
Linear Transformers for
Efficient Sequence Modeling

Yoon Kim
MIT

MIT is located in Cambridge

How do large language models work?

LLM

MIT is located in Cambridge

Cambridge

How do large language models work?

LLM

MIT is located in Massachusetts

Cambridge

How do large language models work?

LLM

MIT is located in Massachusetts

Cambridge Massachusetts

How do large language models work?

LLM

MIT is located in Massachusetts

Cambridge Massachusetts

How do large language models work?

LLM

“Transformers”

MIT is located in

?

Cambridge

Transformers [Vaswani et al. ’17]

MIT is located in

“Attend” over all previous
words to contextualize the
current word against context

Transformers [Vaswani et al. ’17]

MIT is located in

Cambridge
Predict the next token
with the attended vector

“Attend” over all previous
words to contextualize the
current word against context

Transformers [Vaswani et al. ’17]

MIT is located in Cambridge

CambridgeCambridge

Transformers [Vaswani et al. ’17]

MIT is located in

Cambridge

Cambridge

MassachusettsCambridge

Transformers [Vaswani et al. ’17]

MIT is located in

Cambridge

Cambridge

MassachusettsCambridgeinlocatedis

Attention

Attention can model rich interactions among input elements
→ Important primitive for accurate sequence modeling!

Transformers [Vaswani et al. ’17]

MIT is located in Cambridge

Transformers

Transformers for Generative AI

MIT is located in

CambridgeCambridgeinlocatedis

Transformers [Vaswani et al. ’17]

Harry Potter series: 1M words
Human DNA: 3.2B nucleotides

Transformers have difficulty scaling to long sequences

How can we maintain the accuracy of attention while
enabling efficient training and inference?

Today: Linear Transformers for Efficient Sequence Modeling

Parallelizing Linear Transformers with the
Delta Rule over Sequence Length

Gated Linear Attention Transformers with
Hardware-Efficient Training
 Songlin Yang*, Bailin Wang*, Yikang Shen,Rameswar Panda, Yoon Kim
ICML ’24

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, Yoon Kim
NeurIPS ’24

Background: Attention & Linear Attention

Attention: Training

Attention: Training

Attention: Training

Key K
Value V
Query Q

Attention: Training

Key K
Value V
Query Q

Attention: Training

Key K
Value V
Query Q

Attention: Training

Key K
Value V
Query Q

FFN Layer

Attention Layer

FFN Layer

…

Attention: Training

Attention requires work but can be done in steps
→ Parallel training that is rich in matmuls.

Attention: Number sequential
operations is independent of

sequence length!

Attention: Training

Training (“Parallel Form”)

Compute (Work)

Memory

Steps (Number of matmuls)

(GPU memory)

(FLOPs)

Attention: Generative Inference

Key K
Value V
Query Q

Attention: Generative Inference

Key K
Value V
Query Q

Attention: Generative Inference

Key K
Value V
Query Q

Attention: Generative Inference

Key K
Value V
Query Q

Attention: Generative Inference

Key K
Value V
Query Q

FFN Layer

Attention Layer

FFN Layer

Attention Layer

Attention: Generative Inference

Key K
Value V
Query Q

FFN Layer

Attention Layer

FFN Layer

Attention Layer

Attention: Generative Inference

Key K
Value V
Query Q

Attention: Generative Inference

Key K
Value V
Query Q

Attention: Generative Inference

Need to keep around “KV-cache”
that takes memory.

Key K
Value V
Query Q

Attention

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute (Work)

Memory

Steps

Attention

Training (“Parallel Form”) Inference (“Recurrent Form”)

Attention enables scalable training of accurate sequence models, but requires:
● Quadratic compute (bad for training / inference).
● Linear memory (bad for inference).

Compute (Work)

Memory

Steps

Linear Attention (“Linear Transformers”) [Katharopoulos et al. ’20]

Softmax
Attention

(Simple) Linear
Attention

Softmax
Attention

(Simple) Linear
Attention

Linear Attention (“Linear Transformers”) [Katharopoulos et al. ’20]

Training (“Parallel Form”) Inference (“Recurrent Form”)

Softmax
Attention

(Simple) Linear
Attention

Linear Attention (“Linear Transformers”) [Katharopoulos et al. ’20]

Training: Haven’t really
gained anything (yet)...

Training (“Parallel Form”) Inference (“Recurrent Form”)

Softmax
Attention

(Simple) Linear
Attention

Linear Attention (“Linear Transformers”) [Katharopoulos et al. ’20]

Training (“Parallel Form”) Inference (“Recurrent Form”)

Softmax
Attention

(Simple) Linear
Attention

Linear Attention (“Linear Transformers”) [Katharopoulos et al. ’20]

Linear Attention: Inference

Linear Attention: Inference

Linear Attention: Inference

Linear Attention: Inference

Linear Attention: Inference
Key K
Value V
Query Q

Linear Attention: Inference
Key K
Value V
Query Q

Linear Attention: Inference
Key K
Value V
Query Q

Linear Attention: Inference
Key K
Value V
Query Q

Linear Attention: Inference

Linear Attention = Linear RNNs with
matrix-valued hidden states
→ Constant-memory inference!

Key K
Value V
Query Q

Linear Transformers are “Fast Weights”!

[Hinton and Plaut ’87] [Schmidhuber ’92]

A “slow network”
changes the weights of
a “fast network”

Linear Attention

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute

Memory

Steps

Linear Attention: Naive Parallel Form

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute

Memory

Steps

Why not use the recurrent form for training?

Linear Attention: Naive Parallel Form

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute

Memory

Steps

● Strict sequential computation (no sequence-level parallelism).
● All operations are either elementwise operations or reductions → cannot

leverage tensor cores.
● Materialization of each time step’s hidden states → High I/O cost.

Linear Attention: Naive Parallel Form

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute

Memory

Steps

● Strict sequential computation (no sequence-level parallelism).
● All operations are either elementwise operations or reductions → cannot

leverage tensor cores.
● Materialization of each time step’s hidden states → High I/O cost.

Linear Attention: Naive Parallel Form

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute

Memory

Steps

● Strict sequential computation (no sequence-level parallelism).
● All operations are either elementwise operations or reductions → cannot

leverage tensor cores.
● Materialization of each time step’s hidden states → High I/O cost.

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Pure RNN → “Chunk-level” RNN

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Pure RNN → “Chunk-level” RNN

Chunk 1 Chunk 2 Chunk 3

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Step 1: local state computation

Chunk 1 Chunk 2 Chunk 3

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Step 2: state passing

Chunk 1 Chunk 2 Chunk 3

Recurrent steps: L → L/C

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Step 3: output computation

Contribution from
previous chunk.

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Step 3: output computation

Contribution from
previous chunk.

Contribution from
current chunk.

 Fully
Parallel Form

Compute

Memory

Steps

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Chunkwise
Parallel Form

 Fully
Recurrent Form

Chunkwise parallel form interpolates between fully parallel and recurrent forms.
● C = L → Fully parallel form
● C = 1 → Fully recurrent form

 Fully
Parallel Form

Compute

Memory

Steps

Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Chunkwise
Parallel Form

 Fully
Recurrent Form

Chunkwise parallel form interpolates between fully parallel and recurrent forms.
● C = L → Fully parallel form
● C = 1 → Fully recurrent form

Linear Attention: Issues

Issue 1:
Slower than optimized
implementations of softmax
attention in practice.

Linear Attention: Issues

Issue 2:
Underperforms softmax
attention by a significant
margin.

Model PPL LM Eval

Softmax attention 16.9 50.9

Linear attention with decay
(RetNet)

18.6 48.9

Linear Transformers for Efficient Sequence Modeling

Gated Linear Attention Transformers with
Hardware-Efficient Training
 Songlin Yang*, Bailin Wang*, Yikang Shen,Rameswar Panda, Yoon Kim
ICML ’24

Parallelizing Linear Transformers with the
Delta Rule over Sequence Length
Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, Yoon Kim
NeurIPS ’24

Our Contributions

Issue 1:
Slower than optimized
implementations of softmax
attention in practice.

Issue 2:
Underperforms softmax
attention by a significant
margin.

FlashLinearAttention
Hardware-efficient I/O-aware
implementation of linear
attention

Gated Linear Attention
Linear attention with
data-dependent “forget” gate

Our Contributions

Issue 1:
Slower than optimized
implementations of softmax
attention in practice.

Issue 2:
Underperforms softmax
attention by a significant
margin.

FlashLinearAttention
Hardware-efficient I/O-aware
implementation of linear
attention

Gated Linear Attention
Linear attention with
data-dependent “forget” gate

Background: Principles of GPU Optimization

Global GPU Memory [O(10) GB]

L2 Cache [O(10) MB]

L1 Cache / Shared Memory [O(100) KB]

Streaming Multiprocessor

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

…

…

O(1) TB/s

O(10) TB/s

Background: Principles of GPU Optimization

Global GPU Memory [O(10) GB]

L2 Cache [O(10) MB]

L1 Cache / Shared Memory [O(100) KB]

Streaming Multiprocessor

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

…

…

Minimize memory movement
between global memory (HBM) and
L2 cache (kernel fusion).

O(1) TB/s

O(10) TB/s

Background: Principles of GPU Optimization

Global GPU Memory [O(10) GB]

L2 Cache [O(10) MB]

L1 Cache / Shared Memory [O(100) KB]

Streaming Multiprocessor

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

…

…

Minimize memory movement
between global memory (HBM) and
L2 cache (kernel fusion).

Keep the streaming multiprocessors
as busy as possible (parallelization).

O(1) TB/s

O(10) TB/s

Background: Principles of GPU Optimization

Global GPU Memory [O(10) GB]

L2 Cache [O(10) MB]

L1 Cache / Shared Memory [O(100) KB]

Streaming Multiprocessor

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

Warp Scheduler

Tensor
Cores

CUDA
Cores

Register

…

…

Minimize memory movement
between global memory (HBM) and
L2 cache (kernel fusion).

Keep the streaming multiprocessors
as busy as possible (parallelization).

Use (half-precision) matmuls as
much as possible.

O(1) TB/s

O(10) TB/s

Background: FlashAttention [Dao et al. ’22, Dao ’23]

Fused attention:
Never instantitate this
in slower HBM.

[Image credit: Dao et al. ’22]

FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

Step 1: Sequential state computation

Fuse local state computation and
state passing in a single kernel to
minimize I/O cost.

FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

Step 1: Sequential state computation

Fuse local state computation and
state passing in a single kernel to
minimize I/O cost.

Step 2: Parallel output computation

Compute all chunk outputs in parallel
based on previous chunk’s state and
current chunk’s QKV blocks.

FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

4x

Our Contributions

Issue 1:
Slower than optimized
implementations of softmax
attention in practice.

Issue 2:
Underperforms softmax
attention by a significant
margin.

FlashLinearAttention
Hardware-efficient I/O-aware
implementation of linear
attention

Gated Linear Attention
Linear attention with
data-dependent “forget” gate

Simple Linear Attention

Gated Linear Attention: Data-dependent Multiplicative Gate

Gated Linear Attention: Data-dependent Multiplicative Gate

[Image credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Gated Linear Attention

Simple Linear Attention

[1 1 1]

Gated Linear Attention: Data-dependent Multiplicative Gate

Gated Linear Attention

Simple Linear Attention

Gated Linear Attention: Parallel Forms

GLA also admits a chunkwise
parallel form for subquadratic,
parallel training!

Gated Linear Attention: Decay-aware Chunkwise Parallel Form

Step 1: local state computation

Chunk 1 Chunk 2 Chunk 3

Gated Linear Attention: Decay-aware Chunkwise Parallel Form

Step 2: state passing

Chunk 1 Chunk 2 Chunk 3

Step 3: output computation

Contribution from
previous chunk.

Gated Linear Attention: Decay-aware Chunkwise Parallel Form

Gated Linear Attention: Throughput

Gated Linear Attention: Performance

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet (Linear Attention with Decay) 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

1.3B models trained on 100B tokens

Gated Linear Attention: Recall-oriented Tasks
SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K143329 B. Purpose for
Submission: To obtain clearance for a new device, Amplivue® Trichomonas Assay C. Measurand: A
conserved multi-copy sequence of Trichomonas vaginalis genomic DNA D. Type of Test: Nucleic acid
amplification assay (Helicase-dependent Amplification, HDA) E. Applicant: Quidel Corporation F.
Proprietary and Established Names: Amplivue® Trichomonas Assay G. Regulatory Information: 1.
Regulation section: 21 CFR 866.3860 2. Classification: Class II 3. Product code: OUY - Trichomonas
vaginalis nucleic acid amplification test system 4. Panel: 83 - Microbiology 2 H. Intended Use: 1.
Intended use(s): The AmpliVue® Trichomonas Assay is an in vitro diagnostic test, uses isothermal
amplification technology (helicase-dependent amplification, HDA) for the qualitative detection of
Trichomonas vaginalis nucleic acids isolated from clinician-collected vaginal swab specimens obtained
from symptomatic or asymptomatic females to aid in the diagnosis of trichomoniasis. 2. Indication(s)
for use: Same as Intended Use 3. Special conditions for use statement(s): For prescription use only
4. Special instrument requirements: None I. Device Description: The AmpliVue® Trichomonas Assay is a
self-contained disposable amplicon detection device that uses an isothermal amplification technology
named Helicase-Dependent Amplification (HDA) for the detection of Trichomonas vaginalis in
clinician-collected vaginal swabs from symptomatic and asymptomatic women. The assay targets a
conserved multi-copy sequence of the T. vaginalis genomic DNA. The vaginal swab is eluted in a lysis
tube, and the cells are lysed by heat treatment. After heat treatment, an aliquot of the lysed
specimen is transferred into a dilution tube. An aliquot of this diluted sample is then added to a
reaction tube containing a lyophilized mix of HDA reagents including primers specific for the
amplification of a…

[Arora et al. ’24]

Type of Test → Nucleic acid amplification assay
(Helicase-dependent Amplification, HDA)

Gated Linear Attention: Recall-oriented Tasks
SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K143329 B. Purpose for
Submission: To obtain clearance for a new device, Amplivue® Trichomonas Assay C. Measurand: A
conserved multi-copy sequence of Trichomonas vaginalis genomic DNA D. Type of Test: Nucleic acid
amplification assay (Helicase-dependent Amplification, HDA) E. Applicant: Quidel Corporation F.
Proprietary and Established Names: Amplivue® Trichomonas Assay G. Regulatory Information: 1.
Regulation section: 21 CFR 866.3860 2. Classification: Class II 3. Product code: OUY - Trichomonas
vaginalis nucleic acid amplification test system 4. Panel: 83 - Microbiology 2 H. Intended Use: 1.
Intended use(s): The AmpliVue® Trichomonas Assay is an in vitro diagnostic test, uses isothermal
amplification technology (helicase-dependent amplification, HDA) for the qualitative detection of
Trichomonas vaginalis nucleic acids isolated from clinician-collected vaginal swab specimens obtained
from symptomatic or asymptomatic females to aid in the diagnosis of trichomoniasis. 2. Indication(s)
for use: Same as Intended Use 3. Special conditions for use statement(s): For prescription use only
4. Special instrument requirements: None I. Device Description: The AmpliVue® Trichomonas Assay is a
self-contained disposable amplicon detection device that uses an isothermal amplification technology
named Helicase-Dependent Amplification (HDA) for the detection of Trichomonas vaginalis in
clinician-collected vaginal swabs from symptomatic and asymptomatic women. The assay targets a
conserved multi-copy sequence of the T. vaginalis genomic DNA. The vaginal swab is eluted in a lysis
tube, and the cells are lysed by heat treatment. After heat treatment, an aliquot of the lysed
specimen is transferred into a dilution tube. An aliquot of this diluted sample is then added to a
reaction tube containing a lyophilized mix of HDA reagents including primers specific for the
amplification of a…

[Arora et al. ’24]

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet (Linear Attention with Decay) 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

1.3B models trained on 100B tokens

Gated Linear Attention: Recall-oriented Tasks

Gated Linear Attention: Length Generalization

Gated Linear Attention Transformers or State-Space Models?

Gated Linear Attention

Mamba [Gu and Dao ’23]

Gated Linear Attention Transformers are State-Space Models!

Takeaways

Linear attention removes the nonlinearity in softmax attention → RNN with
matrix-valued hidden states.

Chunkwise-parallel algorithm enables wallclock-efficient linear attention.

Data-dependent gating factor improves performance of linear
Transformers

Gated linear attention Transformers are (scalable) SSMs.

Linear Transformers for Efficient Sequence Modeling

Parallelizing Linear Transformers with the
Delta Rule over Sequence Length
Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, Yoon Kim
NeurIPS ’24

Gated Linear Attention Transformers with
Hardware-Efficient Training
 Songlin Yang*, Bailin Wang*, Yikang Shen,Rameswar Panda, Yoon Kim
ICML ’24

Deficiencies of Linear Transformers / State-Space Models

[Example from: Arora et al. ’24]

Input

Multi-Query Associative Recall Task

[Example from: Arora et al. ’24]

Input

Multi-Query Associative Recall Task

Deficiencies of Linear Transformers / State-Space Models

[Example from: Arora et al. ’24]

Input

Multi-Query Associative Recall Task

Output

Deficiencies of Linear Transformers / State-Space Models

[Example from: Arora et al. ’24]

Input

Output

Multi-Query Associative Recall Task

Deficiencies of Linear Transformers / State-Space Models

(Transformers get 100% even with
small model dimensions)

Associative Memory Perspective of Linear Attention

Store “value” associated with “key” into “memory” .

Key K
Value V
Query Q

Associative Memory Perspective of Linear Attention

Store “value” associated with “key” into “memory” .

Look up value associated with “query” .

Key K
Value V
Query Q

(Reading to and writing from memory)

Associative Memory Perspective of Linear Attention

Store “value” associated with “key” into “memory” .

Look up value associated with “query” .

Key K
Value V
Query QTensor Product Variable Binding [Smolensky ’90]

(Reading to and writing from memory)

Associative Memory Perspective of Linear Attention

Store “value” associated with “key” into “memory” .

Look up value associated with “query” .

Key K
Value V
Query QTensor Product Variable Binding [Smolensky ’90]

(Reading to and writing from memory)
Issue: There is
no way to
remove/update
the memory!

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

Idea: Allow the values associated with keys to be removed/updated.

Retrieve old memory

Key, query, value vectors

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

Idea: Allow the values associated with keys to be removed/updated.

Retrieve old memory

Combine old memory with
current value vector

Key, query, value vectors

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

Idea: Allow the values associated with keys to be removed/updated.

Retrieve old memory

Combine old memory with
current value vector

Remove old memory, write
new memory

Key, query, value vectors

Get output

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

Idea: Allow the values associated with keys to be removed/updated.

Retrieve old memory

Combine old memory with
current value vector

Remove old memory, write
new memory

Key, query, value vectors

Get output

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

An application of Delta update rule
[Widrow & Hoff ’60]

Idea: Allow the values associated with keys to be removed/updated.

DeltaNet [Schlag et al. ’21]

DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q

DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q

DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q

DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q

DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q

DeltaNet Associative Recall Performance

Multi-Query Associative Recall Task

DeltaNet Issue

DeltaNet Issue

DeltaNet: Ordinary linear attention with “pseudo”-value vectors

DeltaNet Issue

DeltaNet: Ordinary linear attention with “pseudo”-value vectors

Unlike in linear attention, the pseudo value vector depends on the
previous hidden state . → Not scalable!

Parallelizing DeltaNet

DeltaNet: Ordinary linear attention with “pseudo”-value vectors

If there is an efficient way to compute , we would be good to go!

Parallelizing DeltaNet: A Simple Reparameterization

Parallelizing DeltaNet: A Simple Reparameterization

Product of generalized
Householder matrices.

Parallelizing DeltaNet: Memory-efficient Representation

→

→
Idea: Compute the pseudo-value vectors and then
just run regular linear attention.

Chunkwise Parallel Form of DeltaNet

Recurrent W/U construction

Parallelized DeltaNet: Speed

On a single H100

Parallelized DeltaNet: Speed

Parallelized DeltaNet: Performance

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

DeltaNet 16.9 51.6 34.7

DeltaNet + Sliding window attention 16.6 52.1 40.0

DeltaNet + Global attention on 2 layers 16.6 51.8 47.91.3B models trained on 100B tokens

Hybridizing DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet
Hybrid 1: Sliding window
attention every other layer

Hybridizing DeltaNet

Global Attention

DeltaNet

DeltaNet

DeltaNet

DeltaNet

DeltaNet

DeltaNet

Global Attention

DeltaNet

DeltaNet

DeltaNet

DeltaNet
Hybrid 2: Global attention
on the 2nd and middle layer

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

DeltaNet 16.9 51.6 34.7

Hybrid 1: DeltaNet + Sliding window attention 16.6 52.1 40.0

Hybrid 2: DeltaNet + Global attention on 2 layers 16.6 51.8 47.9

Hybrid DeltaNet: Performance

1.3B models trained on 100B tokens

That which we call an SSM by any other name would perform just as well…

Data-dependent
multiplicative gates

Linear Attention /
Fast Weights

Transformers

Drop
softmax

State-space Models

Structured State
Space Models (S4)

Selective state
transitions +
simplification

Discretization +
Structured
transitions

Gated Linear Attention /
Mamba {1,2}

That which we call an SSM by any other name would perform just as well…

Data-dependent
multiplicative gates

Linear Attention /
Fast Weights

Transformers

Drop
softmax

State-space Models

Structured State
Space Models (S4)

DeltaNet

Delta
rule

Discretization +
Structured
transitions

Gated Linear Attention /
Mamba {1,2}

Selective state
transitions +
simplification

That which we call an SSM by any other name would perform just as well…

Data-dependent
multiplicative gates

Linear Attention /
Fast Weights

Transformers

Drop
softmax

State-space Models

Structured State
Space Models (S4)

DeltaNet

Delta
rule

Discretization +
Structured
transitions

Test-time Training (TTT)

Use linear predictor (TTT-Linear)

Gated Linear Attention /
Mamba {1,2}

Selective state
transitions +
simplification

That which we call an SSM by any other name would perform just as well…

Data-dependent
multiplicative gates

Linear Attention /
Fast Weights

Transformers

Drop
softmax

State-space Models

Structured State
Space Models (S4)

DeltaNet

Delta
rule

Discretization +
Structured
transitions

Test-time Training (TTT)

Structured Matmuls?
Relax “identity
plus rank one”

Use linear predictor (TTT-Linear)

Gated Linear Attention /
Mamba {1,2}

Selective state
transitions +
simplification

That which we call an SSM by any other name would perform just as well…

Data-dependent
multiplicative gates

Linear Attention /
Fast Weights

Transformers

Drop
softmax

State-space Models

Structured State
Space Models (S4)

DeltaNet

Delta
rule

Discretization +
Structured
transitions

Test-time Training (TTT)

Structured Matmuls?

General Assocative Operators?

Relax “identity
plus rank one”

Use linear predictor (TTT-Linear)

Gated Linear Attention /
Mamba {1,2}

Selective state
transitions +
simplification

Takeways

Linear attention and SSMs have trouble with recall-oriented tasks → DeltaNet
operationalizes a key-value retrieval/update mechanism.

Reparameterizing DeltaNet can enable parallelization via memory-efficient
representations of Householder matrices.

Hybrid token strategies work well.

Parting thoughts

Some type of attention-like retrieval mechanism is likely necessary
for the capabilities we want in our LLMs.

Language is still probably not the most impactful domain in which
to explore subquadratic models.

Thanks!

