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Language Models
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I see a beautiful city and a brilliant ...

Albert Camus was a French philosopher, author ...

GameStop stock rises after chairman buys ...




Masked Language Models
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The cat ??? on ??? mat

Contextualized word
representations

Bi-directional
attention layer



Autoregressive Language Models
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The cat sat on the

w = next word
¢ = previous words



Language Modeling Objective

Language models can implicitly capture much linguistic/world
knowledge through their parameters.
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. w = word
c = context

Transfer learning paradigm: finetuning / prompting.
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Review: the acting was subpar.

Positive or Negative?



Transfer Learning with Language Models
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Transfer Learning with Language Models

Examples Size Adaptation Labeled data Inference
BERT
RoBERTa

XL Net 100M-10B Fine-tuning >16 Fast
BART

T5

cat

the

mat

v Good performance and reasonably fast inference.

Task-specific parameters = memory does not scale
well to multiple tasks.

X Still requires nontrivial amounts of labeled data.



Transfer Learning with Language Models

Examples Size Adaptation Labeled data Inference

/ Pretrained parameters remain fixed.
v’ Good few-shot and zero-shot performance.

Prompting capabilities only emerge when model sizes
are large enough = inference is slow.

GPT-3
GLaM
TO 10B-500B Prompting <16

FLAN

88 8 8 8B PalM

The cat sat on the mat

Slow



Efficient Transfer Learning with Language Models
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Memory Efficiency:
“Parameter-Efficient Transfer Learning with Diff Pruning”

(with Demi Guo, Alexander Rush; ACL ’21)

Inference Efficiency:

“Co-training Improves Prompt-based Learning for Large
Language Models” ' X

(with Hunter Lang, Monica Agrawal, David Sontag; ICML ’22)



Efficient Transfer Learning with Language Models

Memory Efficiency:
“Parameter-Efficient Transfer Learning with Diff Pruning”

(with Demi Guo, Alexander Rush; ACL '21)




Transfer Learning via Full Fine-tuning
-
) Opretrained [




Transfer Learning via Full Fine-tuning
=~ Multi-task scenario with

potentially unknown

) — 0 retraine
D prtrained number of tasks (e.g.,
streaming)
Hundreds of millions of
parameters each!
/97-1 /97'2 97’3 07"_‘[’\

Task 1 Task 2 Task 3 Task T



Transfer Learning via Full Fine-tuning

Full fine-tuning: need to store full set of
parameters for each task = hard to scale
to multiple tasks.

Model already learns linguistic and world
knowledge through pretraining =
unnecessary/wasteful to fine-tune all
parameters.

(Parameter-inefficiency)
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Existing Approaches for Parameter Efficiency

e Model compression:
o Pruning [Goden et al. '20, Sajjad et al. 20, Chen et al. "20]
o Distillation [Sanh et al. ’19, Sun et al. '20, Jiao et al. ’20]
Still requires 10%-30% of the full parameters to maintain
performance.



Existing Approaches for Parameter Efficiency

Model compression:

o Pruning [Goden et al. '20, Sajjad et al. 20, Chen et al. "20]
o Distillation [Sanh et al. ’19, Sun et al. '20, Jiao et al. ’20]
Still requires 10%-30% of the full parameters to maintain

performance.
Adapters [Houlsby et al. "19]: g B
o Small narrow layers that are inserted in 5 é é E%l é é Finetuned
between wider model layers.
o Pretrained model remains fixed, only g
the adapters are fine-tuned for each 6 8 © I%I é é
task. (One adapter per task).
o Only requires 2%-4% new parameters g
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Diff Pruning

Learn an extension to the existing pretrained model (which remains
fixed).

Model extension is parameterized as a vector (“difference vector”) that
additively modifies pretrained parameters.

‘97'1 — Hpretrained 20 57'1
(97-2 — Hpretrained =+ 57-2
‘97-3 — Hpretrained 2 57'3

HTT — Hpretrained + 5’7"1“'



Diff Pruning

Learn an extension to the existing pretrained model (which remains
fixed).

Model extension is parameterized as a vector (“difference vector”) that
additively modifies pretrained parameters.

‘97'1 — Qpretrained 20 57'1

972 = Hpretrained + 572 If the extension (diff vector) is
0. — ¢ _ 5 sparse, then additional memory
3 = Upretrained + Or3 per task will be marginal.

HTT — epretrained + 5’7"1“'



Diff Pruning Objective

e [oreachtask T :

mm Z — logp (n) ‘ x(n) pretralned + @ ) + )‘R((ST)

n=1



Diff Pruning Objective

e [oreachtask T :

mln Z — logp (n) ‘ w(n) pretralned + 0 ) + AR((ST)

n=1

Task-specific negative Regularizer on
log likelihood diff vector

e If regularizer can learn a sparse diff vector such that ||-]jo < ||@pretrained||o
then we only need a few additional parameters per task!



Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective n%in L(DTa epretrained + 57-) + )\R((ST)
d Not amenable to
Lo-norm regularizer R(6;) = Z 1{0; # 0} gradient-based

i=1 optimization



Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective

Lo-norm regularizer

Decompose diff vector

Reparameterized
Objective

n%in L(DT7 epretrained + 57') + )\R(éT)

d (Still) not amenable
R(6;) =)  1{6,; # 0} to gradient-based
=1 optimization

0 =2 Qwy, 2z €{0,1}%, w, € RY

min L(DT7 Hpretrained +2r O wT) + )\R(zT © wT)

Zr,Wr



Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective

Lo-norm regularizer

Decompose diff vector

Lower bound

n%in L(DTa epretrained + 57') + )\R(d‘/’)

d

R(JT) - Z 1{57',2' 7é 0}

=1

0 =2 Qwy, 2z €{0,1}%, w, € RY

min Ez,,-rvp(z,,-;a,,-) [L(DT7 Hpretrained + 2 O w’T) + )\R(ZT ® wT)]

or,Wr

Optimize over distribution parameterized by &+

d

p(zr; ar) = HU(O‘Tﬂl)zT’i x (1 - U(QT,i))l_zT’i
1=1

Issue: Tractable optimization requires policy gradients.



Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective n%in L(DTa epretrained + 57') + )\R(éT)
d
Lo-norm regularizer R(6;) =)  1{6,; # 0}
1=1
Decompose diff vector or =2 Qwy, 2z €{0,1}¢, w, € R?
Lower bound amiur)l IEzTrvp(zT; ar) [L(DT7 Hpretrained + 2 O w'r) = )\R(ZT ® wT)]
Continuous relaxation zr € {0,1}¢ = 2. € [0,1]¢
u ~ U[O, 1] i .s:trvt’('i:('d concret ]
sr = o(logu —log(1—u)+a;)  Stretched Hard-Concrete SR
Sr=(r—1)xs;+1 distribution [Louizos et al. '18] '

Z, = min(1, max(0, 5,))



Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective n%in L(DTa epretrained + 57') + )\R(d‘/’)
d
Lo-norm regularizer R(6;) =)  1{6,; # 0}
1=1
Decompose diff vector or =2 Qwy, 2z €{0,1}¢, w, € R?
Lower bound amiur)l IEzTrvp(zT;ozT) [L(DT7 Hpretrained + 2 © w’T) an )\R(ZT ® wT)]
Continuous relaxation zr € {0,1}¢ = 2. € [0,1]¢

Reparameterization trick min E,y0,1) [L(Dr, Opretrained + 2r © wr) + AR(Zr © wy)]
= lower-variance gradient “7%"
estimator.



Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective
Lo-norm regularizer
Decompose diff vector
Lower bound
Continuous relaxation

Reparameterization trick

n%in L(DT7 epretrained + 57') + )\R(éT)

d

R(JT) - Z 1{57',2' 7é 0}

=1

0 =2 Qwy, 2z €{0,1}%, w, € RY

min IEszp(zT;ozT) [L(DT7 Hpretrained +2: © wT) + )\R(zT © wT)]

or,Wr

zr € {0,1}¢ = 2. € [0,1]¢

min IEurvU[O,l] [L(D'm epretrained +2: © ’LUT) =T )\R(ET ® "LUT)]

Qr,Wr
d

Closed-form solution for —
' Eyn R(zr ©w;)| = ri — log —
regularizer! v, [R(Zr © wr)] Zi: 1 g (a #=e, )



Diff Pruning

d
. 3 —l
min ]EUNU[O,l] [L(DT, Hpretrained + 2 © 'lUT)] + A E o (aT,i - log r )

o, Wr _
=1

e After training < should be very negative for many dimensions.

e Use this to get a sparse binary vector from:
d

p(zr; ar) = HG(aT,i)ZT’i X (1— a(am))l_zﬂi
1=1
e Final diff vector given by:

0r =2z Qwy, 2zr €{0,1}¢, w, € R®



Diff Pruning with Targeted Sparsity
d
O{nin ]EuNU[O,l] [L(DT7 epretrained +2; ©® 'wT)] + A\ Z o (Q‘T,z’ —log —TZ)
o i=1

6 =2 Owy, 2z €{0,1}%, w, € R

Sparsity can be softly controlled by A, but we often want exact sparsity
control (e.g., memory budget).

Targeted sparsity via projection onto Lo-ball (magnitude pruning):
o Take the top t% of non-zero values of ¢, based on magnitude.
o Continue fine-tuning for a few epochs.

Standard magnitude pruning on the diff vector.



Structured Diff Pruning

d
: s —1
min Bunion) [L(r bpeane + 3 0w + A Yo (i =108 ")

6 =2 Owy, 2z €{0,1}%, w, € R

e Partition each dimension into groups based on matrices/biases (393
groups for BERTLARcE):

i .
074 = 27 X 2l X wr

e Encourages entire groups to have zero diff vector.



Diff Pruning

Frozen Parameter:
GEER FAAmeten s = o(logu —log(1 —u) + a) Or
Learnable Parameters Sl R 1 0 I I -«
Stochastic gates / Rr = min(1, max(0,s(r — 1) + 1)) \ 21 | 43 | 06
~ R -0.4 15 1.1
apretrained Zr Wr
94 -0.9 0.4
-1.4 067 | -0.6 1.0 1.0 0.44 -1.2 0.2 0.46
Step 1 01 | 031 18 + 00 | 093 | 00 @ 056 | 1.08 | -06 = Prediction
-0.8 0.7 0.2 0.66 | 0.0 0.3 0.1 0.8 1.04

-12 | 02 0.2

00 | 10 | 0o 67.

007 [ 0.0 | 031

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)



Diff Pruning

[l Frozen Parameters
[ Learnable Parameters
[ Stochastic gates

s = o(logu —log(1 —u) + @)
Zy=min(1,max(0,s(r — ) + 1))

T W
. @ - S

5,

0pretrained

Step 1

Magnitude Pruning
keep top 2 params

pretrau ned Binary mask
(for further finetuning)

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)



Experiments

e Experiments on standard GLUE benchmark with BERTLARGE.

e (Mostly) the same hyperparameters for all datasets.



Experiments

e Experiments on standard GLUE benchmark with BERTLARGE.
e (Mostly) the same hyperparameters for all datasets.

e Additional tricks:
97’ — epretrained =+ 57'

Initialized to zero.
O0r = 2r Qws, 2y € {0, 1}d, w, € R?
d
p(2r; ar) = HU(QT,i)ZT’i X (1— U(O‘T,i))l_ZT’i
i=1
Initialized to positive value to discourage
sparsity in the beginning.



Results

Total New params

— QNLI* SST-2 MNLI,, MNLI,,,, CoLA MRPC STS-B RTE QQP Avg

Full finetuning 9.00x 100% 91.1 949 86.7 85.9 60.5 893 876 70.1 72.1 809



Results

Total number of parameters
for all 9 tasks as a multiplier
on top of BERTLARGE

Total New params

W per task QNLI* SST-2 MNLI,, MNLIL,,,, CoLA MRPC STS-B RTE QQP  Avg

Full finetuning 9.00x 100% 91.1 949 86.7 85.9 60.5 893 87.6 70.1 72.1 80.9



Results

Total number of parameters
for all 9 tasks as a multiplier
on top of BERTLARGE

Total New params

poraims | pertask QNLI* SST-2 MNLI,, MNLIL,,,, CoLA MRPC STS-B RTE QQP  Avg

Full finetuning 9.00x 100% 91.1 949 86.7 85.9 60.5 893 87.6 70.1 72.1 80.9

Additional parameters
per task (as a function of
BERTLARGE)



Results

Total number of parameters
for all 9 tasks as a multiplier
on top of BERTLARGE

Total New params

poraims | pertask QNLI* SST-2 MNLI,, MNLIL,,,, CoLA MRPC STS-B RTE QQP  Avg

Full finetuning 9.00x  100% 911 949 867 859 605 893 876 70.1 721 809
Additional parameters Average GLUE
per task (as a function of performance

BERTLARGE)



Results

Total New params

params  pertask QNLI* SST-2 MNLI,, MNLIL,,,, CoLA MRPC STS-B RTE QQP  Avg

Full finetuning 9.00x 100% 91.1 949 86.7 85.9 60.5 893 87.6 70.1 72.1 80.9
Adapters 1.32% 3.6% 90.7 940 849 85.1 595 895 869 715 71.8 804

Adapters from Houlsby et al. 19 L A N A
. :
bhoo o4 | . :
000000

—
=
m
o
=1
~+
=>
(o]
=
Y]
~+

cat sat



Results

Total New params

— QNLI* SST-2 MNLI,, MNLI,,,, CoLA MRPC STS-B RTE QQP Avg

Full finetuning 9.00x 100% 91.1 949 86.7 85.9 60.5 893 876 70.1 72.1 809
Adapters 1.32% 3.6% 90.7 940 849 85.1 595 895 869 715 71.8 804
Last layer 1.34 % 3.8% 798 916 714 12.9 40.2 80.1 673 58.6 633 68.2
Non-adap. diff pruning 1.05x 0.5% 89.7 93,6 849 84.8 512 815 782 615 68.6 755

1. Fine-tune as usual to obtain task-specific parameters 6
2. Calculate diff vector as 0r — Opretrained
3. Magnitude pruning + fine-tuning on diff vector.



Results

Total New params

params  pertask QNLI* SST-2 MNLI,, MNLIL,,,, CoLA MRPC STS-B RTE QQP Avg

Full finetuning 9.00x 100% 91.1 949 86.7 85.9 60.5 893 87.6 70.1 72.1 80.9
Adapters 1.32% 3.6% 90.7 940 849 85.1 595 895 869 715 71.8 804
Last layer 1.34 % 3.8% 798 916 714 12.9 40.2 80.1 673 58.6 633 68.2
Non-adap. diff pruning 1.05x 0.5% 89.7 93,6 849 84.8 512 815 782 615 68.6 755
Diff pruning 1.05x% 0.5% 929 938 85.7 85.6 60.5 87.0 835 68.1 70.6 794

Diff pruning (struct.)  1.05x 0.5% 933 941 864 86.0 61.1 89.7 86.0 70.6 71.1 80.6




Memory-efficiency vs. Model Compression

(with BERTBASE)

Total New params

sarams  per task QNLI SST-2 MNLL, MNLIL,, CoLA MRPC STS-B RTE QQP Avg
Full finetuning 9.00x  100% 90.9 934 839 834 528 875 852 67.0 71.1  79.5
DistilBERT 553x  61.5% 889 925 826 813 490 869 813 584 70.1 768
TinyBERTj 553x  61.5% 90.4 93.1 84.6 83.2 51.1 873 837 700 71.6 794
DistilBERT, 431x  479% 852 914 789 780 328 824 761 541 685 719
TinyBERT, 120x  13.3% 87.7 92.6 825 81.8 44.1 864 804 666 713 770
MobileBERTrny  1.24x  13.9% 89.5 91.7 815 81.6 467 879 80.1 651 689 77.0
Diff pruning (struct.) 1.05x  0.5% 90.0 929 83.7 834 520 88.0 845 664 703 79.0




Memory-efficiency vs. Model Compression

(with BERTBASE)

Total New params

sarams  pertask  QVLL SST2 MNLIy, MNLIyy, CoLA MRPC STS-B RTE QQP  Avg
Full finetuning 9.00x  100% 90.9 934 839 834 528 875 852 670 71.1 795
DistilBERT 553x  61.5% 889 925 826 813 490 869 813 584 70.1 768
TinyBERT, 553x  61.5% 904 93.1 84.6 832 51.1 873 837 700 71.6 79.4
DistilBERT, 431x  47.9% 852 914 789 780 328 824 761 54.1 685 719
TinyBERT, 120x  13.3% 87.7 926 825 81.8 44.1 864 804 66.6 713 770
MobileBERTtny ~ 1.24x  13.9% 89.5 917 815 81.6 467 879 80.1 651 689 77.0
Diff pruning (struct.) 1.05x  0.5% 90.0 929 83.7 834 520 88.0 845 664 703 79.0

Requires 120%-553% BERTBAse parameters for all 9 tasks.

= Diff pruning becomes more memory-efficient as the

number of tasks increases.



Memory-efficiency vs. Model Compression

Caveat: these models are
smaller = faster inference.

(with BERTBASE)

Total New params

sarams  pertask  QVLL SST2 MNLIy, MNLIyy, CoLA MRPC STS-B RTE QQP  Avg
Full finetuning 9.00x  100% 90.9 934 839 834 528 875 852 670 71.1 795
DistilBERT 553x  61.5% 889 925 826 813 490 869 813 584 70.1 768
TinyBERT, 553x  61.5% 904 93.1 84.6 832 51.1 873 837 700 71.6 79.4
DistilBERT, 431x  47.9% 852 914 789 780 328 824 761 54.1 685 719
TinyBERT, 120x  13.3% 87.7 926 825 81.8 44.1 864 804 66.6 713 770
MobileBERTtny ~ 1.24x  13.9% 89.5 917 815 81.6 467 879 80.1 651 689 77.0
Diff pruning (struct.) 1.05x  0.5% 90.0 929 83.7 834 520 88.0 845 664 703 79.0

Requires 120%-553% BERTBAse parameters for all 9 tasks.

= Diff pruning becomes more memory-efficient as the

number of tasks increases.



Memory-efficiency vs. Model Compression

New params  Storage (MB)
per task per task
Full finetuning 100% 1297.0
Adapters (weights only) 3.6% 49.0
Diff pruning (positions + weights) 0.5% 13.6




Analysis: Sparsity vs. Performance
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Summary

e (Open questions:

o Is memory-scaling per task actually a concern?
o Adapters vs. prefix-tuning vs. additive updates?
o Sparse fine-tuning for continual learning?



Summary

e (Open questions:

o Is memory-scaling per task actually a concern?
o Adapters vs. prefix-tuning vs. additive updates?
o Sparse fine-tuning for continual learning?

e Recent works:

o BitFit [Ben-Zaken et al. '22]: Only tune bias vectors = competitive
performance with only 0.08% parameters per task!

o FISH [Sung et al. ’21]: Use (an approximation of) Fisher Information
matrix to prune diff vector.



Efficient Transfer Learning with Language Models

Inference Efficiency:

“Co-training Improves Prompt-based Learning for Large

Language Models” .& ﬂ
7% 4

The cat sat on the  mat (with Hunter Lang, Monica Agrawal, David Sontag; ICML '22)
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Prompt-based Few- and Zero-shot Learning

Je ne suis pas un chat

|

T

Translate the following sentence
from English to French.

English: I’m not a cat
French:

Zero-shot Learning for
Machine Translation

Negative

|

T

Review: this movie was great.
Positive or Negative? Positive

Review: the acting was subpar.
Positive or Negative?

Few-shot Learning for
Text Classification



Prompt-based Learning

Model remains fixed = memory does not increase with the number of
tasks (unlike BERT fine-tuning).

v/ Non-trivial performance with only a few (or no) examples.



Prompt-based Learning

Model remains fixed = memory does not increase with the number of
tasks (unlike BERT fine-tuning).

v/ Non-trivial performance with only a few (or no) examples.

Prompt-based capabilities seem to emerge only when model sizes are
large enough [Wei et al. ’21] = inference is expensive!



Inference Efficiency for Few-shot Prompting
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Inference Efficiency for Few-shot Prompting

Examples Size Adaptation Labeled data Inference
BERT
RoBERTa
XL Net 100M-10B Fine-tuning >16 Fast
BART
T5
The cat sat on the mat
GPT-3
GLaM
TO 10B-500B Prompting <16 Really
FLAN slow
PalM
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Inference Efficiency for Few-shot Prompting
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Examples Size Adaptation Labeled data Inference
BERT
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Co-Training [Blum and Mitchell '98]

e A semi-supervised approach for leveraging unlabeled data.

e Pair of models are trained over different “views” of the same underlying

data.
View Qbo (X) (/bl (X)

Model ho h1

m Y

Lab tests X-ray




Co-Training [Blum and Mitchell '98]

e A semi-supervised approach for leveraging unlabeled data.

e Pair of models are trained over different “views” of the same underlying
data.

View ¢o(X)

Model hO

Samoyed Dogs Are Basically A
Breed Of Big, Fluffy, Sentient
Clouds

Y Amy Pilkington

Text on web page Query that led to article



Co-Training [Blum and Mitchell '98]

A semi-supervised approach for leveraging unlabeled data.

Pair of models are trained over different “views” of the same underlying
data.

View Qbo (X) ¢1 (X)

Model ho h1

The two models ho(¢o(X)) and hi(¢1(X)) are iteratively trained on
confidently-labeled data points from the other model.
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Model O Round 1
ho(¢o(X))

e Train hg on small labeled data.
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Co-Training

[ Model 0 } Round 1
ho(

e Train hg on small labeled data.
e Apply hg on view ¢o(X) of

Labeled Unlabeled unlabeleq data.
Data (Small) Data e (et confidently-labeled data as
pseudo-labels.

e Train hy on view ¢1(X) on

Conﬂdent Model 1
Labels O hi(d1(X

pseudo-labeled data.
>>}




Co-Training

L Confident [ Model O } Round 1
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Co-Training

L Confident Model O } Round 1
Labels 1 ho(po(X))
e Apply hion view ¢1(X) of
unlabeled data.
Labeled Unlabeled '
LData (Small) Data } e (et confidently-labeled data as

pseudo-labels.
e Retrain hoon view ¢0(X) on

pseudo-labels.
Confident I\/Iodel 1
Labels O h 1




Co-Training

Confident ~ Model0 Round 2

Labels 1~ " ho(go(X))

Labeled Unlabeled
Data (Small) Data
Confident Model 1
Labels O J h1(¢1(X))
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Co-Training

Confident ~ Model0 Round 3

Labels 1~ " ho(go(X))
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Data (Small) Data
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Confident W Model O Round 3
Labels 1 h0(¢0 (X))
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If the views are “different enough”,
then the learned classifier will have
low error [Blum and Mitchel ’98;
Balcan et al. '05]

Po(X) ¢1(X)

Another pretrained
Pretrained LM LM with different
inductive biases?



Co-Training for Inference Efficiency

Simple idea:
Confident w Model O e Prompted GPT-3 as the initial
Labels 1 ho(do(X)) model.
e BERT as the other model =
Faster inference!
' e Implicit ensembling of different
L Labeled Unlabeled } inductive biases.
Data (Small) Data
L Confident Model 1 J Final model
Labels 0 J hi(61(X))




Co-Training for Inference Efficiency

Simple idea:
Confident W Model 0 e Prompted GPT-3 as the initial
Labels 1 h0(¢o(X)) model.
e BERT as the other model =
Faster inference!
' e Implicit ensembling of different
L Labeled Unlabeled } inductive biases.
Data (Small) Data

Questions:
e How to learn a model over

Confident Model 1 prompted GPT-3 to make it
Labels O J hi(61(X)) amenable to updating?




Co-Training for Inference Efficiency
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Confident 1

Labels 1
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Simple idea:
e Prompted GPT-3 as the initial
model.

e BERT as the other model =
Faster inference!

e Implicit ensembling of different
inductive biases.

Questions:

e How to learn a model over
prompted GPT-3 to make it
amenable to updating?

e How to select confident labels?



Prompt-based Few-shot Learning

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting = Feed k labeled data as a single prompt



Prompt-based Few-shot Learning

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting = Feed k labeled data as a single prompt

0il prices fall back as Yukos o0il threat lifted.
Question: 0il prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False,
or Unknown?

Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

Prompt Labeled examples Unlabeled input



Prompt-based Few-shot Learning

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting = Feed k labeled data as a single prompt

0il prices fall back as Yukos o0il threat lifted.
Question: 0il prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False,
or Unknown?

Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

g—|-

Prompt Labeled examples

Unlabeled input

Distribution over label tokens
(i.e., verbalizer)

{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, ...}



Prompt-based Few-shot Learning

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting = Feed k labeled data as a single prompt

0il prices fall back as Yukos o0il threat lifted.
Question: 0il prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False,
or Unknown?

Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

True

Prompt Labeled examples

Unlabeled input

Distribution over label tokens
(i.e., verbalizer)

{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, ...}



$o(X): Prompted GPT-3 probabilities as view O

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts = Concatenate GPT-3 output
probabilities from k prompted models



$o(X): Prompted GPT-3 probabilities as view O

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts = Concatenate GPT-3 output
probabilities from k prompted models

0il prices fall back as Yukos oil threat lifted.
Question: 0il prices dropped. True, False, or Unknown?
Answer: True

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True,
False, or Unknown?

Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

Prompt Labeled examples Unlabeled input



$o(X): Prompted GPT-3 probabilities as view O
Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts = Concatenate GPT-3 output
probabilities from k prompted models

©a
o
©a
a3
©xa

0il prices fall back as Yukos oil threat lifted. @
Question: 0il prices dropped. True, False, or Unknown?
Answer: True

—
Hepburn’s family will receive proceeds from the sale.

Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

The cost of consumer of the United States fell in June. @
Question: U.S. consumer spending dived in June. True, ~
False, or Unknown?

3
(ees]
(ees])
(eee]
(e

Answer: False E
Hepburn’s family will receive proceeds from the sale.

Question: Proceeds go to Hepburn’s family. True, False or

Unknown? '

Prompt Labeled examples Unlabeled input



ho : Label model for aggregating GPT-3 outputs

e Simple averaging does not work well because (i) the probabilities are not
well calibrated [Zhao et al. '21], (ii) there are no learnable parameters.

k 5
ro(o(@)) = 3 (@)

e Parameterized label model over ¢o(z) € RF*V.

I, = ReLU (W(i)¢éi) (w)) W ¢ gixV

k
ho(x; W, o) = softmax (Z ozz-li>

=1



ho : Label model for aggregating GPT-3 outputs

l; = ReLU (W(”qbgi)(a:))

0
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¢! (x) e RV
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v

Label tokens
{True, False, Unknown}

Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, ho, ...}



ho : Label model for aggregating GPT-3 outputs

B i) (%) ] Label tokens
l; = ReLU (W( )Qbo (x)) {True, False, Unknown}
. V' Verbalizer tokens
RECE {True, False, Unknown, true, false,

unknown, Yes, No, yes, ho, ...}

Assume WLOG that the first I dimensions of ¢ ()
correspond to label tokens.

(See paper on how to obtain the set of verbalizer tokens
in a task-agnostic way)

¢! (x) e RV



ho : Label model for aggregating GPT-3 outputs

l; = ReLLU (W(i)qb((f)(a:)) ] Label tokens

{True, False, Unknown}

R V' Verbalizer tokens
SIS {True, False, Unknown, true, false,
unknown, Yes, No, yes, ho, ...}

Assume WLOG that the first ! dimensions of ¢ ()
correspond to label tokens.

M o o |
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Nn o0

oo ®
oo ®
oo o®
L 1

Part of the matrix W applied to these tokens is

initialized to 1
w® e RV ¢ (z) e RY Dla’g( éf)(xcf))
Q= 1 where 65 (z.r)is label probability vector the output from
Pepr.3(next word = True | prompt = ") an empty prompt [Zhao et al. *21].
1
b

- PGPT—3(neXt word = False | prompt = “”) (Rest are initialized to 0.)



ho : Label model for aggregating GPT-3 outputs

l; = ReLLU (W(i)qb((f)(a:)) ] Label tokens

{True, False, Unknown}

/' Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, ho, ...}

N
e .0
2 A9 @
SRS

Both True and true would
contribute to True

Assume WLOG that the first ¢ dimensions of ¢ (x)

|
&
O correspond to label tokens.

oo b
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®oN
oo o®
L 1

6 Part of the matrix W applied to these tokens is

initialized to 1
w® e RV ¢ (z) e RV Dla’g( éf)(xcf))
o — 1 Inituition: initially the model uses the label token
Pgpt.3(next word = True | prompt = ") probabilities, but can learn to use verbalizer tokens that
b 1 are related.

= PGPT_3(neXt Word — False | Prompt — un)



ho : Label model for aggregating GPT-3 outputs

- i) (%) ] Label tokens
l; = ReLU (W( )Qbo (x)) {True, False, Unknown}
1/ Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, ho, ...}

N
e .0
2 A9 @
SRS

Both True and true would
contribute to True

Assume WLOG that the first ¢ dimensions of ¢ (x)

|
&
O correspond to label tokens.

oo b
o woe

NO O

oo ®
®oN
oo o®
L 1

6 Part of the matrix W applied to these tokens is

initialized to 1
w@ eV ¢W(z) e RV Dla’g( éf)(xcf))
o — 1 Inituition: initially the model uses the label token
Pgpt.3(next word = True | prompt = ") probabilities, but can learn to use verbalizer tokens that
1 are related.
b — “n
Pgpt.3(next word = False | prompt = ")

ReLU can ignore certain prompt/label combinations.



ho : Label model for aggregating GPT-3 outputs

' k
1, = ReLLU (W(Z)gb((f)(az)) ho(x; W, o) = softmax <Z oz@-l@->
=1
Aggregation layer that sums of Calibration laver that learns to weight the
probabilities from different verbalizer different 1; € R! vectors

tokens into the label token.

The weights «; are initialized to 1 to weight
all prompts equally.

Final softmax over [ labels gives
probabilities with which to select confident
labels. (Pseudo-labels to train the smaller
model).



¢1(X): Frozen embeddings from smaller MLM

4 &
Hepburn’s famil ill i d
from the sale. [SEP] Proceeds go to 1 0
Hepburn’s family.
8
$1(X)

DeBERTa
embeddings




h1 : Classifier over MLM embeddings

Hepburn’s family will receive proceeds
from the sale. [SEP] Proceeds go to
Hepburn’s family.

B g .
g
¢1(X) h1
DeBERTa MLP over
embeddings embeddings



Pseudo-labeling

e Select 8 =50% of unlabeled dataset initially.

e Increase this by B’ = 10% at each round for 5 rounds of co-training.



Pseudo-labeling

Select B = 50% of unlabeled dataset initially.

Increase this by 3’ = 10% at each round for 5 rounds of co-training.

Initial model (from prompted GPT-3) can have very low probability for some
labels = naive strategy of just taking the most confident labels can miss

some labels.

Make the (weak) assumption that each label is at least 1% of the dataset =
ensures each label is included in each pseudo-labeling round.



Pseudo-labeling

Select B = 50% of unlabeled dataset initially.
Increase this by 3’ = 10% at each round for 5 rounds of co-training.

Initial model (from prompted GPT-3) can have very low probability for some
labels = naive strategy of just taking the most confident labels can miss
some labels.

Make the (weak) assumption that each label is at least 1% of the dataset =
ensures each label is included in each pseudo-labeling round.

®0(X) : use model confidence to select most confident labels
¢1(X) : use cut statistic [Muhlenbach et al. *04] to select most confident
labels to better take into account representation geometry.



Putting it all together
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{{hypothesis} }
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Putting it all together

*BERT*

|

.

4

Contextual embedding

¢ (x)

|

EEEEEEEER-

Output labels

MLP (h,)

Co-train



Experiments

Test on datasets traditionally difficult for few-shot learning:
o Textual entailment (RTE, CB)
o Question classification (TREC)

Prompts/hyperparameters inherited from previous work to minimize label
leakage.

Co-training parameters (e.q., initial coverage, number of rounds) selected on
small subset of TREC = TREC results not “true” few-shot.

Same exact setup across all datasets.



Results: Few-shot

Using 4 labeled examples only

Model View RTE (2-class) CB (3-class) TREC (6-class)

GPT-3 4-shot (from Zhao et al. (2021)) . 58.7 (11.9) 45.2 (19.4) 60.2 (7.6)



Results: Few-shot

Using 4 labeled examples only

Model View RTE (2-class) CB (3-class) TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021)) . 58.7 (11.9) 45.2 (19.4) 60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021) * 60.4 (8.1) 60.7 (6.7) 69.7 (1.4)

CBU [Zhao et al '21]: rescale GPT-3 probabilities based on null prompt

1
' 1 T Pgpt.3(next word = True | prompt = ")
Diag ——— 1

b=
0 (xcf) Pgpt.3(next word = False | prompt = ")



Results: Few-shot

Using 4 labeled examples only

Model View RTE (2-class) CB (3-class) TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021)) . 58.7 (11.9) 45.2 (19.4) 60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021) * 60.4 (8.1) 60.7 (6.7) 69.7 (1.4)
Prompt-based FT (Gao et al., 2021) * 52.8 (0.9) 84.4 (3.2) 54.8 (2.9)

Prompt-based FT [Gao et al. ’21]: full DeBERTa fine-tuning with prompted inputs
(uses 2 examples per class = 6 examples for CB and 12 examples for TREC)

MLM great (label:positive)
head (label:negative) t/

Label mapping M (Y

[ [CLs] No reason to watch . It was MASK . [SEP] Afunride. It was great . [SEP] The drama discloses nothing . It was . [SEP] ]

Input it Template — F—— Demonstration for label:positive — F——————— Demonstration for label:negative ——
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Using 4 labeled examples only

Model View RTE (2-class) CB (3-class) TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021)) . 58.7 (11.9) 45.2 (19.4) 60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021) * 60.4 (8.1) 60.7 (6.7) 69.7 (1.4)
Prompt-based FT (Gao et al., 2021) * 52.8 (0.9) 84.4 (3.2) 54.8 (2.9)
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Results: Few-shot

Using 4 labeled examples only

Model View RTE (2-class) CB (3-class) TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021)) . 58.7 (11.9) 45.2 (19.4) 60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021) * 60.4 (8.1) 60.7 (6.7) 69.7 (1.4)
Prompt-based FT (Gao et al., 2021) i 52.8 (0.9) 84.4 (3.2) 54.8 (2.9)
Label Model (no co-training) Do 62.8 76.8 112

Label Model — DeBERTa distillation o3} 672 (05) 81.6 (2.2) 63.3(0.4)
Label Model + co-training Do 64.9 (1.1) 83.95123) 18.311:2)
DeBERTa-large + co-training o3} 67.4 (2.3) 86.2 (3.2) 80.6 (1.1)

Same-sized models.

More than 100x smaller than GPT-3!



Results: Few-shot

Using 4 labeled examples only

Model View RTE (2-class) CB (3-class) TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021)) . 58.7 (11.9) 45.2 (19.4) 60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021) * 60.4 (8.1) 60.7 (6.7) 69.7 (1.4)
Prompt-based FT (Gao et al., 2021) * 52.8 (0.9) 84.4 (3.2) 54.8 (2.9)
Label Model (no co-training) Do 62.8 76.8 112
Label Model — DeBERTa distillation o3 072 (0.5) 81.612.2) 63.3 (0.4)
Label Model + co-training Do 64.9 (1.1) 83.95123) 18.311:2)
DeBERTa-large + co-training 01 67.4 (2.3) 86.2 (3.2) 80.6 (1.1)
Label Model on full train Do 67.8 (0.5) 82.7 (0.8) 91.9 (1.1)
DeBERTa-large on full train 01 93.3 95.2 96.7
GPT-3 32-shot' (Brown et al., 2020) * 69.0 75.6 *
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Co-Training for Zero-shot Learning

TO [Sanh et al. ’21]: trained on tasks converted as natural instructions = meaningful
zero-shot learning performance.



Co-Training for Zero-shot Learning

TO [Sanh et al. ’21]: trained on tasks converted as natural instructions = meaningful

zero-shot learning performance.
{{premise} }
{{hypothesis} } {{premise}}

Soﬂ: prompt vectors Unlabeled example Question:
{{hypothesis} }
hO (¢O (X) ) appended TO TO /Soft prompt (ho)\ True or False?
WOI’d embeddiﬂgs. Example formatted
as a hard prompt
\
D | N[
Input embedding embeddlng
$o(x)
‘
TOmodel |5 (ILIITTTTT:
Output labels




Co-Training for Zero-shot Learning

TO [Sanh et al. ’21]: trained on tasks converted as natural instructions = meaningful

zero-shot learning performance.
{{premise} } v
{{hypothesis} } {{premise}}

Soﬂ: prompt vectors Unlabeled example Question: *BERT*
h X {{hypothesis} }
0 (¢O ( ) ) appended TO TO /Soft prompt (ho)\ True or False? l
WOI’d embeddiﬂgs. Example formatted d h
as a hard prompt
¢ & J
\ TO Contextual embedding
b g bedding $1(x)
Input embedding cmbe
DeBERTa + MLP b !
h1(¢1(X)) classifier (same as 4
before). TOmodel | S (IITTTTT) % |MLP (hy)
Output labels

Co-train



Results: Zero-shot

Model/Algorithm View RTE CB BoolQ

TO-3B (best) (Sanh et al., 2022) ¢ 689 66.1  59.1
TO-3B zero-shot (no co-training)  ¢g 689 589 564
TO-3B soft prompt + co-training  ¢g 87.0 679 49.1
DeBERTa-large + co-training ?1 86.3 67.9 48.9

TO-3B soft prompt on full train ¢y  90.6 804 86.9
DeBERTa-large on full train D1 93.3 952  86.1
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Summary

Co-training can effectively distill few-shot and zero-shot capabilities
from larger language models to much more efficient models.

Future directions:
o Extension to structured cases.

o (Co-training aware prompting.
o Prompt-aware pretraining.



Efficient Transfer Learning with Language Models

Various notions of efficiency:

e Memory efficiency: parameters, storage cost
e Inference efficiency: FLOPs, energy, speed
g g e Data efficiency: labeled data, unlabeled data
Impprtant to think about target use case when striving for
efficiency!
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Thanks!



