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Attention can model rich interactions among input elements 
→ Important primitive for accurate sequence modeling!

Transformers [Vaswani et al. ’17]
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Harry Potter series: 1M words
Human DNA: 3.2B nucleotides

Transformers have difficulty scaling to long sequences



How can we maintain the accuracy of attention while 
enabling efficient training and inference?
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Attention: Training

Attention requires                        work but can be done in          steps
→ Parallel training that is rich in matmuls.

Attention: Number sequential 
operations is independent of 

sequence length!
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Attention: Generative Inference

Need to keep around “KV-cache” 
that takes            memory. 
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Attention

Training (“Parallel Form”) Inference (“Recurrent Form”)

Attention enables scalable training of accurate sequence models, but requires:
● Quadratic compute (bad for training / inference). 
● Linear memory (bad for inference).

Compute (Work) 

Memory

Steps
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Training: Haven’t really 
gained anything (yet)...
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Linear Attention: Inference

Linear Attention = Linear RNNs with 
matrix-valued hidden states
→ Constant-memory inference!

Key K
Value V
Query Q



Linear Transformers are “Fast Weights”!

[Hinton and Plaut ’87] [Schmidhuber ’92] 

A “slow network” 
changes the weights of 
a “fast network”
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Linear Attention: Naive Parallel Form

Training (“Parallel Form”) Inference (“Recurrent Form”)

Compute 

Memory

Steps

Why not use the recurrent form for training?
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● All operations are either elementwise operations or reductions → cannot 

leverage tensor cores.
● Materialization of each time step’s hidden states → High I/O cost.
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Linear Attention: “Chunkwise Parallel Form” [Hua et al. ’22, Sun et al. ’23]

Step 2: state passing

Chunk 1 Chunk 2 Chunk 3

Recurrent steps: L → L/C
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Step 3: output computation

Contribution from 
previous chunk.
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Chunkwise 
Parallel Form

        Fully 
Recurrent Form 

      

Chunkwise parallel form interpolates between fully parallel and recurrent forms.
● C = L → Fully parallel form 
● C = 1 → Fully recurrent form
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Issue 1: 
Slower than optimized 
implementations of softmax 
attention in practice.



Linear Attention: Issues

Issue 2: 
Underperforms softmax 
attention by a significant 
margin.

Model PPL LM Eval

Softmax attention 16.9 50.9

Linear attention with decay 
(RetNet)

18.6 48.9
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Streaming Multiprocessor

Warp Scheduler

Tensor 
Cores

CUDA
Cores

Register 

Warp Scheduler

Tensor 
Cores

CUDA
Cores

Register 

…

…

Minimize memory movement 
between global memory (HBM) and 
L2 cache (kernel fusion).

Keep the streaming multiprocessors 
as busy as possible (parallelization).

Use (half-precision) matmuls as 
much as possible.

O(1) TB/s

O(10) TB/s



Background: FlashAttention [Dao et al. ’22, Dao ’23] 

Fused attention:
Never instantitate this  
in slower HBM. 

[Image credit: Dao et al. ’22]



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

Step 1:  Sequential state computation 

Fuse local state computation and 
state passing in a single kernel to 
minimize I/O cost.



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

Step 1:  Sequential state computation 

Fuse local state computation and 
state passing in a single kernel to 
minimize I/O cost.

Step 2: Parallel output computation

Compute all chunk outputs in parallel 
based on previous chunk’s state and 
current chunk’s QKV blocks. 



FlashLinearAttention: Hardware-Efficient Algorithm for Linear Attention

4x
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Gated Linear Attention: Data-dependent Multiplicative Gate



Gated Linear Attention: Data-dependent Multiplicative Gate

[Image credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/]



Gated Linear Attention

Simple Linear Attention

[1 1 1]

Gated Linear Attention: Data-dependent Multiplicative Gate



Gated Linear Attention

Simple Linear Attention

Gated Linear Attention: Parallel Forms

GLA also admits a chunkwise 
parallel form for subquadratic, 
parallel training!
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Step 1: local state computation

Chunk 1 Chunk 2 Chunk 3



Gated Linear Attention: Decay-aware Chunkwise Parallel Form 

Step 2: state passing

Chunk 1 Chunk 2 Chunk 3



Step 3: output computation

Contribution from 
previous chunk.

Gated Linear Attention: Decay-aware Chunkwise Parallel Form 



Gated Linear Attention: Throughput



Gated Linear Attention: Performance

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet (Linear Attention with Decay) 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

1.3B models trained on 100B tokens



Gated Linear Attention: Recall-oriented Tasks
SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY A. 510(k) Number: K143329 B. Purpose for 
Submission: To obtain clearance for a new device, Amplivue® Trichomonas Assay C. Measurand: A 
conserved multi-copy sequence of Trichomonas vaginalis genomic DNA D. Type of Test: Nucleic acid 
amplification assay (Helicase-dependent Amplification, HDA) E. Applicant: Quidel Corporation F. 
Proprietary and Established Names: Amplivue® Trichomonas Assay G. Regulatory Information: 1. 
Regulation section: 21 CFR 866.3860 2. Classification: Class II 3. Product code: OUY - Trichomonas 
vaginalis nucleic acid amplification test system 4. Panel: 83 - Microbiology 2 H. Intended Use: 1. 
Intended use(s): The AmpliVue® Trichomonas Assay is an in vitro diagnostic test, uses isothermal 
amplification technology (helicase-dependent amplification, HDA) for the qualitative detection of 
Trichomonas vaginalis nucleic acids isolated from clinician-collected vaginal swab specimens obtained 
from symptomatic or asymptomatic females to aid in the diagnosis of trichomoniasis. 2. Indication(s) 
for use: Same as Intended Use 3. Special conditions for use statement(s): For prescription use only 
4. Special instrument requirements: None I. Device Description: The AmpliVue® Trichomonas Assay is a 
self-contained disposable amplicon detection device that uses an isothermal amplification technology 
named Helicase-Dependent Amplification (HDA) for the detection of Trichomonas vaginalis in 
clinician-collected vaginal swabs from symptomatic and asymptomatic women. The assay targets a 
conserved multi-copy sequence of the T. vaginalis genomic DNA. The vaginal swab is eluted in a lysis 
tube, and the cells are lysed by heat treatment. After heat treatment, an aliquot of the lysed 
specimen is transferred into a dilution tube. An aliquot of this diluted sample is then added to a 
reaction tube containing a lyophilized mix of HDA reagents including primers specific for the 
amplification of a…

[Arora et al. ’24]



Type of Test → Nucleic acid amplification assay 
(Helicase-dependent Amplification, HDA)
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Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet (Linear Attention with Decay) 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

1.3B models trained on 100B tokens

Gated Linear Attention: Recall-oriented Tasks



Gated Linear Attention: Length Generalization



Gated Linear Attention Transformers or State-Space Models?

Gated Linear Attention

Mamba [Gu and Dao ’23]



Gated Linear Attention Transformers are State-Space Models!



Takeaways

Linear attention removes the nonlinearity in softmax attention → RNN with 
matrix-valued hidden states.

Chunkwise-parallel algorithm enables wallclock-efficient linear attention.

Data-dependent gating factor improves performance of linear 
Transformers

Gated linear attention Transformers are (scalable) SSMs.
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[Example from: Arora et al. ’24]

Input

Output

Multi-Query Associative Recall Task

Deficiencies of Linear Transformers / State-Space Models

(Transformers get 100% even with 
small model dimensions)
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Associative Memory Perspective of Linear Attention

Store “value”       associated with “key”       into “memory”         .     

Look up value associated with “query”      .

Key K
Value V
Query QTensor Product Variable Binding [Smolensky ’90]

(Reading to and writing from memory)
Issue: There is 
no way to 
remove/update 
the memory!



DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

Idea: Allow the values associated with keys to be removed/updated.
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DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

Idea: Allow the values associated with keys to be removed/updated.



Retrieve old memory

Combine old memory with 
current value vector

Remove old memory, write 
new memory

Key, query, value vectors

Get output

DeltaNet: Linear Transformers with the Delta Rule [Schlag et al. ’21]

An application of Delta update rule 
[Widrow & Hoff ’60] 

Idea: Allow the values associated with keys to be removed/updated.



DeltaNet [Schlag et al. ’21]



DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q



DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q



DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q



DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q



DeltaNet [Schlag et al. ’21]

Key K
Value V
Query Q



DeltaNet Associative Recall Performance

Multi-Query Associative Recall Task



DeltaNet Issue



DeltaNet Issue

DeltaNet: Ordinary linear attention with “pseudo”-value vectors



DeltaNet Issue

DeltaNet: Ordinary linear attention with “pseudo”-value vectors

Unlike in linear attention, the pseudo value vector        depends on the 
previous hidden state          . → Not scalable! 



Parallelizing DeltaNet

DeltaNet: Ordinary linear attention with “pseudo”-value vectors

If there is an efficient way to compute      , we would be good to go!  



Parallelizing DeltaNet: A Simple Reparameterization



Parallelizing DeltaNet: A Simple Reparameterization

Product of generalized 
Householder matrices.



Parallelizing DeltaNet: Memory-efficient Representation

→

→
Idea: Compute the pseudo-value vectors and then 
just run regular linear attention.



Chunkwise Parallel Form of DeltaNet 

Recurrent W/U construction



Parallelized DeltaNet: Speed

On a single H100



Parallelized DeltaNet: Speed



Parallelized DeltaNet: Performance

Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

DeltaNet 16.9 51.6 34.7

DeltaNet + Sliding window attention 16.6 52.1 40.0

DeltaNet + Global attention on 2 layers 16.6 51.8 47.91.3B models trained on 100B tokens



Hybridizing DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet

Sliding Window Attention

DeltaNet
Hybrid 1: Sliding window 
attention every other layer



Hybridizing DeltaNet

Global Attention

DeltaNet

DeltaNet

DeltaNet

DeltaNet

DeltaNet

DeltaNet

Global Attention

DeltaNet

DeltaNet

DeltaNet

DeltaNet
Hybrid 2: Global attention 
on the 2nd and middle layer



Model PPL LM Eval Retrieval

Transformer++ 16.9 50.9 41.8

RetNet 18.6 48.9 30.6

Mamba 17.1 50.0 27.6

Gated Linear Attention 17.2 51.1 37.7

DeltaNet 16.9 51.6 34.7

Hybrid 1: DeltaNet + Sliding window attention 16.6 52.1 40.0

Hybrid 2: DeltaNet + Global attention on 2 layers 16.6 51.8 47.9

Hybrid DeltaNet: Performance

1.3B models trained on 100B tokens
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That which we call an SSM by any other name would perform just as well…

Data-dependent 
multiplicative gates 

Linear Attention / 
Fast Weights

Transformers

Drop 
softmax

State-space Models

Structured State 
Space Models (S4)

DeltaNet

Delta 
rule

Discretization + 
Structured 
transitions

Test-time Training (TTT)

Structured Matmuls?

General Assocative Operators?

Relax “identity 
plus rank one” 

Use linear predictor (TTT-Linear) 

Gated Linear Attention /
Mamba {1,2}

Selective state 
transitions + 
simplification



Takeways

Linear attention and SSMs have trouble with recall-oriented tasks → DeltaNet 
operationalizes a key-value retrieval/update mechanism.

Reparameterizing DeltaNet can enable parallelization via memory-efficient 
representations of Householder matrices.

Hybrid token strategies work well.



Parting thoughts

Some type of attention-like retrieval mechanism is likely necessary 
for the capabilities we want in our LLMs.

Language is still probably not the most impactful domain in which 
to explore subquadratic models.



Thanks!


