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Language Models

I see a beautiful city and a brilliant … 

Albert Camus was a French philosopher, author …

GameStop stock rises after chairman buys …



The   cat    ???    on    ???    mat

sat the

Masked Language Models
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Contextualized word 
representations

Uni-directional 
attention layer

Predict next word

Autoregressive Language Models



Language Modeling

word
context

masked word
surrounding words

next word
previous words



Language Modeling Objective

word
context

Language models can implicitly capture much linguistic/world 
knowledge through their parameters.

Transfer learning paradigm: finetuning / prompting.



Transfer Learning via Finetuning

Information 
Retrieval

Question 
Answering

Paraphrase 
Detection

Text 
Classification
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Language 
Model
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Task-Specific
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Finetuning



Transfer Learning via Prompting

The   cat    sat     on    the    mat

Language 
Model

Pretraining
Phase

Task-Specific
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Conditioning 
via Language 
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Review: the acting was subpar. 
Positive or Negative?

Negative



Transfer Learning with Language Models
AdaptationSize Labeled data Examples

BERT 
RoBERTa
XLNet 
BART
T5

100M-10B Fine-tuning >16

GPT-3 
GLaM 
T0
FLAN
PaLM

10B-500B Prompting <16

Inference

Fast

Slow



Transfer Learning with Language Models

Good performance and reasonably fast inference.

Task-specific parameters ⇒ memory does not scale 
well to multiple tasks.

Still requires nontrivial amounts of labeled data.

✓

✗

✗

BERT 
RoBERTa
XLNet 
BART
T5

100M-10B Fine-tuning >16 Fast

AdaptationSize Labeled data Examples Inference



Transfer Learning with Language Models

Pretrained parameters remain fixed.

Good few-shot and zero-shot performance.

Prompting capabilities only emerge when model sizes 
are large enough ⇒ inference is slow.

✓

✗

✓

GPT-3 
GLaM 
T0
FLAN
PaLM

10B-500B Prompting <16 Slow

AdaptationSize Labeled data Examples Inference
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Transfer Learning via Full Fine-tuning



Transfer Learning via Full Fine-tuning

 …

Multi-task scenario with 
potentially unknown 
number of tasks (e.g., 
streaming)

Task 1 Task 2 Task 3 Task T

Hundreds of millions of 
parameters each!



Transfer Learning via Full Fine-tuning

● Full fine-tuning: need to store full set of 
parameters for each task ⇒ hard to scale 
to multiple tasks.

● Model already learns linguistic and world 
knowledge through pretraining ⇒ 
unnecessary/wasteful to fine-tune all 
parameters.  

(Parameter-inefficiency)



Existing Approaches for Parameter Efficiency

● Model compression: 
○ Pruning [Goden et al. ’20, Sajjad et al. ’20, Chen et al. ’20]
○ Distillation [Sanh et al. ’19, Sun et al. ’20, Jiao et al. ’20]

Still requires 10%-30% of the full parameters to maintain 
performance.

                                 



Existing Approaches for Parameter Efficiency

● Model compression: 
○ Pruning [Goden et al. ’20, Sajjad et al. ’20, Chen et al. ’20]
○ Distillation [Sanh et al. ’19, Sun et al. ’20, Jiao et al. ’20]

Still requires 10%-30% of the full parameters to maintain 
performance.

                                 ● Adapters [Houlsby et al. ’19]:
○ Small narrow layers that are inserted in 

between wider model layers.
○ Pretrained model remains fixed, only 

the adapters are fine-tuned for each 
task. (One adapter per task).

○ Only requires 2%-4% new parameters 
per task! 

                                 

Finetuned



Diff Pruning

● Learn an extension to the existing pretrained model (which remains 
fixed).

● Model extension is parameterized as a vector (“difference vector”) that 
additively modifies pretrained parameters.

 . . .



Diff Pruning

 . . .

If the extension (diff vector) is 
sparse, then additional memory 
per task will be marginal.

● Learn an extension to the existing pretrained model (which remains 
fixed).

● Model extension is parameterized as a vector (“difference vector”) that 
additively modifies pretrained parameters.



Diff Pruning Objective

● For each task     :

● If regularizer can learn a sparse diff vector such that
then number of new parameters per task will be manageable! 



Diff Pruning Objective

● For each task     :

● If regularizer can learn a sparse diff vector such that
then we only need a few additional parameters per task! 

Task-specific negative 
log likelihood

Regularizer on 
diff vector



Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective

L0-norm regularizer
Not amenable to 
gradient-based 
optimization



Original Objective

L0-norm regularizer

Decompose diff vector

Differentiable Sparse Regularizer [Louizos et al. ’18]

(Still) not amenable 
to gradient-based 
optimization

Reparameterized 
Objective



Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Optimize over distribution parameterized by       :

Issue: Tractable optimization requires policy gradients.

Differentiable Sparse Regularizer [Louizos et al. ’18]



Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Continuous relaxation

Stretched Hard-Concrete 
distribution [Louizos et al. ’18]

Differentiable Sparse Regularizer [Louizos et al. ’18]



Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Continuous relaxation

Reparameterization trick
⇒ lower-variance gradient 
estimator.

Differentiable Sparse Regularizer [Louizos et al. ’18]



Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Continuous relaxation

Reparameterization trick

Closed-form solution for 
regularizer!

Differentiable Sparse Regularizer [Louizos et al. ’18]



Diff Pruning

● After training       should be very negative for many dimensions. 

● Use this to get a sparse binary vector from:

● Final diff vector given by:



Diff Pruning with Targeted Sparsity

● Sparsity can be softly controlled by    , but we often want exact sparsity 
control (e.g., memory budget).

● Targeted sparsity via projection onto L0-ball (magnitude pruning): 
○ Take the top t% of non-zero values of       based on magnitude.
○ Continue fine-tuning for a few epochs.

● Standard magnitude pruning on the diff vector. 



Structured Diff Pruning

● Partition each dimension into groups based on matrices/biases (393 
groups for BERTLARGE):

● Encourages entire groups to have zero diff vector.



Diff Pruning

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)



Diff Pruning

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)



Experiments

● Experiments on standard GLUE benchmark with BERTLARGE.

● (Mostly) the same hyperparameters for all datasets.

● Additional tricks:

Initialized to zero.

Initialized to positive value to discourage 
sparsity in the beginning.
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Results



ResultsTotal number of parameters 
for all 9 tasks as a multiplier 
on top of BERTLARGE
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ResultsTotal number of parameters 
for all 9 tasks as a multiplier 
on top of BERTLARGE

Average GLUE 
performance

Additional parameters 
per task (as a function of 
BERTLARGE)



Results

Adapters from Houlsby et al. ’19



Results

1. Fine-tune as usual to obtain task-specific parameters
2. Calculate diff vector as
3. Magnitude pruning + fine-tuning on diff vector.



Results



Memory-efficiency vs. Model Compression

(with BERTBASE)



Memory-efficiency vs. Model Compression

Requires 120%-553% BERTBASE parameters for all 9 tasks.
⇒ Diff pruning becomes more memory-efficient as the 
number of tasks increases.

(with BERTBASE)



Memory-efficiency vs. Model Compression

Caveat: these models are 
smaller ⇒ faster inference. (with BERTBASE)

Requires 120%-553% BERTBASE parameters for all 9 tasks.
⇒ Diff pruning becomes more memory-efficient as the 
number of tasks increases.



Memory-efficiency vs. Model Compression



Analysis: Sparsity vs. Performance



Analysis: Distribution of Non-zero Diffs

Layer 0

Layer 24

.

.

.



Summary

● Open questions:

○ Is memory-scaling per task actually a concern?
○ Adapters vs. prefix-tuning vs. additive updates?
○ Sparse fine-tuning for continual learning?

● Recent works for even greater parameter-efficiency:

○ BitFit [Ben-Zaken et al. ’22]: Only tune bias vectors ⇒ competitive 
performance with only 0.08% parameters per task!

○ FISH [Sung et al. ’21]: Use (an approximation of) Fisher Information 
matrix to prune diff vector.
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Transfer Learning via Prompting

The   cat    sat     on    the    mat

Language 
Model

Pretraining
Phase

Task-Specific
Model

Conditioning 
via Language 
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Prompt-based Few- and Zero-shot Learning

Zero-shot Learning for 
Machine Translation

Translate the following sentence 
from English to French.

English: I’m not a cat
French: 

Je ne suis pas un chat

Few-shot Learning for 
Text Classification

Review: this movie was great. 
Positive or Negative? Positive

Review: the acting was subpar. 
Positive or Negative?

Negative



Prompt-based Learning

- Model remains fixed ⇒ memory does not increase with the number of 
tasks (unlike BERT fine-tuning).

- Non-trivial performance with only a few (or no) examples.

- Sensitive to cosmetic artifacts such as prompt wording and order of 
labeled examples [Lu et al. ’21, Zhao et al. ’21].

- Prompt-based capabilities seem to emerge only when model sizes are 
large enough [Wei et al. ’21] ⇒ inference is expensive!

✓

✓

✗

✗
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Inference Efficiency for Few-shot Prompting
AdaptationSize Labeled data Examples

BERT 
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Inference Efficiency for Few-shot Prompting
AdaptationSize Labeled data Examples

BERT 
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Can we get the best of both worlds?



Co-Training [Blum and Mitchell ’98] 

● A semi-supervised approach for leveraging unlabeled data.

● Pair of models are trained over different “views” of the same underlying 
data.

● The two models are iteratively trained on confidently-labeled data 
points from the other model.

View

Model

Lab tests X-ray



Co-Training [Blum and Mitchell ’98] 

● A semi-supervised approach for leveraging unlabeled data.

● Pair of models are trained over different “views” of the same underlying 
data.

● The two models are iteratively trained on confidently-labeled data 
points from the other model.

View

Model

Text on web page Query that led to article



Co-Training [Blum and Mitchell ’98] 

● A semi-supervised approach for leveraging unlabeled data.

● Pair of models are trained over different “views” of the same underlying 
data.

● The two models                 and                  are iteratively trained on 
confidently-labeled data points from the other model.

View

Model



Co-Training

Model 0 Round 1 

● Train      on small labeled data.
● Apply      on view            of 

unlabeled data 
● Get confidently-labeled data as 

pseudo-labels
● Train      on view            on 

pseudo-labels (and gold labels)

Labeled 
Data (Small)
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Co-Training

Model 0 Round 1 

● Train      on small labeled data
● Apply      on view            of 

unlabeled data. 
● Get confidently-labeled data as 

pseudo-labels.
● Retrain      on view            on 

pseudo-labels. 

Labeled 
Data (Small)

Unlabeled   
Data

Confident 
Labels 0

Model 1

Confident 
Labels 1



Co-Training
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Co-Training

Model 0

Labeled 
Data (Small)

Unlabeled   
Data

Confident 
Labels 0

Model 1

Confident 
Labels 1

If the views are “different enough”, 
then the learned classifier will have 
low error [Blum and Mitchel ’98; 
Balcan et al. ’05] 

Pretrained LM
Another pretrained 
LM with different 
inductive biases?



Co-Training for Inference Efficiency

Labeled 
Data (Small)

Unlabeled   
Data

Confident 
Labels 0

Confident 
Labels 1

Simple idea:
● Prompted GPT-3 as the initial 

model.
● BERT as the other model ⇒ 

Faster inference!
● Implicit ensembling of different 

inductive biases.

Final model

Model 0

Model 1
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Unlabeled   
Data

Confident 
Labels 0

Model 1

Confident 
Labels 1

Simple idea:
● Prompted GPT-3 as the initial 

model.
● BERT as the other model ⇒ 

Faster inference!
● Implicit ensembling of different 

inductive biases.

Questions:
● How to learn a model over 

prompted GPT-3 to make it 
amenable to updating?

● How to select confident labels?

Model 0

Co-Training for Inference Efficiency
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Co-Training for Inference Efficiency

Simple idea:
● Prompted GPT-3 as the initial 

model.
● BERT as the other model ⇒ 

Faster inference!
● Implicit ensembling of different 

inductive biases.

Questions:
● How to learn a model over 

prompted GPT-3 to make it 
amenable to updating?

● How to select confident labels?



Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Prompt-based Few-shot Learning



Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False, 
or Unknown?
Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or 
Unknown?

Prompt      Labeled examples      Unlabeled input

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Prompt-based Few-shot Learning
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Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Distribution over label tokens 
(i.e., verbalizer)

{True, False, Unknown, true, false, 
unknown, Yes, No, yes, no, …}

Prompt-based Few-shot Learning
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Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output 
probabilities from k prompted models

          : Prompted GPT-3 probabilities as view 0
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          : Prompted GPT-3 probabilities as view 0
Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output 
probabilities from k prompted models

Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or 
Unknown?

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, 
False, or Unknown?
Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or 
Unknown?

.

.

.

.

.

.
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          : Label model for aggregating GPT-3 outputs

● Simple averaging does not work well because (i) the probabilities are not 
well calibrated [Zhao et al. ’21], (ii) there are no learnable parameters.

● Parameterized label model over                       :                   
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          : Label model for aggregating GPT-3 outputs

Label tokens 
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Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

Assume WLOG that the first    dimensions of                
correspond to label tokens.

Part of the matrix          applied to these tokens is 
initialized to

Inituition: initially the model uses the label token 
probabilities, but can learn to use verbalizer tokens that 
are related.

Tr
ue
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Un
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n

tr
ue…

where              is label probability vector the output from 
an empty prompt [Zhao et al. ’21]. 

(Rest are initialized to 0.)

a 0 0 0 0  …  0    
0 b 0 0 0  …  0
0 0 c 0 0  …  0 .

.

.
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          : Label model for aggregating GPT-3 outputs

Calibration layer that learns to weight the 
different              vectors

The weights       are initialized to 1 to weight 
all prompts equally.

Final softmax over     labels gives 
probabilities with which to select confident 
labels. (Pseudo-labels to train the smaller 
model).

Aggregation layer that sums of 
probabilities from different verbalizer 
tokens into the label token.



          : Frozen embeddings from smaller MLM
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          : Classifier over MLM embeddings
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Pseudo-labeling

● Select     = 50% of unlabeled dataset initially. 

● Increase this by      = 10% at each round for 5 rounds of co-training.

● Initial model (from prompted GPT-3) can have very low probability 
predictions for some labels ⇒ naive strategy of just taking the most 
confident labels does not work.

● Make the (weak) assumption that each label is at least 1% of the dataset ⇒ 
ensures each label is included in each pseudo-labeling round.

●             : use model confidence to select most confident labels
            : use cut statistic to select most confident labels to better take into 
account representation geometry (see paper).
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Pseudo-labeling

● Select     = 50% of unlabeled dataset initially. 

● Increase this by      = 10% at each round for 5 rounds of co-training.

● Initial model (from prompted GPT-3) can have very low probability for some 
labels ⇒ naive strategy of just taking the most confident labels can miss 
some labels.

● Make the (weak) assumption that each label is at least 1% of the dataset ⇒ 
ensures each label is included in each pseudo-labeling round.

●             : use model confidence to select most confident labels
            : use cut statistic [Muhlenbach et al. ’04] to select most confident 
labels to better take into account representation geometry.
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Experiments

● Test on datasets traditionally difficult for few-shot learning:
○ Textual entailment (RTE, CB)
○ Question classification (TREC)

● Prompts/hyperparameters inherited from previous work to minimize label 
leakage.

● Co-training parameters (e.g., initial coverage, number of rounds) selected on 
small subset of TREC ⇒ TREC results not “true” few-shot.

● Same exact setup across all datasets.



Results: Few-shot
Using 4 labeled examples only
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CBU [Zhao et al ’21]: rescale GPT-3 probabilities based on null prompt



Using 4 labeled examples only

Prompt-based FT [Gao et al. ’21]: full DeBERTa fine-tuning with prompted inputs
(uses 2 examples per class ⇒ 6 examples for CB and 12 examples for TREC)

Results: Few-shot
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Using 4 labeled examples only

Same-sized models.

More than 100x smaller than GPT-3!
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Co-Training for Zero-shot Learning
T0 [Sanh et al. ’21]: trained on tasks converted as natural instructions ⇒ meaningful 
zero-shot learning performance.
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T0 [Sanh et al. ’21]: trained on tasks converted as natural instructions ⇒ meaningful 
zero-shot learning performance.

Soft prompt vectors 
appended to T0 
word embeddings.

DeBERTa + MLP 
classifier (same as 
before).

Co-Training for Zero-shot Learning



Results: Zero-shot



Analysis



Summary

● Co-training can effectively distill few-shot and zero-shot capabilities 
from larger language models to much more efficient models.

● Future directions:

○ Extension to structured cases.
○ Co-training aware prompting.
○ Prompt-aware pretraining.



Various notions of efficiency:

● Memory efficiency: parameters, storage cost
● Inference efficiency: FLOPs, energy, speed
● Data efficiency: labeled data, unlabeled data

Important to think about target use case when striving for 
efficiency!

Efficient Transfer Learning with Language Models



Thanks!


