
Efficient Transfer Learning with
Large Language Models

Yoon Kim
MIT

(work with Demi Guo, Alexander Rush, Hunter Lang, Monica Agrawal, David Sontag)

Language Models

I see a beautiful city and a brilliant …

Albert Camus was a French philosopher, author …

GameStop stock rises after chairman buys …

The cat ??? on ??? mat

sat the

Masked Language Models

Contextualized word
representations

Bi-directional
attention layer

Predict masked word

The cat sat on

the

The cat sat on the

mat

Contextualized word
representations

Uni-directional
attention layer

Predict next word

Autoregressive Language Models

Language Modeling

word
context

masked word
surrounding words

next word
previous words

Language Modeling Objective

word
context

Language models can implicitly capture much linguistic/world
knowledge through their parameters.

Transfer learning paradigm: finetuning / prompting.

Transfer Learning via Finetuning

Information
Retrieval

Question
Answering

Paraphrase
Detection

Text
Classification

The cat sat on the mat

Language
Model

…

Pretraining
Phase

Task-Specific
Model

Parameter
Finetuning

Transfer Learning via Prompting

The cat sat on the mat

Language
Model

Pretraining
Phase

Task-Specific
Model

Conditioning
via Language
“Prompts”

Review: the acting was subpar.
Positive or Negative?

Negative

Transfer Learning with Language Models
AdaptationSize Labeled data Examples

BERT
RoBERTa
XLNet
BART
T5

100M-10B Fine-tuning >16

GPT-3
GLaM
T0
FLAN
PaLM

10B-500B Prompting <16

Inference

Fast

Slow

Transfer Learning with Language Models

Good performance and reasonably fast inference.

Task-specific parameters ⇒ memory does not scale
well to multiple tasks.

Still requires nontrivial amounts of labeled data.

✓

✗

✗

BERT
RoBERTa
XLNet
BART
T5

100M-10B Fine-tuning >16 Fast

AdaptationSize Labeled data Examples Inference

Transfer Learning with Language Models

Pretrained parameters remain fixed.

Good few-shot and zero-shot performance.

Prompting capabilities only emerge when model sizes
are large enough ⇒ inference is slow.

✓

✗

✓

GPT-3
GLaM
T0
FLAN
PaLM

10B-500B Prompting <16 Slow

AdaptationSize Labeled data Examples Inference

Memory Efficiency:
“Parameter-Efficient Transfer Learning with Diff Pruning”

(with Demi Guo, Alexander Rush; ACL ’21)

Inference Efficiency:
“Co-training Improves Prompt-based Learning for Large
Language Models”

(with Hunter Lang, Monica Agrawal, David Sontag; ICML ’22)

Efficient Transfer Learning with Language Models

Memory Efficiency:
“Parameter-Efficient Transfer Learning with Diff Pruning”

(with Demi Guo, Alexander Rush; ACL ’21)

Inference Efficiency:
“Co-training Improves Prompt-based Learning for Large
Language Models”

(with Hunter Lang, Monica Agrawal, David Sontag; ICML ’22)

Efficient Transfer Learning with Language Models

Transfer Learning via Full Fine-tuning

Transfer Learning via Full Fine-tuning

 …

Multi-task scenario with
potentially unknown
number of tasks (e.g.,
streaming)

Task 1 Task 2 Task 3 Task T

Hundreds of millions of
parameters each!

Transfer Learning via Full Fine-tuning

● Full fine-tuning: need to store full set of
parameters for each task ⇒ hard to scale
to multiple tasks.

● Model already learns linguistic and world
knowledge through pretraining ⇒
unnecessary/wasteful to fine-tune all
parameters.

(Parameter-inefficiency)

Existing Approaches for Parameter Efficiency

● Model compression:
○ Pruning [Goden et al. ’20, Sajjad et al. ’20, Chen et al. ’20]
○ Distillation [Sanh et al. ’19, Sun et al. ’20, Jiao et al. ’20]

Still requires 10%-30% of the full parameters to maintain
performance.

Existing Approaches for Parameter Efficiency

● Model compression:
○ Pruning [Goden et al. ’20, Sajjad et al. ’20, Chen et al. ’20]
○ Distillation [Sanh et al. ’19, Sun et al. ’20, Jiao et al. ’20]

Still requires 10%-30% of the full parameters to maintain
performance.

 ● Adapters [Houlsby et al. ’19]:
○ Small narrow layers that are inserted in

between wider model layers.
○ Pretrained model remains fixed, only

the adapters are fine-tuned for each
task. (One adapter per task).

○ Only requires 2%-4% new parameters
per task!

Finetuned

Diff Pruning

● Learn an extension to the existing pretrained model (which remains
fixed).

● Model extension is parameterized as a vector (“difference vector”) that
additively modifies pretrained parameters.

 . . .

Diff Pruning

 . . .

If the extension (diff vector) is
sparse, then additional memory
per task will be marginal.

● Learn an extension to the existing pretrained model (which remains
fixed).

● Model extension is parameterized as a vector (“difference vector”) that
additively modifies pretrained parameters.

Diff Pruning Objective

● For each task :

● If regularizer can learn a sparse diff vector such that
then number of new parameters per task will be manageable!

Diff Pruning Objective

● For each task :

● If regularizer can learn a sparse diff vector such that
then we only need a few additional parameters per task!

Task-specific negative
log likelihood

Regularizer on
diff vector

Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective

L0-norm regularizer
Not amenable to
gradient-based
optimization

Original Objective

L0-norm regularizer

Decompose diff vector

Differentiable Sparse Regularizer [Louizos et al. ’18]

(Still) not amenable
to gradient-based
optimization

Reparameterized
Objective

Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Optimize over distribution parameterized by :

Issue: Tractable optimization requires policy gradients.

Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Continuous relaxation

Stretched Hard-Concrete
distribution [Louizos et al. ’18]

Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Continuous relaxation

Reparameterization trick
⇒ lower-variance gradient
estimator.

Differentiable Sparse Regularizer [Louizos et al. ’18]

Original Objective

L0-norm regularizer

Decompose diff vector

Lower bound

Continuous relaxation

Reparameterization trick

Closed-form solution for
regularizer!

Differentiable Sparse Regularizer [Louizos et al. ’18]

Diff Pruning

● After training should be very negative for many dimensions.

● Use this to get a sparse binary vector from:

● Final diff vector given by:

Diff Pruning with Targeted Sparsity

● Sparsity can be softly controlled by , but we often want exact sparsity
control (e.g., memory budget).

● Targeted sparsity via projection onto L0-ball (magnitude pruning):
○ Take the top t% of non-zero values of based on magnitude.
○ Continue fine-tuning for a few epochs.

● Standard magnitude pruning on the diff vector.

Structured Diff Pruning

● Partition each dimension into groups based on matrices/biases (393
groups for BERTLARGE):

● Encourages entire groups to have zero diff vector.

Diff Pruning

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)

Diff Pruning

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)

Experiments

● Experiments on standard GLUE benchmark with BERTLARGE.

● (Mostly) the same hyperparameters for all datasets.

● Additional tricks:

Initialized to zero.

Initialized to positive value to discourage
sparsity in the beginning.

Experiments

● Experiments on standard GLUE benchmark with BERTLARGE.

● (Mostly) the same hyperparameters for all datasets.

● Additional tricks:

Initialized to zero.

Initialized to positive value to discourage
sparsity in the beginning.

Results

ResultsTotal number of parameters
for all 9 tasks as a multiplier
on top of BERTLARGE

ResultsTotal number of parameters
for all 9 tasks as a multiplier
on top of BERTLARGE

Additional parameters
per task (as a function of
BERTLARGE)

ResultsTotal number of parameters
for all 9 tasks as a multiplier
on top of BERTLARGE

Average GLUE
performance

Additional parameters
per task (as a function of
BERTLARGE)

Results

Adapters from Houlsby et al. ’19

Results

1. Fine-tune as usual to obtain task-specific parameters
2. Calculate diff vector as
3. Magnitude pruning + fine-tuning on diff vector.

Results

Memory-efficiency vs. Model Compression

(with BERTBASE)

Memory-efficiency vs. Model Compression

Requires 120%-553% BERTBASE parameters for all 9 tasks.
⇒ Diff pruning becomes more memory-efficient as the
number of tasks increases.

(with BERTBASE)

Memory-efficiency vs. Model Compression

Caveat: these models are
smaller ⇒ faster inference. (with BERTBASE)

Requires 120%-553% BERTBASE parameters for all 9 tasks.
⇒ Diff pruning becomes more memory-efficient as the
number of tasks increases.

Memory-efficiency vs. Model Compression

Analysis: Sparsity vs. Performance

Analysis: Distribution of Non-zero Diffs

Layer 0

Layer 24

.

.

.

Summary

● Open questions:

○ Is memory-scaling per task actually a concern?
○ Adapters vs. prefix-tuning vs. additive updates?
○ Sparse fine-tuning for continual learning?

● Recent works for even greater parameter-efficiency:

○ BitFit [Ben-Zaken et al. ’22]: Only tune bias vectors ⇒ competitive
performance with only 0.08% parameters per task!

○ FISH [Sung et al. ’21]: Use (an approximation of) Fisher Information
matrix to prune diff vector.

Summary

● Open questions:

○ Is memory-scaling per task actually a concern?
○ Adapters vs. prefix-tuning vs. additive updates?
○ Sparse fine-tuning for continual learning?

● Recent works:

○ BitFit [Ben-Zaken et al. ’22]: Only tune bias vectors ⇒ competitive
performance with only 0.08% parameters per task!

○ FISH [Sung et al. ’21]: Use (an approximation of) Fisher Information
matrix to prune diff vector.

Memory Efficiency:
“Parameter-Efficient Transfer Learning with Diff Pruning”

(with Demi Guo, Alexander Rush; ACL ’21)

Inference Efficiency:
“Co-training Improves Prompt-based Learning for Large
Language Models”

(with Hunter Lang, Monica Agrawal, David Sontag; ICML ’22)

Efficient Transfer Learning with Language Models

Transfer Learning via Prompting

The cat sat on the mat

Language
Model

Pretraining
Phase

Task-Specific
Model

Conditioning
via Language
“Prompts”

Prompt-based Few- and Zero-shot Learning

Zero-shot Learning for
Machine Translation

Translate the following sentence
from English to French.

English: I’m not a cat
French:

Je ne suis pas un chat

Few-shot Learning for
Text Classification

Review: this movie was great.
Positive or Negative? Positive

Review: the acting was subpar.
Positive or Negative?

Negative

Prompt-based Learning

- Model remains fixed ⇒ memory does not increase with the number of
tasks (unlike BERT fine-tuning).

- Non-trivial performance with only a few (or no) examples.

- Sensitive to cosmetic artifacts such as prompt wording and order of
labeled examples [Lu et al. ’21, Zhao et al. ’21].

- Prompt-based capabilities seem to emerge only when model sizes are
large enough [Wei et al. ’21] ⇒ inference is expensive!

✓

✓

✗

✗

Prompt-based Learning

- Model remains fixed ⇒ memory does not increase with the number of
tasks (unlike BERT fine-tuning).

- Non-trivial performance with only a few (or no) examples.

- Prompt-based capabilities seem to emerge only when model sizes are
large enough [Wei et al. ’21] ⇒ inference is expensive!

✓

✓

✗

Inference Efficiency for Few-shot Prompting
AdaptationSize Labeled data Examples

BERT
RoBERTa
XLNet
BART
T5

100M-10B Fine-tuning >16

GPT-3
GLaM
T0
FLAN
PaLM

10B-500B Prompting <16

Inference

Fast

Slow

Inference Efficiency for Few-shot Prompting
AdaptationSize Labeled data Examples

BERT
RoBERTa
XLNet
BART
T5

100M-10B Fine-tuning >16

GPT-3
GLaM
T0
FLAN
PaLM

10B-500B Prompting <16

Inference

Fast

Really
slow

…

Inference Efficiency for Few-shot Prompting
AdaptationSize Labeled data Examples

BERT
RoBERTa
XLNet
BART
T5

100M-10B Fine-tuning >16

GPT-3
GLaM
T0
FLAN
PaLM

10B-500B Prompting <16

Inference

Fast

Really
slow

…

Can we get the best of both worlds?

Co-Training [Blum and Mitchell ’98]

● A semi-supervised approach for leveraging unlabeled data.

● Pair of models are trained over different “views” of the same underlying
data.

● The two models are iteratively trained on confidently-labeled data
points from the other model.

View

Model

Lab tests X-ray

Co-Training [Blum and Mitchell ’98]

● A semi-supervised approach for leveraging unlabeled data.

● Pair of models are trained over different “views” of the same underlying
data.

● The two models are iteratively trained on confidently-labeled data
points from the other model.

View

Model

Text on web page Query that led to article

Co-Training [Blum and Mitchell ’98]

● A semi-supervised approach for leveraging unlabeled data.

● Pair of models are trained over different “views” of the same underlying
data.

● The two models and are iteratively trained on
confidently-labeled data points from the other model.

View

Model

Co-Training

Model 0 Round 1

● Train on small labeled data.
● Apply on view of

unlabeled data
● Get confidently-labeled data as

pseudo-labels
● Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Co-Training

Model 0 Round 1

● Train on small labeled data
● Apply on view of

unlabeled data.
● Get confidently-labeled data as

pseudo-labels
● Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Unlabeled
Data

Co-Training

Model 0 Round 1

● Train on small labeled data.
● Apply on view of

unlabeled data.
● Get confidently-labeled data as

pseudo-labels.
● Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Co-Training

Model 0 Round 1

● Train on small labeled data.
● Apply on view of

unlabeled data.
● Get confidently-labeled data as

pseudo-labels.
● Train on view on

pseudo-labeled data.

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Co-Training

Model 0 Round 1

● Train on small labeled data
● Apply on view of

unlabeled data.
● Get confidently-labeled data as

pseudo-labels.
● Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Co-Training

Model 0 Round 1

● Train on small labeled data
● Apply on view of

unlabeled data.
● Get confidently-labeled data as

pseudo-labels.
● Retrain on view on

pseudo-labels.

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Co-Training

Model 0 Round 2

- Train on small labeled data
- Apply on view of

unlabeled data
- Get confidently-labeled data as

pseudo-labels
- Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Co-Training

Model 0 Round 2

- Train on small labeled data
- Apply on view of

unlabeled data
- Get confidently-labeled data as

pseudo-labels
- Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Co-Training

Model 0 Round 3

- Train on small labeled data
- Apply on view of

unlabeled data
- Get confidently-labeled data as

pseudo-labels
- Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Co-Training

Model 0 Round 3

- Train on small labeled data
- Apply on view of

unlabeled data
- Get confidently-labeled data as

pseudo-labels
- Train on view on

pseudo-labels (and gold labels)

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Co-Training

Model 0

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

If the views are “different enough”,
then the learned classifier will have
low error [Blum and Mitchel ’98;
Balcan et al. ’05]

Pretrained LM
Another pretrained
LM with different
inductive biases?

Co-Training for Inference Efficiency

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Confident
Labels 1

Simple idea:
● Prompted GPT-3 as the initial

model.
● BERT as the other model ⇒

Faster inference!
● Implicit ensembling of different

inductive biases.

Final model

Model 0

Model 1

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Simple idea:
● Prompted GPT-3 as the initial

model.
● BERT as the other model ⇒

Faster inference!
● Implicit ensembling of different

inductive biases.

Questions:
● How to learn a model over

prompted GPT-3 to make it
amenable to updating?

● How to select confident labels?

Model 0

Co-Training for Inference Efficiency

Labeled
Data (Small)

Unlabeled
Data

Confident
Labels 0

Model 1

Confident
Labels 1

Model 0

Co-Training for Inference Efficiency

Simple idea:
● Prompted GPT-3 as the initial

model.
● BERT as the other model ⇒

Faster inference!
● Implicit ensembling of different

inductive biases.

Questions:
● How to learn a model over

prompted GPT-3 to make it
amenable to updating?

● How to select confident labels?

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Prompt-based Few-shot Learning

Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False,
or Unknown?
Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

Prompt Labeled examples Unlabeled input

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Prompt-based Few-shot Learning

Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False,
or Unknown?
Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

Prompt Labeled examples Unlabeled input

.

.

.

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Distribution over label tokens
(i.e., verbalizer)

{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

Prompt-based Few-shot Learning

Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False,
or Unknown?
Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

Prompt Labeled examples Unlabeled input

.

.

. True

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Distribution over label tokens
(i.e., verbalizer)

{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

Prompt-based Few-shot Learning

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output
probabilities from k prompted models

 : Prompted GPT-3 probabilities as view 0

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output
probabilities from k prompted models

Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True,
False, or Unknown?
Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

Prompt Labeled examples Unlabeled input

 : Prompted GPT-3 probabilities as view 0

 : Prompted GPT-3 probabilities as view 0
Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output
probabilities from k prompted models

Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True,
False, or Unknown?
Answer: False

Hepburn’s family will receive proceeds from the sale.
Question: Proceeds go to Hepburn’s family. True, False or
Unknown?

.

.

.

.

.

.

Prompt Labeled examples Unlabeled input

 : Label model for aggregating GPT-3 outputs

● Simple averaging does not work well because (i) the probabilities are not
well calibrated [Zhao et al. ’21], (ii) there are no learnable parameters.

● Parameterized label model over :

 : Label model for aggregating GPT-3 outputs

.

.

.

Label tokens
{True, False, Unknown}

Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

Assume WLOG that the first dimensions of
correspond to label tokens.

Part of the matrix applied to these tokens is
initialized to identity; rest are initialized to 0.

Inituition: initially the model uses the label token
probabilities, but can learn to use verbalizer tokens that
are related.

Tr
ue
Fa
ls
e

Un
kn
ow
n

tr
ue…

 : Label model for aggregating GPT-3 outputs

.

.

.

Label tokens
{True, False, Unknown}

Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

Assume WLOG that the first dimensions of
correspond to label tokens.

(See paper on how to obtain the set of verbalizer tokens
in a task-agnostic way)

Part of the matrix applied to these tokens is
initialized to identity; rest are initialized to 0.

Inituition: initially the model uses the label token
probabilities, but can learn to use verbalizer tokens that
are related.

Tr
ue
Fa
ls
e

Un
kn
ow
n

tr
ue…

 : Label model for aggregating GPT-3 outputs

Label tokens
{True, False, Unknown}

Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

Assume WLOG that the first dimensions of
correspond to label tokens.

Part of the matrix applied to these tokens is
initialized to

Inituition: initially the model uses the label token
probabilities, but can learn to use verbalizer tokens that
are related.

Tr
ue
Fa
ls
e

Un
kn
ow
n

tr
ue…

where is label probability vector the output from
an empty prompt [Zhao et al. ’21].

(Rest are initialized to 0.)

a 0 0 0 0 … 0
0 b 0 0 0 … 0
0 0 c 0 0 … 0 .

.

.

 : Label model for aggregating GPT-3 outputs

.

.

.

Label tokens
{True, False, Unknown}

Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

4 0 0 0 2 … 0
0 3 0 0 0 … 0
0 0 2 0 0 … 0

Assume WLOG that the first dimensions of
correspond to label tokens.

Part of the matrix applied to these tokens is
initialized to

Inituition: initially the model uses the label token
probabilities, but can learn to use verbalizer tokens that
are related.

 can ignore certain prompt/label combinations.

Tr
ue
Fa
ls
e

Un
kn
ow
n

tr
ue…

Both True and true would
contribute to True

 : Label model for aggregating GPT-3 outputs

.

.

.

Label tokens
{True, False, Unknown}

Verbalizer tokens
{True, False, Unknown, true, false,
unknown, Yes, No, yes, no, …}

4 0 0 0 2 … 0
0 3 0 0 0 … 0
0 0 2 0 0 … 0

Assume WLOG that the first dimensions of
correspond to label tokens.

Part of the matrix applied to these tokens is
initialized to

Inituition: initially the model uses the label token
probabilities, but can learn to use verbalizer tokens that
are related.

 can ignore certain prompt/label combinations.

Tr
ue
Fa
ls
e

Un
kn
ow
n

tr
ue…

Both True and true would
contribute to True

 : Label model for aggregating GPT-3 outputs

Calibration layer that learns to weight the
different vectors

The weights are initialized to 1 to weight
all prompts equally.

Final softmax over labels gives
probabilities with which to select confident
labels. (Pseudo-labels to train the smaller
model).

Aggregation layer that sums of
probabilities from different verbalizer
tokens into the label token.

 : Frozen embeddings from smaller MLM

Hepburn’s family will receive proceeds
from the sale. [SEP] Proceeds go to
Hepburn’s family.

DeBERTa
embeddings

 : Classifier over MLM embeddings

Hepburn’s family will receive proceeds
from the sale. [SEP] Proceeds go to
Hepburn’s family.

DeBERTa
embeddings

MLP over
embeddings

1

Pseudo-labeling

● Select = 50% of unlabeled dataset initially.

● Increase this by = 10% at each round for 5 rounds of co-training.

● Initial model (from prompted GPT-3) can have very low probability
predictions for some labels ⇒ naive strategy of just taking the most
confident labels does not work.

● Make the (weak) assumption that each label is at least 1% of the dataset ⇒
ensures each label is included in each pseudo-labeling round.

● : use model confidence to select most confident labels
 : use cut statistic to select most confident labels to better take into
account representation geometry (see paper).

Pseudo-labeling

● Select = 50% of unlabeled dataset initially.

● Increase this by = 10% at each round for 5 rounds of co-training.

● Initial model (from prompted GPT-3) can have very low probability for some
labels ⇒ naive strategy of just taking the most confident labels can miss
some labels.

● Make the (weak) assumption that each label is at least 1% of the dataset ⇒
ensures each label is included in each pseudo-labeling round.

● : use model confidence to select most confident labels
 : use cut statistic to select most confident labels to better take into
account representation geometry (see paper).

Pseudo-labeling

● Select = 50% of unlabeled dataset initially.

● Increase this by = 10% at each round for 5 rounds of co-training.

● Initial model (from prompted GPT-3) can have very low probability for some
labels ⇒ naive strategy of just taking the most confident labels can miss
some labels.

● Make the (weak) assumption that each label is at least 1% of the dataset ⇒
ensures each label is included in each pseudo-labeling round.

● : use model confidence to select most confident labels
 : use cut statistic [Muhlenbach et al. ’04] to select most confident
labels to better take into account representation geometry.

Putting it all together

Putting it all together

Putting it all together

Experiments

● Test on datasets traditionally difficult for few-shot learning:
○ Textual entailment (RTE, CB)
○ Question classification (TREC)

● Prompts/hyperparameters inherited from previous work to minimize label
leakage.

● Co-training parameters (e.g., initial coverage, number of rounds) selected on
small subset of TREC ⇒ TREC results not “true” few-shot.

● Same exact setup across all datasets.

Results: Few-shot
Using 4 labeled examples only

Results: Few-shot
Using 4 labeled examples only

CBU [Zhao et al ’21]: rescale GPT-3 probabilities based on null prompt

Using 4 labeled examples only

Prompt-based FT [Gao et al. ’21]: full DeBERTa fine-tuning with prompted inputs
(uses 2 examples per class ⇒ 6 examples for CB and 12 examples for TREC)

Results: Few-shot

Using 4 labeled examples only

Results: Few-shot

Using 4 labeled examples only

Results: Few-shot

Using 4 labeled examples only

Same-sized models.

More than 100x smaller than GPT-3!

Results: Few-shot

Using 4 labeled examples only

Results: Few-shot

Analysis

Co-Training for Zero-shot Learning
T0 [Sanh et al. ’21]: trained on tasks converted as natural instructions ⇒ meaningful
zero-shot learning performance.

T0 [Sanh et al. ’21]: trained on tasks converted as natural instructions ⇒ meaningful
zero-shot learning performance.

Soft prompt vectors
appended to T0
word embeddings.

Co-Training for Zero-shot Learning

T0 [Sanh et al. ’21]: trained on tasks converted as natural instructions ⇒ meaningful
zero-shot learning performance.

Soft prompt vectors
appended to T0
word embeddings.

DeBERTa + MLP
classifier (same as
before).

Co-Training for Zero-shot Learning

Results: Zero-shot

Analysis

Summary

● Co-training can effectively distill few-shot and zero-shot capabilities
from larger language models to much more efficient models.

● Future directions:

○ Extension to structured cases.
○ Co-training aware prompting.
○ Prompt-aware pretraining.

Various notions of efficiency:

● Memory efficiency: parameters, storage cost
● Inference efficiency: FLOPs, energy, speed
● Data efficiency: labeled data, unlabeled data

Important to think about target use case when striving for
efficiency!

Efficient Transfer Learning with Language Models

Thanks!

