hhs we eduard trade
Characters whole this your gerard training

(after highway) though their doug edward traded
nevertheless your i carl trader
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Learned Word Representations (OOV)

Out-of-Vocabulary
computer-aided misinformed looooook

computer-guided informed look
Characters computerized performed cook

(before highway) disk-drive transformed looks
computer inform shook

computer-guided informed look
Characters computer-driven performed looks

(after highway) computerized outperformed looked
computer transformed looking
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Convolutional Layer

Does each filter truly pick out a character n-gram?

0.4$ %0.8$ 2.2$ 0.1$ 0.5$ %0.4$ 0.4$ %0.4$ 0.1$

0.1$ 1.2$ 1.5$ %0.8$ %1.5$ 0.2$ 0.1$ 1.2$ 0.7$

0.2$ 0.1$ %1.2$ 0.2$ %0.2$ 0.3$ 0.2$ %1.3$ %0.1$

%0.2$ %0.5$ 0.1$ 0.2$ %0.3$ 0.3$ %0.1$ 1.0$ %0.3$

a    b    s    u    r   d    i    t    y 

0.1$ 0.7$ 0.2$ %0.1$ 0.2$ %0.4$ 0.5$ 0.7$

Concatena3on$
of$character$
embeddings$

Max%over%3me$pooling$

Single$filter$
output$
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Convolutional Filters

For each filter, visualize 100 substrings with the highest filter response
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Convolutional Filters
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Character N-gram Representations

Prefixes, Suffixes, Hyphenated, Others

Prefixes: character n-grams that start with ‘start-of-word’ character, such
as {un, {mis. Suffixes defined similarly.
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Conclusion

A character-aware language model that relies only on character-level
inputs: CNN over characters + LSTM.

Outperforms strong word/morpheme LSTM baselines.

Much recent work on character inputs:

Santos and Zadrozny 2014: CNN over characters concatenated with
word embeddings into CRF.

Zhang and LeCun 2015: Deep CNN over characters for document
classification.

Ballesteros, Dyer, and Smith 2015: LSTM over characters for parsing.

Ling et al. 2015: LSTM over characters into another LSTM for
language modeling/POS-tagging.
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Future Work

Subword information on the output.

As an encoder/decoder in neural
machine translation.

CharCNN + Highway layers for
representation learning (e.g. as input
into word2vec)
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Appendix: Performance vs Corpus/Vocab Size

How does relative performance vary as corpus/vocabulary sizes vary?

Experiment on German large dataset:

Use the first T tokens of the training set.

Take the most frequent K words as the vocabulary and replace rest
with <unk>

Compare % perplexity reduction going from word to character LSTM.

Vocabulary Size
10 k 25 k 50 k 100 k

1 m 17 16 21 –
Training 5 m 8 14 16 21

Size 10 m 9 9 12 15
25 m 9 8 9 10

Character model outperforms word model in all scenarios.
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Appendix: Hyperparameters

Small Large

CNN

d 15 15
w [1, 2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6, 7]
h [25 · w ] [min{200, 50 · w}]
f tanh tanh

HW-Net
l 1 2
g ReLU ReLU

LSTM
l 2 2
m 300 650

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models 69 / 76



Appendix: Results on Data-S

Cs De Es Fr Ru

B&B
KN-4 545 366 241 274 396
MLBL 465 296 200 225 304

Small
Word 503 305 212 229 352
Morph 414 278 197 216 290
Char 401 260 182 189 278

Large
Word 493 286 200 222 357
Morph 398 263 177 196 271
Char 371 239 165 184 261
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Appendix: Results on Data-L

Cs De Es Fr Ru En

B&B
KN-4 862 463 219 243 390 291
MLBL 643 404 203 227 300 273

Small
Word 701 347 186 202 353 236
Morph 615 331 189 209 331 233
Char 578 305 169 190 313 216

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models 71 / 76



Appendix: Effect of Highway Layers (PTB)

Small Model Large Model

No Highway Layers 100.3 84.6
One Highway Layer 92.3 79.7
Two Highway Layers 90.1 78.9
Multilayer Perceptron 111.2 92.6

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models 72 / 76



Appendix: LSTM (Hochreiter and Schmidhuber 1997)

Long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997):
Augment RNN with (latent) cell vectors to allow for learning of long-range
dependencies.

it = σ(Wixt + Uiht−1 + bi )

ft = σ(Wf xt + Uf ht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1 + bg )

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models 73 / 76



References I

Bengio, Yoshua, Rejean Ducharme, and Pascal Vincent (2003). “A Neural
Probabilistic Language Model”. In: Journal of Machine Learning
Research 3, pp. 1137–1155.

Mikolov, Tomas et al. (2011). “Empirical Evaluation and Combination of
Advanced Language Modeling Techniques”. In: Proceedings of
INTERSPEECH.

Collobert, Ronan et al. (2011). “Natural Language Processing (almost)
from Scratch”. In: Journal of Machine Learning Research 12,
pp. 2493–2537.

Mikolov, Tomas et al. (2012). “Subword Language Modeling with Neural
Networks”. In: preprint: www.fit.vutbr.cz/̃imikolov/rnnlm/char.pdf.

Mikolov, Tomas and Geoffrey Zweig (2012). “Context Dependent
Recurrent Neural Network Language Model”. In: Proceedings of SLT.

Pascanu, Razvan et al. (2013). “How to Construct Deep Neural
Networks”. In: arXiv:1312.6026.

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models 74 / 76



References II

Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals (2014). “Recurrent
Neural Network Regularization”. In: arXiv:1409.2329.

Luong, Minh-Thang, Richard Socher, and Chris Manning (2013). “Better
Word Representations with Recursive Neural Networks for Morphology”.
In: Proceedings of CoNLL.

Botha, Jan and Phil Blunsom (2014). “Compositional Morphology for
Word Representations and Language Modelling”. In: Proceedings of
ICML.

LeCun, Yann et al. (1989). “Handwritten Digit Recognition with a
Backpropagation Network”. In: Proceedings of NIPS.

Srivastava, Rupesh Kumar, Klaus Greff, and Jurgen Schmidhuber (2015).
“Training Very Deep Networks”. In: arXiv:1507.06228.

Creutz, Mathias and Krista Lagus (2007). “Unsupervised Models for
Morpheme Segmentation and Morphology Learning”. In: Proceedings
of the ACM Transations on Speech and Language Processing.

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models 75 / 76



References III

Cheng, Wei Chen et al. (2014). “Language Modeling with Sum-Product
Networks”. In: Proceedings of INTERSPEECH.

Santos, Cicero Nogueira dos and Bianca Zadrozny (2014). “Learning
Character-level Representations for Part-of-Speech Tagging”. In:
Proceedings of ICML.

Zhang, Xiang and Yann LeCun (2015). “Text Understanding From
Scratch”. In: arXiv:1502.01710.

Ballesteros, Miguel, Chris Dyer, and Noah A. Smith (2015). “Improved
Transition-Based Parsing by Modeling Characters instead of Words with
LSTMs”. In: Proceedings of EMNLP 2015.

Ling, Wang et al. (2015). “Finding Function in Form: Compositional
Character Models for Open Vocabulary Word Representation”. In:
Proceedings of EMNLP.

Hochreiter, Sepp and J́’urgen Schmidhuber (1997). “Long Short-Term
Memory”. In: Neural Computation 9, pp. 1735–1780.

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models 76 / 76


