Linear Transformers for Efficient Sequence Modeling

Yoon Kim MIT

Attention can model rich interactions among input elements \rightarrow Important primitive for accurate sequence modeling!

Transformers for Generative AI

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com **Niki Parmar*** Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{* †} University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser*** Google Brain lukaszkaiser@google.com

Illia Polosukhin* [‡] illia.polosukhin@gmail.com

Total citations Cited by 136710

Transformers have difficulty scaling to long sequences

↔ Harry Potter series: 1M words
 ↔ Human DNA: 3.2B nucleotides

How can we maintain the **accuracy** of attention while enabling **efficient** training and inference?

Today: Linear Transformers for Efficient Sequence Modeling

Gated Linear Attention Transformers with Hardware-Efficient Training

Songlin Yang*, Bailin Wang*, Yikang Shen, Rameswar Panda, Yoon Kim ICML '24

Parallelizing Linear Transformers with the Delta Rule over Sequence Length

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, Yoon Kim NeurIPS '24

Background: Attention & Linear Attention

- L : sequence length
- d : hidden state dimension

000

- L : sequence length
- d : hidden state dimension

$$\mathbf{O} \in \mathbb{R}^{L imes d}$$
 8 8 8

$$\mathbf{O} = \operatorname{SelfAttention}(\mathbf{X})$$

- L : sequence length
- d : hidden state dimension

- L : sequence length
- d: hidden state dimension

- L : sequence length
- d : hidden state dimension

$$O(L^{2}d) \quad \mathbf{O} = \mathbf{A}\mathbf{V} \in \mathbb{R}^{L \times d}$$

$$O(L^{2}d) \quad \mathbf{A} = \operatorname{softmax}(\mathbf{Q}\mathbf{K}^{\mathsf{T}} \odot \mathbf{M}) \in \mathbb{R}^{L \times L}$$

$$O(Ld^{2}) \quad \mathbf{Q}, \mathbf{K}, \mathbf{V} = \mathbf{X}W_{Q}, \mathbf{X}W_{K}, \mathbf{X}W_{V}$$

$$Key \quad \mathbf{K}$$

$$\mathbf{X} \in \mathbb{R}^{L \times d} \quad \bigvee_{Query \quad Q}$$

Attention requires $O(L^2d + Ld^2)$ work but can be done in O(1) steps \rightarrow Parallel training that is rich in matmuls.

Training ("Parallel Form") $\mathbf{O} = \operatorname{softmax} \left((\mathbf{Q} \mathbf{K}^{\mathsf{T}}) \odot \mathbf{M} \right) \mathbf{V}$

Compute (Work)	$O(L^2)$	(FLOPs)
Memory	O(L)	(GPU memory)
Steps	O(1)	(Number of matmuls)

8

$$\frac{\exp(\boldsymbol{q}_t^{^{\mathsf{T}}} \boldsymbol{k}_j)}{\sum_{l=1}^t \exp(\boldsymbol{q}_t^{^{\mathsf{T}}} \boldsymbol{k}_l)}$$

$$oldsymbol{q}_t, \ oldsymbol{k}_t, \ oldsymbol{v}_t = oldsymbol{x}_t oldsymbol{W}_Q, \ oldsymbol{x}_t oldsymbol{W}_K, \ oldsymbol{x}_t oldsymbol{W}_V$$

KeyKValueVQueryQ

$$o_{t} = \sum_{j=1}^{t} \frac{\exp(\boldsymbol{q}_{t}^{\mathsf{T}} \boldsymbol{k}_{j})}{\sum_{l=1}^{t} \exp(\boldsymbol{q}_{t}^{\mathsf{T}} \boldsymbol{k}_{l})} \boldsymbol{v}_{j}$$

$$\boldsymbol{q}_{t}, \, \boldsymbol{k}_{t}, \, \boldsymbol{v}_{t} = \boldsymbol{x}_{t} \boldsymbol{W}_{Q}, \, \boldsymbol{x}_{t} \boldsymbol{W}_{K}, \, \boldsymbol{x}_{t} \boldsymbol{W}_{V}$$

$$\begin{array}{c} \mathsf{Key} \quad \mathsf{K} \\ \mathsf{Value} \quad \mathsf{V} \\ \mathsf{Query} \quad \mathsf{Q} \end{array}$$

y_t Attention: Generative Inference Attention Layer FFN Layer Attention Layer FFN Layer $oldsymbol{o}_t = \sum_{j=1}^t rac{\exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)}{\sum_{l=1}^t \exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_l)}oldsymbol{v}_j$ $oldsymbol{q}_t, \ oldsymbol{k}_t, \ oldsymbol{v}_t = oldsymbol{x}_t oldsymbol{W}_Q, \ oldsymbol{x}_t oldsymbol{W}_K, \ oldsymbol{x}_t oldsymbol{W}_V$ KeyKValueV

Query

Q

 y_t

$$oldsymbol{o}_t = \sum_{j=1}^t rac{\exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)}{\sum_{l=1}^t \exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_l)}oldsymbol{v}_j$$

$$oldsymbol{q}_t,\ oldsymbol{k}_t,\ oldsymbol{v}_t = oldsymbol{x}_toldsymbol{W}_Q,\ oldsymbol{x}_toldsymbol{W}_K,\ oldsymbol{x}_toldsymbol{W}_V$$

Key Κ Value V Query Q

$$oldsymbol{o}_t = \sum_{j=1}^t rac{\exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)}{\sum_{l=1}^t \exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_l)}oldsymbol{v}_j$$

$$\boldsymbol{o}_t = \sum_{j=1}^t \frac{\exp(\boldsymbol{q}_t^{^{\mathsf{T}}} \boldsymbol{k}_j)}{\sum_{l=1}^t \exp(\boldsymbol{q}_t^{^{\mathsf{T}}} \boldsymbol{k}_l)} \boldsymbol{v}_j$$

$$oldsymbol{q}_t,\ oldsymbol{k}_t,\ oldsymbol{v}_t = oldsymbol{x}_t oldsymbol{W}_Q,\ oldsymbol{x}_t oldsymbol{W}_K,\ oldsymbol{x}_t oldsymbol{W}_V$$

KeyKValueVQueryQ

$$oldsymbol{o}_t = \sum_{j=1}^t rac{\exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)}{\sum_{l=1}^t \exp(oldsymbol{q}_t^{^{ op}}oldsymbol{k}_l)}oldsymbol{v}_j$$

Need to keep around "KV-cache" that takes O(L) memory.

$$q_t, k_t, v_t = x_t W_Q, x_t W_K, x_t W_V$$

$$k_{ev} K$$

$$Value V$$

$$Query Q$$

Attention

Training ("Parallel Form")		Inference ("Recurrent Form")
$\mathbf{O} = \operatorname{softmax} \left((\mathbf{Q} \mathbf{K}^{^{T}}) \odot \mathbf{M} \right) \mathbf{V}$		$oldsymbol{o}_t = rac{\sum_{i=1}^t \exp(oldsymbol{q}_toldsymbol{k}_i^{^{\intercal}})oldsymbol{v}_i}{\sum_{i=1}^t \exp(oldsymbol{q}_toldsymbol{k}_i^{^{\intercal}})}$
Compute (Work)	$O(L^2)$	$O(L^2)$
Memory	O(L)	O(L)
Steps	O(1)	O(L)
Attention

Training ("Parallel Form")		Inference ("Recurrent Form")
$\mathbf{O} = ext{softmax} \left((\mathbf{Q} \mathbf{K}^{^{\intercal}}) \odot \mathbf{M} ight) \mathbf{V}$		$oldsymbol{o}_t = rac{\sum_{i=1}^t \exp(oldsymbol{q}_toldsymbol{k}_i^{^{ op}})oldsymbol{v}_i}{\sum_{i=1}^t \exp(oldsymbol{q}_toldsymbol{k}_i^{^{ op}})}$
Compute (Work)	$O(L^2)$ $\textcircled{:}$	$O(L^2)$ $\textcircled{:}$
Memory	O(L) $:$	O(L) S
Steps	$O(1)$ $\textcircled{\odot}$	O(L)

Attention enables scalable training of accurate sequence models, but requires:

- Quadratic compute (bad for training / inference).
- Linear memory (bad for inference).

Linear Attention ("Linear Transformers") [Katharopoulos et al. '20]

Softmax Attention

$$\mathbf{O} = \widehat{\operatorname{softmax}} \left(\left(\mathbf{Q} \mathbf{K}^{^{\mathsf{T}}} \right) \odot \mathbf{M} \right) \mathbf{V}$$

(Simple) Linear Attention

$$\mathbf{O} = \left((\mathbf{Q}\mathbf{K}^{^{\mathsf{T}}}) \odot \mathbf{M}
ight) \mathbf{V}$$

Linear Attention ("Linear Transformers") [Katharopoulos et al. '20]

Softmax Attention

(Simple) Linear Attention $\mathbf{O} = \operatorname{softmax} ((\mathbf{Q}\mathbf{K}^{\mathsf{T}}) \odot \mathbf{M}) \mathbf{V} \longrightarrow \{-\infty, 0\}^{L \times L}$ $\mathbf{O} = ((\mathbf{Q}\mathbf{K}^{\mathsf{T}}) \odot \mathbf{M}) \mathbf{V} \longrightarrow \{0, 1\}^{L \times L}$

Training ("Parallel Form")

Softmax Attention

$$\mathbf{O} = \operatorname{softmax} \left((\mathbf{Q}\mathbf{K}^{^{\mathsf{T}}}) \odot \mathbf{M} \right) \mathbf{V}$$

Training: Haven't really gained anything (yet)...

(Simple) Linear Attention

$$\mathbf{O} = \big((\mathbf{Q}\mathbf{K}^{^{\mathsf{T}}}) \odot \mathbf{M} \big) \mathbf{V}$$

Training ("Parallel Form")Inference ("Recurrent Form")Softmax
Attention $\mathbf{O} = \operatorname{softmax} \left((\mathbf{Q}\mathbf{K}^{\mathsf{T}}) \odot \mathbf{M} \right) \mathbf{V}$ $\mathbf{o}_t = \sum_{j=1}^t \frac{\exp(\mathbf{q}_t^{\mathsf{T}} \mathbf{k}_j)}{\sum_{l=1}^t \exp(\mathbf{q}_t^{\mathsf{T}} \mathbf{k}_l)} \mathbf{v}_j$

(Simple) Linear	$\mathbf{O} = ((\mathbf{OK}^{T}) \odot \mathbf{M})\mathbf{V}$	$\mathbf{p}_{t} = \sum_{i=1}^{t} (\mathbf{q}_{i}^{T} \mathbf{k}_{i}) \mathbf{q}_{i}$
Attention		$oldsymbol{D}_t = \sum_{j=1}^{r} (oldsymbol{q}_t oldsymbol{\kappa}_j) oldsymbol{D}_j$

Training ("Parallel Form") Inference ("Recurrent Form")

Softmax Attention $\mathbf{O} = \operatorname{softmax} \left((\mathbf{Q}\mathbf{K}^{\mathsf{T}}) \odot \mathbf{M} \right) \mathbf{V}$ $\mathbf{o}_{t} = \sum_{j=1}^{t} \frac{\exp(\mathbf{q}_{t}^{\mathsf{T}} \mathbf{k}_{j})}{\sum_{l=1}^{t} \exp(\mathbf{q}_{t}^{\mathsf{T}} \mathbf{k}_{l})} \mathbf{v}_{j}$

(Simple) Linear Attention

$$\mathbf{O} = \big((\mathbf{Q}\mathbf{K}^{^{\mathsf{T}}}) \odot \mathbf{M} \big) \mathbf{V}$$

$$egin{aligned} oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)oldsymbol{v}_j \end{aligned}$$

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)oldsymbol{v}_j = oldsymbol{q}_t^{^{ op}} \left(\sum_{j=1}^toldsymbol{k}_joldsymbol{v}_j^{^{ op}}
ight)$$

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{\mathsf{T}}}oldsymbol{k}_j)oldsymbol{v}_j = oldsymbol{q}_t^{^{\mathsf{T}}} \left(\sum_{j=1}^t oldsymbol{k}_j oldsymbol{v}_j^{^{\mathsf{T}}}
ight) \\ \underbrace{oldsymbol{\sum}_{j=1}^t oldsymbol{k}_j oldsymbol{v}_j^{^{\mathsf{T}}}}_{\mathbf{S}_t \in \mathbb{R}^{d imes d}}$$

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)oldsymbol{v}_j = oldsymbol{q}_t^{^{ op}} \underbrace{\left(\sum_{j=1}^toldsymbol{k}_joldsymbol{v}_j^{^{ op}}
ight)}_{\mathbf{S}_t\in\mathbb{R}^{d imes d}}$$

$$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{ op}} \ oldsymbol{o}_t &= oldsymbol{q}_t^{^{ op}} \mathbf{S}_t \end{aligned}$$

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{ op}} oldsymbol{k}_j) oldsymbol{v}_j = oldsymbol{q}_t^{^{ op}} \left(\sum_{j=1}^t oldsymbol{k}_j oldsymbol{v}_j^{^{ op}}
ight) \ oldsymbol{ ilde{S}_t \in \mathbb{R}^{d imes d}}$$

$$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}} \ oldsymbol{o}_t &= oldsymbol{q}_t^{^{\intercal}} \mathbf{S}_t \end{aligned}$$

KeyKValueVQueryQ

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{\mathsf{T}}} oldsymbol{k}_j) oldsymbol{v}_j = oldsymbol{q}_t^{^{\mathsf{T}}} \left(\sum_{j=1}^t oldsymbol{k}_j oldsymbol{v}_j^{^{\mathsf{T}}}
ight) \ oldsymbol{S}_t \in \mathbb{R}^{d imes d} \ oldsymbol{S}_t = oldsymbol{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\mathsf{T}}} \ oldsymbol{o}_t = oldsymbol{q}_t^{^{\mathsf{T}}} oldsymbol{S}_t$$

KeyKValueVQueryQ

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{\intercal}}oldsymbol{k}_j)oldsymbol{v}_j = oldsymbol{q}_t^{^{\intercal}} \left(\sum_{j=1}^t oldsymbol{k}_j oldsymbol{v}_j^{^{\intercal}}
ight) + \sum_{\mathbf{S}_t \in \mathbb{R}^{d imes d}} oldsymbol{s}_t^{^{\intercal}}$$

$$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}} \ oldsymbol{o}_t &= oldsymbol{q}_t^{^{\intercal}} \mathbf{S}_t \end{aligned}$$

8 \boldsymbol{o}_t 888 88 \mathbf{S}_t

KeyKValueVQueryQ

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{ op}}oldsymbol{k}_j)oldsymbol{v}_j = oldsymbol{q}_t^{^{ op}} \underbrace{\left(\sum_{j=1}^toldsymbol{k}_joldsymbol{v}_j^{^{ op}}
ight)}_{oldsymbol{\mathbf{S}}_t\in\mathbb{R}^{d imes d}}$$

$$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}} \ oldsymbol{o}_t &= oldsymbol{q}_t^{^{\intercal}} \mathbf{S}_t \end{aligned}$$

$$oldsymbol{o}_t = \sum_{j=1}^t (oldsymbol{q}_t^{^{ op}} oldsymbol{k}_j) oldsymbol{v}_j = oldsymbol{q}_t^{^{ op}} \left(\sum_{j=1}^t oldsymbol{k}_j oldsymbol{v}_j^{^{ op}}
ight) \ oldsymbol{S}_t \in \mathbb{R}^{d imes d} \ oldsymbol{S}_t = oldsymbol{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{ op}} \ oldsymbol{o}_t = oldsymbol{q}_t^{^{ op}} oldsymbol{S}_t$$

Linear Attention = Linear RNNs with matrix-valued hidden states \rightarrow Constant-memory inference!

KeyKValueVQueryQ

Linear Transformers are "Fast Weights"!

Using Fast Weights to Deblur Old Memories

Geoffrey E. Hinton and David C. Plaut

Computer Science Department Carnegie-Mellon University

[Hinton and Plaut '87]

LEARNING TO CONTROL FAST-WEIGHT MEMORIES: AN ALTERNATIVE TO DYNAMIC RECURRENT NETWORKS

 $(Neural \ Computation, \ 4(1):131-139, \ 1992)$

Jürgen Schmidhuber* Institut für Informatik Technische Universität München Arcisstr. 21, 8000 München 2, Germany schmidhu@tumult.informatik.tu-muenchen.de

[Schmidhuber '92]

A "slow network" changes the weights of a "fast network"

$$egin{aligned} oldsymbol{a}^{(i)}, oldsymbol{b}^{(i)} &= oldsymbol{W}_a oldsymbol{x}^{(i)}, oldsymbol{W}_b oldsymbol{x}^{(i)} \ oldsymbol{W}^{(i)} &= \sigmaig(oldsymbol{W}^{(i-1)} + oldsymbol{a}^{(i)} \otimes oldsymbol{b}^{(i)}ig) \ oldsymbol{y}^{(i)} &= oldsymbol{W}^{(i)} oldsymbol{x}^{(i)} \end{aligned}$$

Linear Attention

	Training ("Parallel Form") Inference ("Recurrent Form"	
	$\mathbf{O} = \big((\mathbf{Q}\mathbf{K}^{^{T}}) \odot \mathbf{M} \big) \mathbf{V}$	$\mathbf{S}_t = \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}} \qquad oldsymbol{o}_t = oldsymbol{q}_t^{^{\intercal}} \mathbf{S}_t$
Compute	$O(L^2)$	O(L)
Memory	O(L)	O(1) $:$
Steps	O(1)	O(L)

	Training ("Parallel Form")	Inference ("Recurrent Form")	
	$\mathbf{O} = \big((\mathbf{Q} \mathbf{K}^{^{T}}) \odot \mathbf{M} \big) \mathbf{V}$	$\mathbf{S}_t = \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}} \qquad oldsymbol{o}_t = oldsymbol{q}_t^{^{\intercal}} \mathbf{S}_t$	
Compute	$O(L^2)$ $\textcircled{:}$	O(L)	
Memory	O(L)	$O(1)$ $\textcircled{\odot}$	
Steps	O(1)	O(L)	

Why not use the recurrent form for training?

	Training ("Parallel Form")	Inference ("Recurrent Form")
	$\mathbf{O} = \big((\mathbf{Q} \mathbf{K}^{^{T}}) \odot \mathbf{M} \big) \mathbf{V}$	$\mathbf{S}_t = \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}} \qquad oldsymbol{o}_t = oldsymbol{q}_t^{^{\intercal}} \mathbf{S}_t$
Compute	$O(L^2)$ $\textcircled{:}$	O(L)
Memory	O(L)	$O(1)$ $\textcircled{\odot}$
Steps	O(1)	O(L) $:$

• Strict sequential computation (no sequence-level parallelism).

Linear Attention: Naive Parallel Form

- Strict sequential computation (no sequence-level parallelism).
- All operations are either elementwise operations or reductions → cannot leverage tensor cores.

- Strict sequential computation (no sequence-level parallelism).
- All operations are either elementwise operations or reductions \rightarrow cannot leverage tensor cores.
- Materialization of each time step's hidden states \rightarrow High I/O cost.

Pure RNN

Step 3: output computation

Step 3: output computation

Contribution from previous chunk. $\mathbf{O}_{[i+1]} = \mathbf{Q}_{[i+1]} \mathbf{S}_{[i]} + ((\mathbf{Q}_{[i+1]} \mathbf{K}_{[i+1]}^{\mathsf{T}}) \odot \mathbf{M}) \mathbf{V}_{[i+1]}$

Contribution from current chunk.

	Fully Parallel Form	Chunkwise Parallel Form	Fully Recurrent Form
Compute	$O(L^2)$	O(LC)	O(L)
Memory	O(L)	O(C)	O(1)
Steps	O(1)	$O\left(rac{L}{C} ight)$	O(L)

Chunkwise parallel form interpolates between fully parallel and recurrent forms.

- $C = L \rightarrow$ Fully parallel form
- $C = 1 \rightarrow$ Fully recurrent form

	Fully Parallel Form	Chunkwise Parallel Form	Fully Recurrent Form
Compute	$O(L^2)$	$O(LC)$ $\textcircled{\odot}$	O(L)
Memory	O(L)	O(C)	$O(1)$ $\textcircled{\odot}$
Steps	O(1)	$\boxed{O\left(\frac{L}{C}\right) \textcircled{s}}$	O(L)

Chunkwise parallel form interpolates between fully parallel and recurrent forms.

- $C = L \rightarrow$ Fully parallel form
- $C = 1 \rightarrow$ Fully recurrent form

Linear Attention: Issues

Issue 1:

Slower than optimized implementations of softmax attention in practice.

Linear Attention: Issues

ssue 2:	
Underperforms softmax	
attention by a significant	
margin.	

Model	PPL↓	LM Eval↑
Softmax attention	16.9	50.9
Linear attention with decay (RetNet) $\mathbf{S}_t = \gamma \mathbf{S}_{t-1} + \mathbf{k}_t \mathbf{v}_t^{^{T}}$	18.6	48.9

Linear Transformers for Efficient Sequence Modeling

Gated Linear Attention Transformers with Hardware-Efficient Training

Songlin Yang*, Bailin Wang*, Yikang Shen, Rameswar Panda, Yoon Kim ICML '24

Parallelizing Linear Transformers with the Delta Rule over Sequence Length

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, Yoon Kim NeurIPS '24

Our Contributions

Issue 1:

Slower than optimized implementations of softmax attention in practice.

FlashLinearAttention Hardware-officient I/O-

Hardware-efficient I/O-aware implementation of linear attention

Issue 2:

Underperforms softmax attention by a significant margin.

Gated Linear Attention

Linear attention with data-dependent "forget" gate

Our Contributions

Issue 1:

Slower than optimized implementations of softmax attention in practice.

FlashLinearAttention

Hardware-efficient I/O-aware implementation of linear attention

Issue 2:

Underperforms softmax attention by a significant margin.

Gated Linear Attention Linear attention with data-dependent "forget" gate

Background: Principles of GPU Optimization

Background: Principles of GPU Optimization

...

Minimize memory movement between global memory (HBM) and L2 cache (kernel fusion).
Background: Principles of GPU Optimization

Keep the streaming multiprocessors as busy as possible (parallelization).

Minimize memory movement between global memory (HBM) and L2 cache (kernel fusion).

Background: Principles of GPU Optimization

Use (half-precision) matmuls as much as possible.

Keep the streaming multiprocessors as busy as possible (parallelization).

Minimize memory movement between global memory (HBM) and L2 cache (kernel fusion).

...

Background: FlashAttention [Dao et al. '22, Dao '23]

FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

Step 1: Sequential state computation

Fuse local state computation and state passing in a single kernel to minimize I/O cost.

FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

Step 1: Sequential state computation

Fuse local state computation and state passing in a single kernel to minimize I/O cost.

Step 2: Parallel output computation

Compute all chunk outputs in parallel based on previous chunk's state and current chunk's QKV blocks.

FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

Flash Linear Attention

Hub | Discord

This repo aims at providing a collection of efficient Triton-based implementations for state-of-the-art linear attention models.

Date	Model	Title	Paper	Code	FLA impl
2023- 07	RetNet (@MSRA@THU)	Retentive network: a successor to transformer for large language models	[arxiv]	[official] [RetNet]	<u>code</u>
2023- 12	GLA (@MIT@IBM)	Gated Linear Attention Transformers with Hardware-Efficient Training	[arxiv]	[official]	<u>code</u>
2023- 12	Based (@Stanford@Hazyresearch)	An Educational and Effective Sequence Mixer	[blog]	[official]	<u>code</u>
2024- 01	Rebased	Linear Transformers with Learnable Kernel Functions are Better In-Context Models	[arxiv]	[official]	<u>code</u>
2021- 02	Delta Net	Linear Transformers Are Secretly Fast Weight Programmers	[arxiv]	[official]	<u>code</u>
2021- 10	ABC (@UW)	Attention with Bounded- memory Control	arxiv		<u>code</u>
2023- 09	HGRN	Hierarchically Gated Recurrent Neural Network for Sequence Modeling	openreview	[official]	code

Date	Model	Title	Paper	Code	FLA impl
2023- 09	HGRN	Hierarchically Gated Recurrent Neural Network for Sequence Modeling	openreview	[official]	<u>code</u>
2024- 04	HGRN2	HGRN2: Gated Linear RNNs with State Expansion	arxiv	[official]	<u>code</u>
2024- 04	RWKV6	Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence	arxiv	[official]	<u>code</u>
2024- 06	Samba	Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling	arxiv	[official]	<u>code</u>
2024- 05	Mamba2	Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality	arxiv	[official]	<u>code</u>
2024- 09	GSA	Gated Slot Attention for Efficient Linear-Time Sequence Modeling	arxiv	[official]	<u>code</u>

Our Contributions

Issue 1:

Slower than optimized implementations of softmax attention in practice.

FlashLinearAttention Hardware-efficient I/O-aware implementation of linear attention

Issue 2:

Underperforms softmax attention by a significant margin.

Gated Linear Attention

Linear attention with data-dependent "forget" gate

Gated Linear Attention: Data-dependent Multiplicative Gate

Simple Linear Attention

$$\mathbf{S}_t = \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}}$$

Gated Linear Attention: Data-dependent Multiplicative Gate

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

[Image credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/]

Gated Linear Attention: Data-dependent Multiplicative Gate

Simple Linear Attention

$$\mathbf{S}_t = \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}}$$

Gated Linear Attention

$$\begin{split} \mathbf{S}_t &= \mathbf{G}_t \odot \mathbf{S}_{t-1} + \boldsymbol{k}_t \boldsymbol{v}_t^{\mathsf{T}} \\ \mathbf{G}_t &= \boldsymbol{\alpha}_t \, \mathbf{1},^{\mathsf{T}} \ \boldsymbol{\alpha}_t = \sigma (\boldsymbol{x}_t \boldsymbol{W}_{\alpha_1} \boldsymbol{W}_{\alpha_2})^{\frac{1}{\tau}} \end{split}$$

Gated Linear Attention: Parallel Forms

Simple Linear Attention

$$\mathbf{O} = \left((\mathbf{Q}\mathbf{K}^{^{\mathsf{T}}}) \odot \mathbf{M} \right) \mathbf{V}$$

GLA also admits a chunkwise parallel form for subquadratic, parallel training!

Gated Linear Attention

$$\mathbf{O} = \left(\left(\underbrace{(\mathbf{Q} \odot \mathbf{B}) \left(\frac{\mathbf{K}}{\mathbf{B}} \right)^{\top}}_{\mathbf{P}} \right) \odot \mathbf{M} \right) \mathbf{V} \quad \begin{array}{c} \mathbf{B}_{t} \coloneqq = \prod_{j=1}^{t} \alpha_{j} \\ \mathbf{P}_{ij} = \sum_{k=1}^{d} \mathbf{Q}_{ik} \mathbf{K}_{jk} \exp(\log \mathbf{B}_{ik} - \log \mathbf{B}_{jk}) \end{array} \right)$$

Gated Linear Attention: Decay-aware Chunkwise Parallel Form

Gated Linear Attention: Decay-aware Chunkwise Parallel Form $oldsymbol{\Lambda}_{iC+j} \!=\! rac{oldsymbol{b}_{iC+j}}{oldsymbol{b}_{iC}}, \! \Gamma_{iC+j} \!=\! rac{oldsymbol{b}_{(i+1)C}}{oldsymbol{b}_{iC+j}}, \! \gamma_{i+1} \!=\! rac{oldsymbol{b}_{(i+1)C}}{oldsymbol{b}_{iC}},$ Step 2: state passing $\mathbf{S}_{[i+1]} = \left(\boldsymbol{\gamma}_{i+1}^{\top} \mathbf{1}\right) \odot \mathbf{S}_{[i]} + \left(\mathbf{K}_{[i+1]} \odot \boldsymbol{\Gamma}_{[i+1]}\right)^{\top} \mathbf{V}_{[i+1]},$ $\mathbf{O}_{[i+1]}^{\text{inter}} = (\mathbf{Q}_{[i+1]} \odot \mathbf{\Lambda}_{[i+1]}) \mathbf{S}_{[i]}.$ Chunk 1 Chunk 2 Chunk 3 $\mathbf{S}_{[2]}$ $\mathbf{S}_{[1]}$ $\mathbf{S}_{[3]}$ $a_7 \cdot a_8 \cdot a_9$ $a_4 \cdot a_5 \cdot a_6$ 888

Gated Linear Attention: Decay-aware Chunkwise Parallel Form

Gated Linear Attention: Throughput

Training throughput

Model	PPL↓	LM Eval †
Transformer++	16.9	50.9
RetNet (Linear Attention with Decay)	18.6	48.9
Mamba	17.1	50.0
Gated Linear Attention	17.2	51.1

1.3B models trained on 100B tokens

Gated Linear Attention: Recall-oriented Tasks

SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K143329 B. Purpose for Submission: To obtain clearance for a new device, Amplivue® Trichomonas Assay C. Measurand: A conserved multi-copy sequence of Trichomonas vaginalis genomic DNA D. Type of Test: Nucleic acid amplification assay (Helicase-dependent Amplification, HDA) E. Applicant: Quidel Corporation F. Proprietary and Established Names: Amplivue® Trichomonas Assay G. Regulatory Information: 1. Regulation section: 21 CFR 866.3860 2. Classification: Class II 3. Product code: OUY - Trichomonas vaginalis nucleic acid amplification test system 4. Panel: 83 - Microbiology 2 H. Intended Use: 1. Intended use(s): The AmpliVue[®] Trichomonas Assay is an in vitro diagnostic test, uses isothermal amplification technology (helicase-dependent amplification, HDA) for the qualitative detection of Trichomonas vaginalis nucleic acids isolated from clinician-collected vaginal swab specimens obtained from symptomatic or asymptomatic females to aid in the diagnosis of trichomoniasis. 2. Indication(s) for use: Same as Intended Use 3. Special conditions for use statement(s): For prescription use only 4. Special instrument requirements: None I. Device Description: The AmpliVue® Trichomonas Assay is a self-contained disposable amplicon detection device that uses an isothermal amplification technology named Helicase-Dependent Amplification (HDA) for the detection of Trichomonas vaginalis in clinician-collected vaginal swabs from symptomatic and asymptomatic women. The assay targets a conserved multi-copy sequence of the T. vaginalis genomic DNA. The vaginal swab is eluted in a lysis tube, and the cells are lysed by heat treatment. After heat treatment, an aliquot of the lysed specimen is transferred into a dilution tube. An aliquot of this diluted sample is then added to a reaction tube containing a lyophilized mix of HDA reagents including primers specific for the amplification of a...

Gated Linear Attention: Recall-oriented Tasks

SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K143329 B. Purpose for Submission: To obtain clearance for a new device, Amplivue® Trichomonas Assay C. Measurand: A conserved multi-copy sequence of Trichomonas vaginalis genomic DNA D. Type of Test: Nucleic acid amplification assay (Helicase-dependent Amplification, HDA) E. Applicant: Quidel Corporation F. Proprietary and Established Names: Amplivue[®] Trichomonas Assay G. Regulatory Information: 1. Regulation section: 21 CFR 866.3860 2. Classification: Class II 3. Product code: OUY - Trichomonas vaginalis nucleic acid amplification test system 4. Panel: 83 - Microbiology 2 H. Intended Use: 1. Intended use(s): The AmpliVue[®] Trichomonas Assay is an in vitro diagnostic test, uses isothermal amplification technology (helicase-dependent amplification, HDA) for the qualitative detection of Trichomonas vaginalis nucleic acids isolated from clinician-collected vaginal swab specimens obtained from symptomatic or asymptomatic females to aid in the diagnosis of trichomoniasis. 2. Indication(s) for use: Same as Intended Use 3. Special conditions for use statement(s): For prescription use only 4. Special instrument requirements: None I. Device Description: The AmpliVue® Trichomonas Assay is a self-contained disposable amplicon detection device that uses an isothermal amplification technology named Helicase-Dependent Amplification (HDA) for the detection of Trichomonas vaginalis in clinician-collected vaginal swabs from symptomatic and asymptomatic women. The assay targets a conserved multi-copy sequence of the T. vaginalis genomic DNA. The vaginal swab is eluted in a lysis tube, and the cells are lysed by heat treatment. After heat treatment, an aliquot of the lysed specimen is transferred into a dilution tube. An aliquot of this diluted sample is then added to a reaction tube containing a lyophilized mix of HDA reagents including primers specific for the amplification of a...

Type of Test → Nucleic acid amplification assay (Helicase-dependent Amplification, HDA)

[Arora et al. '24]

Gated Linear Attention: Recall-oriented Tasks

Model	PPL↓	LM Eval †	Retrieval †
Transformer++	16.9	50.9	41.8
RetNet (Linear Attention with Decay)	18.6	48.9	30.6
Mamba	17.1	50.0	27.6
Gated Linear Attention	17.2	51.1	37.7

1.3B models trained on 100B tokens

Gated Linear Attention: Length Generalization

Gated Linear Attention Transformers or State-Space Models?

Gated Linear Attention
$$\mathbf{S}_t = \mathbf{G}_t \odot \mathbf{S}_{t-1} + \mathbf{k}_t \mathbf{v}_t^{T}$$

Mamba [Gu and Dao '23]

$$\begin{aligned} h'(t) &= Ah(t) + Bx(t) \quad (1a) \\ y(t) &= Ch(t) \end{aligned} \qquad \begin{aligned} h_t &= \overline{A}h_{t-1} + \overline{B}x_t \quad (2a) \\ y_t &= Ch_t \end{aligned} \qquad \begin{aligned} \overline{K} &= (C\overline{B}, C\overline{AB}, \dots, C\overline{A}^{\kappa}\overline{B}, \dots) \\ y &= x * \overline{K} \end{aligned}$$

 $\overline{A} = \exp(\Delta A)$ $\overline{B} = (\Delta A)^{-1}(\exp(\Delta A) - I) \cdot \Delta B$

Algorithm 1 SSM (S4)	Algorithm 2 SSM + Selection (S6)		
$\overline{\text{Input: } x: (B, L, D)}$	- Input: <i>x</i> : (B, L, D)		
Output: <i>y</i> : (B, L, D)	Output: $y : (B, L, D)$		
1: $A : (D, N) \leftarrow Parameter$	1: $A : (D, N) \leftarrow Parameter$		
▷ Represents structured $N \times N$ matrix	▷ Represents structured $N \times N$ matrix		
2: \boldsymbol{B} : (D, N) \leftarrow Parameter	2: $B: (B, L, N) \leftarrow s_B(x)$		
3: $C : (D, N) \leftarrow Parameter$	3: $C: (B, L, N) \leftarrow s_C(x)$		
4: Δ : (D) $\leftarrow \tau_{\Delta}$ (Parameter)	4: Δ : (B, L, D) $\leftarrow \tau_{\Delta}(\text{Parameter}+s_{\Delta}(x))$		
5: $\overline{A}, \overline{B} : (D, N) \leftarrow \text{discretize}(\Delta, A, B)$	5: $\overline{A}, \overline{B} : (B, L, D, N) \leftarrow \text{discretize}(\Delta, A, B)$		
6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$	6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$		
Time-invariant: recurrence or convolution	Time-varying: recurrence (scan) only		
7: return <i>y</i>	7: return <i>y</i>		

Gated Linear Attention Transformers **are** State-Space Models!

$$\mathbf{S}_t = \mathbf{G}_t \odot \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}}$$

Model	Parameterization
Mamba [Gu & Dao 2023]	$\mathbf{G}_t = \exp(-(1oldsymbol{lpha}_t^{^{T}}) \odot \exp(oldsymbol{A})), \ oldsymbol{lpha}_t = ext{softplus}(oldsymbol{x}_toldsymbol{W}_{lpha_1}oldsymbol{W}_{lpha_2})$
Mamba-2 [Dao & Gu 2024]	$\mathbf{G}_t = \gamma_t 1 1^{^{ op}}, \gamma_t = \exp\left(-\operatorname{softplus}\left(oldsymbol{x}_t oldsymbol{W}_\gamma ight) \exp\left(a ight) ight)$
xLSTM [Beck et al. 2024]	$\mathbf{G}_t = \gamma_t 1 1^{^{ op}}, \hspace{1em} \gamma_t = \sigma \left(oldsymbol{x}_t oldsymbol{W}_\gamma ight)$
GLA [Yang et al. 2023]	$\mathbf{G}_t = oldsymbol{lpha}_t 1^{^{ op}}, oldsymbol{lpha}_t = \sigma \left(oldsymbol{x}_t oldsymbol{W}_{lpha_1} oldsymbol{W}_{lpha_2} ight)^{rac{1}{ au}}$
Gated RetNet [Sun et al. 2024]	$\mathbf{G}_t = \gamma_t 1 1^{^{\intercal}}, \gamma_t = \sigma \left(oldsymbol{x}_t oldsymbol{W}_\gamma ight)^{rac{1}{ au}}$
HGRN-2 [Qin et al. 2024]	$\mathbf{G}_t = oldsymbol{lpha}_t 1^{^{ op}}, oldsymbol{lpha}_t = oldsymbol{\gamma} + (1 - oldsymbol{\gamma}) \sigma(oldsymbol{x}_t oldsymbol{W}_lpha)$
RWKV-6 [Peng et al. 2024]	$\mathbf{G}_t = \boldsymbol{lpha}_t 1^{^{\!$
Gated RFA [Peng et al. 2021]	$\mathbf{G}_t = \gamma_t 1 1^{^{ op}}, \hspace{1em} \gamma_t = \sigma \left(oldsymbol{x}_t oldsymbol{W}_\gamma ight)$
Decaying FW [Mao et al. 2022]	$\mathbf{G}_t = oldsymbol{lpha}_t oldsymbol{eta}_t^{^{ op}}, oldsymbol{lpha}_t = \sigma\left(oldsymbol{x}_t oldsymbol{W}_lpha ight), oldsymbol{eta}_t = \sigma\left(oldsymbol{x}_t oldsymbol{W}_eta ight)$

Linear attention removes the nonlinearity in softmax attention \rightarrow RNN with matrix-valued hidden states.

Chunkwise-parallel algorithm enables wallclock-efficient linear attention.

Data-dependent gating factor improves performance of linear Transformers

Gated linear attention Transformers are (scalable) SSMs.

Linear Transformers for Efficient Sequence Modeling

Gated Linear Attention Transformers with Hardware-Efficient Training

Songlin Yang*, Bailin Wang*, Yikang Shen, Rameswar Panda, Yoon Kim ICML '24

Parallelizing Linear Transformers with the Delta Rule over Sequence Length

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, Yoon Kim NeurIPS '24

Multi-Query Associative Recall Task

Input

A 4 B 3 C 6 F 1 E 2 \rightarrow A ? C ? F ? E ? B ?

Multi-Query Associative Recall Task

Input

 $\begin{array}{c} A \ 4 \ B \ 3 \ C \ 6 \underbrace{F \ 1}_{\textbf{Key-Value}} E \ 2 \rightarrow A \ ? \ C \ ? \underbrace{F \ ? }_{\textbf{Query}} E \ ? \ B \ ? \\ \end{array}$

Multi-Query Associative Recall Task

Input A $4 \text{ B} 3 \text{ C} 6 \text{ F} 1 \text{ E} 2 \rightarrow \text{A} ? \text{C} ? \text{F} ? \text{E} ? \text{B} ?$

Output

 $4,\,6,\,1,\,2,\,3$

Multi-Query Associative Recall Task

Input

A 4 B 3 C 6 F 1 E 2 \rightarrow A ? C ? F ? E ? B ?

Output

 $4,\,6,\,1,\,2,\,3$

 $\mathbf{S}_t = \mathbf{S}_{t-1} + oldsymbol{k}_t oldsymbol{v}_t^{^{\intercal}}$ Store "value" $oldsymbol{v}_t$ associated with "key" $oldsymbol{k}_t$ into "memory" \mathbf{S}_{t-1} .

 $\mathbf{S}_t = \mathbf{S}_{t-1} + \mathbf{k}_t \mathbf{v}_t^{\mathsf{T}}$ Store "value" \mathbf{v}_t associated with "key" \mathbf{k}_t into "memory" \mathbf{S}_{t-1} . $\mathbf{o}_t = \mathbf{q}_t^{\mathsf{T}} \mathbf{S}_t$ Look up value associated with "query" \mathbf{q}_t .

(Reading to and writing from memory)

 $\mathbf{S}_t = \mathbf{S}_{t-1} + \mathbf{k}_t \mathbf{v}_t^{\mathsf{T}}$ Store "value" \mathbf{v}_t associated with "key" \mathbf{k}_t into "memory" \mathbf{S}_{t-1} . $\mathbf{o}_t = \mathbf{q}_t^{\mathsf{T}} \mathbf{S}_t$ Look up value associated with "query" \mathbf{q}_t .

(Reading to and writing from memory)

Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems

> Paul Smolensky Department of Computer Science and Institute of Cognitive Science, University of Colorado, Boulder, CO 80309-0430, USA

Tensor Product Variable Binding [Smolensky '90]

 $\mathbf{S}_t = \mathbf{S}_{t-1} + \mathbf{k}_t \mathbf{v}_t^{\mathsf{T}}$ Store "value" \mathbf{v}_t associated with "key" \mathbf{k}_t into "memory" \mathbf{S}_{t-1} . $\mathbf{o}_t = \mathbf{q}_t^{\mathsf{T}} \mathbf{S}_t$ Look up value associated with "query" \mathbf{q}_t .

 \mathbf{S}_t

(Reading to and writing from memory)

Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems

> Paul Smolensky Department of Computer Science and Institute of Cognitive Science, University of Colorado, Boulder, CO 80309-0430, USA

Tensor Product Variable Binding [Smolensky '90]

Issue: There is no way to remove/update the memory!

Kev

Value

Querv

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. '21]

Idea: Allow the values associated with keys to be removed/updated.

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. '21]

Idea: Allow the values associated with keys to be removed/updated.

Key, query, value vectors

Retrieve old memory

$$egin{aligned} oldsymbol{q}_t, \, oldsymbol{k}_t, \, oldsymbol{v}_t = oldsymbol{W}_Q oldsymbol{x}_t, oldsymbol{W}_K oldsymbol{x}_t, oldsymbol{W}_V oldsymbol{x}_t \ oldsymbol{v}_t^{ ext{old}} \, = \, oldsymbol{S}_{t-1} oldsymbol{k}_t \end{aligned}$$

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. '21]

Idea: Allow the values associated with keys to be removed/updated.

Key, query, value vectors

Retrieve old memory

Combine old memory with current value vector

$$egin{aligned} m{q}_t, \ m{k}_t, \ m{v}_t &= m{W}_Q m{x}_t, m{W}_K m{x}_t, m{W}_V m{x}_t \ m{v}_t^{ ext{old}} &= m{S}_{t-1} m{k}_t \ m{v}_t^{ ext{new}} &= m{eta}_t m{v}_t + (1 - m{eta}_t) \ m{v}_t^{ ext{old}} \ m{eta}_t \ m{eta}_t &= \sigma(m{W}_eta m{x}_t) \in (0,1) \end{aligned}$$
DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. '21]

Idea: Allow the values associated with keys to be removed/updated.

Key, query, value vectors

Retrieve old memory

Combine old memory with current value vector

Remove old memory, write new memory

Get output

 $oldsymbol{q}_t, \, oldsymbol{k}_t, \, oldsymbol{v}_t = oldsymbol{W}_Q oldsymbol{x}_t, oldsymbol{W}_K oldsymbol{x}_t, oldsymbol{W}_V oldsymbol{x}_t$ $oldsymbol{v}_t^{ ext{old}} \, = \, oldsymbol{S}_{t-1} oldsymbol{k}_t$

$$\boldsymbol{v}_t^{\text{new}} = \beta_t \boldsymbol{v}_t + (1 - \beta_t) \, \boldsymbol{v}_t^{\text{old}}$$

$$\mathbf{S}_t = \mathbf{S}_{t-1} \underbrace{- v_t^{\mathrm{old}} \boldsymbol{k}_t^{\mathsf{T}}}_{\mathrm{remove}} \underbrace{+ v_t^{\mathrm{new}} \boldsymbol{k}_t^{\mathsf{T}}}_{\mathrm{write}}$$

 $oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. '21]

Idea: Allow the values associated with keys to be removed/updated.

Key, query, value vectors

Retrieve old memory

Combine old memory with current value vector

Remove old memory, write new memory

Get output

$$oldsymbol{q}_t, \, oldsymbol{k}_t, \, oldsymbol{v}_t = oldsymbol{W}_Q oldsymbol{x}_t, oldsymbol{W}_K oldsymbol{x}_t, oldsymbol{W}_V oldsymbol{x}_t$$
 $oldsymbol{v}_t^{ ext{old}} \, = \, oldsymbol{S}_{t-1} oldsymbol{k}_t$

$$\boldsymbol{v}_t^{\text{new}} = \beta_t \boldsymbol{v}_t + (1 - \beta_t) \, \boldsymbol{v}_t^{\text{old}}$$

$$\mathbf{S}_{t} = \mathbf{S}_{t-1} \underbrace{-\boldsymbol{v}_{t}^{\text{old}} \boldsymbol{k}_{t}^{\mathsf{T}}}_{\text{remove}} \underbrace{+\boldsymbol{v}_{t}^{\text{new}} \boldsymbol{k}_{t}^{\mathsf{T}}}_{\text{write}}$$

 $oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$

 $\mathbf{S}_t = \mathbf{S}_{t-1} + \beta_t (\boldsymbol{v}_t - \boldsymbol{v}_t^{\text{old}}) \boldsymbol{k}_t^{\mathsf{T}} \qquad \text{An application of Delta update rule} \\ \text{[Widrow & Hoff '60]} \end{cases}$

$$oldsymbol{q}_t, \ oldsymbol{k}_t, \ oldsymbol{v}_t = oldsymbol{W}_Q oldsymbol{x}_t, oldsymbol{W}_K oldsymbol{x}_t, oldsymbol{W}_V oldsymbol{x}_t$$
 $eta_t = \sigma(oldsymbol{W}_eta oldsymbol{x}_t) \in (0, 1)$

$$egin{aligned} oldsymbol{v}_t^{ ext{old}} &= \mathbf{S}_{t-1}oldsymbol{k}_t \ oldsymbol{q}_t, \ oldsymbol{k}_t, \ oldsymbol{v}_t &= oldsymbol{W}_Qoldsymbol{x}_t, oldsymbol{W}_Koldsymbol{x}_t, oldsymbol{W}_Koldsymbol{x}_t, oldsymbol{W}_Voldsymbol{x}_t \ eta_t &= \sigma(\mathbf{W}_etaoldsymbol{x}_t) \in (0,1) \end{aligned}$$

$$oldsymbol{v}_t^{ ext{new}} = eta_t oldsymbol{v}_t + (1 - eta_t) oldsymbol{v}_t^{ ext{old}}$$

 $oldsymbol{v}_t^{ ext{old}} = oldsymbol{S}_{t-1} oldsymbol{k}_t$
 $oldsymbol{q}_t, oldsymbol{k}_t, oldsymbol{v}_t = oldsymbol{W}_Q oldsymbol{x}_t, oldsymbol{W}_K oldsymbol{x}_t, oldsymbol{W}_V oldsymbol{x}_t$
 $eta_t = \sigma(oldsymbol{W}_eta oldsymbol{x}_t) \in (0, 1)$

$$\begin{split} \mathbf{S}_{t} &= \mathbf{S}_{t-1} \underbrace{-\boldsymbol{v}_{t}^{\text{old}} \boldsymbol{k}_{t}^{\mathsf{T}}}_{\text{remove}} \underbrace{+\boldsymbol{v}_{t}^{\text{new}} \boldsymbol{k}_{t}^{\mathsf{T}}}_{\text{write}} \\ \boldsymbol{v}_{t}^{\text{new}} &= \beta_{t} \boldsymbol{v}_{t} + (1 - \beta_{t}) \, \boldsymbol{v}_{t}^{\text{old}} \\ \boldsymbol{v}_{t}^{\text{old}} &= \mathbf{S}_{t-1} \boldsymbol{k}_{t} \\ \boldsymbol{q}_{t}, \, \boldsymbol{k}_{t}, \, \boldsymbol{v}_{t} &= \boldsymbol{W}_{Q} \boldsymbol{x}_{t}, \boldsymbol{W}_{K} \boldsymbol{x}_{t}, \boldsymbol{W}_{V} \boldsymbol{x}_{t} \\ \beta_{t} &= \sigma(\mathbf{W}_{\beta} \boldsymbol{x}_{t}) \in (0, 1) \end{split}$$

 $oldsymbol{o}_t = \mathbf{S}_t oldsymbol{q}_t$

$$\begin{split} \mathbf{S}_{t} &= \mathbf{S}_{t-1} \underbrace{-\boldsymbol{v}_{t}^{\text{old}} \boldsymbol{k}_{t}^{\mathsf{T}}}_{\text{remove}} \underbrace{+\boldsymbol{v}_{t}^{\text{new}} \boldsymbol{k}_{t}^{\mathsf{T}}}_{\text{write}} \\ \boldsymbol{v}_{t}^{\text{new}} &= \beta_{t} \boldsymbol{v}_{t} + (1 - \beta_{t}) \, \boldsymbol{v}_{t}^{\text{old}} \\ \boldsymbol{v}_{t}^{\text{old}} &= \mathbf{S}_{t-1} \boldsymbol{k}_{t} \\ \boldsymbol{q}_{t}, \, \boldsymbol{k}_{t}, \, \boldsymbol{v}_{t} &= \boldsymbol{W}_{Q} \boldsymbol{x}_{t}, \boldsymbol{W}_{K} \boldsymbol{x}_{t}, \boldsymbol{W}_{V} \boldsymbol{x}_{t} \\ \beta_{t} &= \sigma(\mathbf{W}_{\beta} \boldsymbol{x}_{t}) \in (0, 1) \end{split}$$

DeltaNet Associative Recall Performance

Multi-Query Associative Recall Task

100 ---- DeltaNet 75 Accuracy (%) ---- Mamba 50 ----- RetNet 25 ---- Hyena 0 64 128 256 512 Model dimension

Sequence Length: 512, Key-Value Pairs: 64

DeltaNet Issue

$$\begin{bmatrix} \boldsymbol{v}_t^{\text{old}} = \mathbf{S}_{t-1} \boldsymbol{k}_t \\ \boldsymbol{v}_t^{\text{new}} = \beta_t \boldsymbol{v}_t + (1 - \beta_t) \, \boldsymbol{v}_t^{\text{old}} \end{bmatrix} \longrightarrow \boldsymbol{u}_t = \boldsymbol{v}_t^{\text{new}} - \boldsymbol{v}_t^{\text{old}}$$

DeltaNet Issue

 $\mathbf{O} = \left(\mathbf{Q} \mathbf{K}^{^{\mathsf{T}}} \odot \mathbf{M} \right) \mathbf{U}$

DeltaNet: Ordinary linear attention with "pseudo"-value vectors $\mathbf{U} = [\mathbf{u}_1; \ldots; \mathbf{u}_L]$

DeltaNet Issue

 $\mathbf{O} = \left(\mathbf{Q} \mathbf{K}^{^{\mathsf{T}}} \odot \mathbf{M} \right) \mathbf{U}$

DeltaNet: Ordinary linear attention with "pseudo"-value vectors $\mathbf{U} = [\boldsymbol{u}_1; \ldots; \boldsymbol{u}_L]$

Unlike in linear attention, the pseudo value vector u_t depends on the previous hidden state S_{t-1} . \rightarrow Not scalable!

Parallelizing DeltaNet

$$\mathbf{O} = \left(\mathbf{Q} \mathbf{K}^{^{\mathsf{T}}} \odot \mathbf{M} \right) \mathbf{U}$$

DeltaNet: Ordinary linear attention with "pseudo"-value vectors $\mathbf{U} = [\boldsymbol{u}_1; \ldots; \boldsymbol{u}_L]$

If there is an efficient way to compute $\ U$, we would be good to go!

Parallelizing DeltaNet: A Simple Reparameterization

$$\begin{split} \mathbf{S}_t &= \mathbf{S}_{t-1} - \boldsymbol{v}_t^{\text{old}} \boldsymbol{k}_t^{^{\mathsf{T}}} + \boldsymbol{v}_t^{\text{new}} \boldsymbol{k}_t^{^{\mathsf{T}}} \\ &= \mathbf{S}_{t-1} (\mathbf{I} - \beta_t \boldsymbol{k}_t \boldsymbol{k}_t^{^{\mathsf{T}}}) + \beta_t \boldsymbol{v}_t \boldsymbol{k}_t^{^{\mathsf{T}}} \\ &= \sum_{i=1}^t \beta_i (\boldsymbol{v}_i \boldsymbol{k}_i^{^{\mathsf{T}}}) \left(\prod_{j=i+1}^t (\mathbf{I} - \beta_j \boldsymbol{k}_j \boldsymbol{k}_j^{^{\mathsf{T}}}) \right) \end{split}$$

Parallelizing DeltaNet: A Simple Reparameterization

$$\begin{split} \mathbf{S}_{t} &= \mathbf{S}_{t-1} - \boldsymbol{v}_{t}^{\text{old}} \boldsymbol{k}_{t}^{^{\mathsf{T}}} + \boldsymbol{v}_{t}^{\text{new}} \boldsymbol{k}_{t}^{^{\mathsf{T}}} \\ &= \mathbf{S}_{t-1} (\mathbf{I} - \beta_{t} \boldsymbol{k}_{t} \boldsymbol{k}_{t}^{^{\mathsf{T}}}) + \beta_{t} \boldsymbol{v}_{t} \boldsymbol{k}_{t}^{^{\mathsf{T}}} \\ &= \sum_{i=1}^{t} \beta_{i} (\boldsymbol{v}_{i} \boldsymbol{k}_{i}^{^{\mathsf{T}}}) \left(\underbrace{\prod_{j=i+1}^{t} (\mathbf{I} - \beta_{j} \boldsymbol{k}_{j} \boldsymbol{k}_{j}^{^{\mathsf{T}}})}_{\text{Product of generalized Householder matrices.}} \right) \end{split}$$

Parallelizing DeltaNet: Memory-efficient Representation

THE WY REPRESENTATION FOR PRODUCTS OF HOUSEHOLDER MATRICES*

CHRISTIAN BISCHOF† AND CHARLES VAN LOAN†

$$\begin{split} \mathbf{P}_{n} &= \prod_{t=1}^{n} (\mathbf{I} - \beta_{t} \boldsymbol{k}_{t} \boldsymbol{k}_{t}^{\mathsf{T}}) \longrightarrow \mathbf{P}_{n} = \mathbf{I} - \sum_{t=1}^{n} \boldsymbol{w}_{t} \boldsymbol{k}_{t}^{\mathsf{T}} \\ \mathbf{S}_{n} &= \mathbf{S}_{n-1} (\mathbf{I} - \beta_{n} \boldsymbol{k}_{n} \boldsymbol{k}_{n}^{\mathsf{T}}) + \beta_{n} \boldsymbol{v}_{n} \boldsymbol{k}_{n}^{\mathsf{T}} \longrightarrow \mathbf{S}_{n} = \sum_{t=1}^{n} \boldsymbol{u}_{t} \boldsymbol{k}_{n}^{\mathsf{T}} \\ & \text{Idea: Compute the pseudo-value vectors and then} \\ & \text{just run regular linear attention.} \end{split}$$

Chunkwise Parallel Form of DeltaNet

Parallelized DeltaNet: Speed

Parallelized DeltaNet: Speed

Training length × Batch size

Parallelized DeltaNet: Performance

Model	PPL↓	LM Eval †	Retrieval †
Transformer++	16.9	50.9	41.8
RetNet	18.6	48.9	30.6
Mamba	17.1	50.0	27.6
Gated Linear Attention	17.2	51.1	37.7
DeltaNet	16.9	51.6	34.7

1.3B models trained on 100B tokens

Hybridizing DeltaNet

Hybridizing DeltaNet

Hybrid DeltaNet: Performance

Model	PPL↓	LM Eval†	Retrieval
Transformer++	16.9	50.9	41.8
RetNet	18.6	48.9	30.6
Mamba	17.1	50.0	27.6
Gated Linear Attention	17.2	51.1	37.7
DeltaNet	16.9	51.6	34.7
Hybrid 1: DeltaNet + Sliding window attention	16.6	52.1	40.0
Hybrid 2: DeltaNet + Global attention on 2 layers	16.6	51.8	47.9

1.3B models trained on 100B tokens

That which we call an SSM by any other name would perform just as well...

That which we call an SSM by any other name would perform just as well...

That which we call an SSM by any other name would perform just as well...

That which we call an SSM by any other name would perform just as well...

That which we call an SSM by any other name would perform just as well...

Linear attention and SSMs have trouble with recall-oriented tasks \rightarrow DeltaNet operationalizes a key-value retrieval/update mechanism.

Reparameterizing DeltaNet can enable parallelization via memory-efficient representations of Householder matrices.

Hybrid token strategies work well.

Some type of attention-like retrieval mechanism is likely necessary for the capabilities we want in our LLMs.

Language is still probably not the most impactful domain in which to explore subquadratic models.

Thanks!