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Language has structure
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Watching a model train can be very calming
and satisfying.
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Language has structure

watching a model train watching a model train




Neurobiological Evidence (Fedorenko et al. 2012)

Different neural activity for Jabberwocky sentences versus non-word lists

“after the bonter mel’!vered‘ t_he perlen “was during cusarists fick prell pront
he mested to weer on colmition” the pome villpa and wornetist she”




Neurobiological Evidence (Ding et al. 2015)
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Neurobiological Evidence (Ding et al. 2015)
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i like superhero movies

the dog was hungry

stocks rose on tuesday

he is a big fan of football

it is snowing in boston

time flies like an arrow

isaw an elephant in my pajamas

Unsupervised Parsing

the dog was hungry

stocks rose on tuesday
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i like superhero movies

the dog was hungry

stocks rose on tuesday

he is a big fan of football

it is snowing in boston

time flies like an arrow

i saw an elephant in my pajamas

Unsupervised Parsing
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the dog was hungry

stocks rose on tuesday




Grammar Induction for Unsupervised Parsing

@ Classic approach: Hypothesize a formal grammar that generates natural language

N={S.A1.Ap,....AT 5
¥ — {a. aardvark. able. are, . ... zyzzyva} - - T
P=S—A A As As
S=AA _ ’ T~ .
S— A Ay - John Az As
" watched A, Ay
Grammar |-

o (Parse tree implied by the grammar)



Goal of Grammar Induction

?

Grammar

@ Learning the syntax of human language

e Longstanding problem in Al/NLP

the dog was hungry

stocks rose on tuesday

time flies like an arrow

i saw an elephant in my pajamas

Sentences




Review: Context-Free Grammars (CFG) for Natural Language
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G=(S,N,P,2,R) where

MYz

Review: CFG Formal Description

Set of nonterminals (constituent labels)
Set of preterminals (part-of-speech tags)
Set of terminals (words)

Start symbol

Set of rules



G=(S,N,P,2,R) where

N
P
>
S
R :

Review: CFG Formal Description

Set of nonterminals (constituent labels)
Set of preterminals (part-of-speech tags)
Set of terminals (words)

Start symbol

Set of rules

Each rule r € R is one of the following:

S— A AeN
A—BC AeN, B,CeNUP
T—w TeP, welX



Review: Probabilistic Context-Free Grammars (PCFG)

@ Associate probabilities w = {7, },er for each rule r € R.

@ Probability of a tree t is given by multiplying the probabilities of rules used in the

pﬂ'(t) = H Ty

retr

derivation

where t5; is set of rules used to derive ¢



Review: PCFG Example

S
‘ Aj;: nonterminals
4 Tj: preterminals
Ty As

‘ tR:{S—>A1, A1—>T4A3,

Jon T T7
‘ ‘ As — ToT7, Ty — Jon,

knows  nothing Ty — knows, T7 — nothing}



S
|
Ax
]
Ty As
|
Jon T T7

knows nothing

Review: PCFG Example

A;: nonterminals

T;: preterminals

tR = {S—> Al, Al —>T4A3,
Ag — T2 T7, T4 — Jon,

T5 — knows, T7 — nothing}

p‘l‘l’(t) — T‘-S%Al X 7TA1—>T4 A3 X 7TA3—>T2 T7><

TTy—Jon X TTh—knows X 7Ty —snothing



Review: Grammar Induction with PCFGs

@ Specify broad grammar structure: number of nonterminals (|A| = 30), preterminals
(|P] = 60), set of context-free rules
e Maximize log likelihood (Expectation-Maximization)

o Given corpus of sentences x(1), ... x(V),

N
max Y log pr (x)
n=1

o Sum over unobserved trees,

pr(x) = Z Pr(t)

teT (x)

where T (x) =set of trees whose leaves are x.



Results from PCFG Induction

Unlabeled F against gold trees on PTB.

Model F

Random Trees 19.5
PCFG 35.0




Results from PCFG Induction

Unlabeled F; against gold trees on PTB.

Model Fy

Random Trees 19.5
PCFG 35.0
Right Branching 39.5

Long history of work showing that MLE with PCFGs fails to discover linguistically

meaningful tree structures [Lari and Young 1990].
g g

Common wisdom: “MLE with PCFGs doesn’t work”



Rich Prior Work on Unsupervised Constituency Parsing

Modified objectives [Klein and Manning 2002, 2004; Smith and Eisner 2004].

Use priors/nonparametric models [Liang et al. 2007; Johnson et al. 2007].

Handcrafted features [Huang et al. 2012; Golland et al. 2012].

Other types of regularization (e.g. on recursion depth) [Noji et al. 2016; Jin et al. 2018].

Activation analysis from neural language models [Shen et al. 2018, 2019]



This Talk: Revisit Core Assumptions about Grammar Induction

@ PCFG with an embedding parameterization can induce meaningful grammars with
MLE.

@ Develop more flexible grammars through auxiliary sentence vector 4 neural variational

inference.

© Learn structured language models with induced trees.



This Talk: Revisit Core Assumptions about Grammar Induction

@ PCFG with an embedding parameterization can induce meaningful grammars
with MLE.

@ Develop more flexible grammars through auxiliary sentence vector 4 neural variational

inference.

© Learn structured language models with induced trees.



Simple Modification: PCFG Parameterization

o Scalar Parameterization: Associate probabilities 7, to each rule such that they are

valid probability distributions.

TP —w = 0 E TP = 1
w'eyr



Simple Modification: PCFG Parameterization

o Scalar Parameterization: Associate probabilities 7, to each rule such that they are

valid probability distributions.

TP —w = 0 E TP = 1
w'eyr

e “Neural” Parameterization: Associate symbol embeddings w to each symbol N on

left hand side of a rule.

exp(u,, f(Wr))

Tr—w = NEURALNET(wyr) =
o Ywes exp(uy, f(wr))

(Similar parameterizations for A — BC)



Simple Modification: Neural PCFG

shared neural net

—
T
Ty X €XP ( u,, fO wr ) )
~—~ ~—
output emb. input emb.

@ Model parameters 6 given by input embeddings, output embeddings, and parameters of
neural net f.

@ Analogous to count-based vs neural language models: parameter sharing through

distributed representations (word embedding vs symbol embedding).



Simple Modification: Neural PCFG

shared neural net

—
T
Ty X €XP ( u,, fO wr ) )
~—~ ~—
output emb. input emb.

@ Model parameters 6 given by input embeddings, output embeddings, and parameters of

neural net f.

@ Analogous to count-based vs neural language models: parameter sharing through

distributed representations (word embedding vs symbol embedding).

Same model assumptions, different parameterization.



Neural PCFG: Training

@ Maximum likelihood (EM) with dynamic programming for marginalization.

@ Practical details: Stochastic gradient ascent on log marginal likelihood with

Inside algorithm + Autodiff
enew = eold + )\ve Inge(X)
——
inside algorithm

e (PyTorch-Struct includes GPU-optimized implementations of these (and many other)
algorithms.)



Neural PCFG: Results

Model Fy

Random Trees 19.5
Right Branching 39.5
Scalar PCFG 35.0

(English Penn Treebank)



Neural PCFG: Results

Model Fy

Random Trees 19.5
Right Branching 39.5
Scalar PCFG 35.0
Neural PCFG 52.6

(English Penn Treebank)



Neural PCFG Results

Model

Iy

Training/Test PPL

Random Trees
Right Branching
Scalar PCFG
Neural PCFG

19.5
39.5
35.0
52.6

~ 350
~ 250




This Talk: Revisit Core Assumptions about Grammar Induction

@ PCFG with an embedding parameterization can induce meaningful grammars with
MLE.

@ Develop more flexible grammars through auxiliary sentence vector 4+ neural

variational inference.

© Learn structured language models with induced trees.



Review: Limitations of simple PCFGs

No sensitivity to lexical context
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(example from http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf)
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Review: Limitations of simple PCFGs

No sensitivity to lexical context

Rules

Rules

S = NP VP
NP — NNS

S — NP VP
NP — NNS

VP — VP PP

NP — NP PP

VP — VBD NP
NP — NNS

PP — IN NP
NP — DT NN
NNS — workers
VBD —+ dumped
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IN — into

DT — a

NN — bin

VP — VBD NP
NP — NNS

PP — IN NP
NP — DT NN
NNS — workers
VBD — dumped
NNS — sacks
IN — into

DT — a

NN — bin




Review: Limitations

No sensitivity to structural context

NP
NP PP
|
NN
IN NP
president | /\
of
NP PP
N
o R IN N
| | 1 I
a company N NN
|
Africa

(example from http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf)

of simple PCFGs
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N K Ne

NP PP |

I /\ in
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N
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president of


http://www.cs.columbia.edu/~mcollins/courses/nlp2011/notes/lexpcfgs.pdf

Review: Limitations of simple PCFGs

Johnson et al. [2007]: Supervised PCFG + Unsupervised fine tuning decreases parsing

accuracy while corpus likelihood improves!

“It is easy to demonstrate that the poor quality of the PCFG models is the cause of these
problems rather than search or other algorithmic issues. If one initializes either the 10 or
Bayesian estimation procedures with treebank parses and then runs the procedure using the
yields alone, the accuracy of the parses uniformly decreases while the (posterior) likelihood
uniformly increases with each iteration, demonstrating that improving the (posterior)

likelihood of such models does not improve parse accuracy.”



Classic Solutions: Lexicalization

o No sensitivity to lexical context = Lexicalized PCFGs [Collins 1997]

@ Rules are lexicalized, e.g.

A— BC = A(w) — B(w)C(h)

w,h €%
@ Integrates notion of headedness

S

N

NP VP
ot N
| lN Vi NP
; | N
the lowyer questioned DT NN

the witness

S(questioned)

NP(lawyer) VE( questioned)

DT(the) NN
(the) (lalwyer) Vi(questioned) NP(witness)

the lawyer i
questioned  pThe) NN(witness)

the witness



Classic Solutions: Higher-order Grammars

e No sensitivity to structural context = Horizontal/Vertical Markovization [Klein and

Manning 2003]

@ Richer dependencies through grandparents/siblings.

S STROOT
//’T-\\
NP VP . NP'S VIS
|
PRP VBD ADJP . PRP VBD ADVPVP
N VAN I AN

He was right He  was right



Classic Solutions: Enriching PCFGs

@ Lexicalized PCFG [Collins 1997
@ Horizontal /Vertical Markovization [Klein and Manning 2003]

@ Latent Variable PCFG [Petrov et al. 2006]

Expensive to apply in the unsupervised case due to explosion in number of rules.



Compound PCFG

@ Goal: Capture these in a soft manner.



Compound PCFG

@ Goal: Capture these in a soft manner.

e Compound generative process (Bayesian PCFG):

(1) z ~N(0,1)

(2) m, = NEURALNETWORK([wy; z]), for example,
exp(u,, f([wWr; 2]))

wes exp(uy, f([wr; 2]))

(3) t ~ PCFG(7,)

(4) x = yield(t)

Tz T—sw =
’ >



Compound PCFG

varies
AN
T 1w < exp( uy, f(wr 37z )
~———

fixed across sents

@ Input/output embeddings and neural net f shared across sentences, but rule

probabilities for each sentence can vary through z

@ Intuition: z can encode lexical /structural information specific to the sentence.



Neural PCFG vs. Compound PCFG
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The model reduces to a PCFG conditioned on z

Neural PCFG vs. Compound PCFG

%

Eg




Compound PCFG: Training and Inference

For maximum likelihood, log marginal likelihood given by

togpa(x) = log ([ X malt|2)p(z) da)

teT (x)

po(x|2)

@ Intractable due to integral over z.



Compound PCFG: Training and Inference
Variational Inference: Introduce variational posterior for z

log po(%) > B,z 10g > polt|2) | — KL{gs(z|) || p(2)]
teT (x)

po(x|2)

@ Inference network over x produces parameters for the Gaussian variational posterior

95 (2| %).



Compound PCFG: Training and Inference
Variational Inference: Introduce variational posterior for z

log po(%) > B,z 10g > polt|2) | — KL{gs(z|) || p(2)]
teT (x)

po(x|2)

@ Inference network over x produces parameters for the Gaussian variational posterior
q(2 [ %).
@ Given a sample z, can calculate with dynamic programming

po(x|z) = > pelt|z)

teT (x)



Compound PCFG: Training and Inference
Collapsed Variational Inference

log pg(x) > Egzlx)  [logpe(x|z) ] — KL[gs(z]x)[ p(z)]
R , —_———

reparameterized sample inside algorithm analytic KL between 2 Gaussians




Compound PCFG: Training and Inference

Collapsed Variational Inference

logpg(x) > Egx)  [logpe(x]z)] - KL[gs(z]x) | p(2)]
—— SN———-—
reparameterized sample inside algorithm analytic KL between 2 Gaussians

“VAE with a PCFG decoder”



Compound PCFG: Results on PTB

Model Fy  Training/Test PPL
Random Trees 19.5 -
Right Branching 39.5 —
Scalar PCFG 35.0 ~ 350
Neural PCFG 52.6 ~ 250

Compound PCFG 60.1 ~ 190




Compound PCFG: Comparison against other unsupervised parsers

Model English (PTB)
PRPN [Shen et al. 2018] 38.1
Ordered Neurons [Shen et al. 2019] 49.4
DIORA [Drozdov et al. 2019] 58.9
Constituency Tests [Cao et al. 2020] 62.8
Right Branching 39.5
Scalar PCFG 35.0
Neural PCFG 52.6

Compound PCFG 60.1




Compound PCFG: Results on other languages

Model English  Chinese Japanese
Random Trees 19.5 16.0 15.3
Left Branching 8.7 9.7 25.5
Right Branching 39.5 20.0 1.2
Scalar PCFG 35.0 15.0 15.7
Neural PCFG 52.6 29.5 44.6

Compound PCFG 60.1 39.8 47 .4




Parsing Klingon
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Model Analysis: Nonterminal Alignment (|N| = 30)
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Model Analysis: Nonterminal Alignment (|| = 30)
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the level of hypoglycemia

a measure of inflation
an act of god

the isle of man

the first of december

!
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As Ay
AN TN
Ass An Ag Arz
Wi w2 ws Ag As

wy ws

the organization of american states
its acquirer for half price

a decline in brazilian interest

his trial on perjury charges

each plan including the assumptions

49/75
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Model Analysis: Nonterminal Alignment (JA/| = 30)
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Model Analysis: Nonterminal Alignment (|| = 30)
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caused an injury or death
carried a change of clothing
illustrated this mix of power
founded the company in chicago
sold his stake in texaco
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Model Analysis: Nonterminal Alignment (|| = 30)

Noun Phrases

Verb Phrases
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Model Analysis: What does z learn?

Nearest neighbors based on variational posterior mean vector

(unk) corp. received an N million army contract for helicopter engines

boeing co. received a N million air force contract for developing cable systems for the (unk) missile

general dynamics corp. received a N million air force contract for (unk) training sets

grumman corp. received an N million navy contract to upgrade aircraft electronics

thomson missile products with about half british aerospace 's annual revenue include the (unk) (unk) missile fal

already british aerospace and french (unk) (unk) (unk) on a british missile contract and on an air-traffic control




Model Analysis: What does z learn?

A4 [Z]
/\
A43 [Z] A12 [Z]
| /\
wi Axlz] As2[z]
T
AQO[Z] A70[Z] We

/\ ‘
A7 [Z] A55 [Z] W5
N
A35 [Z] A75 [Z] Wa

wa w3

1st Principal
Component of z

Cluster 1 -

of the company 's capital structure

in the company 's divestiture program
by the company 's new board

in the company 's core business

Cluster 2

above the treasury 's N-year note

above the treasury 's seven-year note

above the treasury 's comparable note

above the treasury 's five-year note +



This Talk: Revisit Core Assumptions about Grammar Induction

@ PCFG with an embedding parameterization can induce meaningful grammars with
MLE.

@ Develop more flexible grammars through auxiliary sentence vector 4 neural variational

inference.

© Learn structured language models with induced trees.



Compound PCFG as a Language Model

Model F;  Test PPL
Scalar PCFG 35.0 ~ 350
Neural PCFG 52.6 ~ 250

Compound PCFG  60.1 ~ 190




Compound PCFG as a Language Model

Model Fy  Test PPL
Scalar PCFG 35.0 ~ 350
Neural PCFG 52.6 ~ 250
Compound PCFG  60.1 ~ 190
RNN LM — 86.2

Good parser, poor language model.



Review: Recurrent Neural Network Grammars (RNNG) [Dyer et al. 2016]

@ Structured joint generative model of sentence x and tree z

po(x,2)

@ Generate next word conditioned on partially-completed syntax tree

@ Like RNN LM, no independence assumptions.



Review: RNN LMs
“Flat” left-to-right generation
xy ~po(x|x1, ..., 24—1) = softmax(Wh;_; + b)

meows

‘ T
o1

The hungry cat

h J
A J




RNNG [Dyer et al. 2016]

Introduce binary variables z = [21, ..., zo7_1] (unlabeled binary tree)

Sample action z; € { GENERATE, REDUCE} at each time step:

z¢ ~ Bernoulli(p;) Py = U(WThprev +0b)




RNNG [Dyer et al. 2016]

If zz = GENERATE

Sample word from context representation

GEN

The



RNNG [Dyer et al. 2016]

(Similar to standard RNNLM:s)

x ~ softmax(Whyey + b)

hungry

The



RNNG [Dyer et al. 2016]

Obtain new context representation with epungry

hypew = LSTM(ehungry7 hprev)

Y

]

The hungry



RNNG [Dyer et al. 2016]

hpew = LSTM(ecata hprev)

Y
Y

1

The hungry cat



If 2z = REDUCE

RNNG [Dyer et al. 2016]

REDUCE

!

Y
Y

The

(.

hungry  cat



RNNG [Dyer et al. 2016]

If 2z = REDUCE

Pop last two elements

T

The hungry cat



RNNG [Dyer et al. 2016]

Obtain new representation of constituent

€(hungry cat) = TreeLSTM(ehungry7 ecat)

T

The hungry cat



RNNG [Dyer et al. 2016]

Move the new representation onto the stack

hpew = LSTM(e(hungry cat)» hprev)

1/

The hungry cat



Compound PCFG + RNNG

@ Compound PCFG to parse training set, train an RNNG on induced trees, fine-tune with

unsupervised RNNG.



Compound PCFG + RNNG

@ Compound PCFG to parse training set, train an RNNG on induced trees, fine-tune with

unsupervised RNNG.

Model Test PPL
Neural PCFG 252.6
Compound PCFG 196.3
RNN LM 86.2
URNNG + Compound PCFG 83.7

URNNG + Gold Trees 78.3




Syntactic Evaluation [Marvin and Linzen 2018]
Two minimally different sentences:

The senators near the assistant are old

*The senators near the assistant is old

@ Model must assign higher probability to the correct one.



Syntactic Evaluation [Marvin and Linzen 2018]

Model Test PPL  Syntactic Eval.
RNN LM 86.2 60.9%
URNNG + Compound PCFG 83.7 76.1%
URNNG + Gold Trees 78.3 76.1%




Compound PCFG Extensions

@ Lexicalized Compound PCFG [zhu et al. 2020]

DT [THE] NP [caT]

@ Visually Grounded Compound PCFG [Zhao and Titov 2020]



Discussion

Limitations
@ Can be slower to train due to DP.

@ Latent vector to approximate richer grammars.



Discussion

Limitations
@ Can be slower to train due to DP.

@ Latent vector to approximate richer grammars.

“We assume that the goal of learning a context-free grammar needs no justification.”

[Carroll and Charniak 1992]

e What is the role of grammars (and other linguistic structures) in ELMo/BERT era?



Future Work

@ Separation of “what to say” from “how to say it" for structured generation.

@ Some languages are provably not context-free = neural parameterizations of mildly

context-sensitive formalisms (e.g. tree-adjoining grammars).

@ Investigate why MLE with scalar parameterization fails but neural parameterization

works.
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