Efficient Transfer Learning with Large Language Models

Yoon Kim MIT

(work with Demi Guo, Alexander Rush, Hunter Lang, Monica Agrawal, David Sontag)

Language Models

I see a beautiful city and a brilliant …

Albert Camus was a French philosopher, author …

GameStop stock rises after chairman buys …

Masked Language Models

Predict masked word

Contextualized word representations

Bi-directional attention layer

Autoregressive Language Models

Predict next word

Contextualized word representations

Uni-directional attention layer

Language Modeling

$$
\max_{\theta} \prod_{(w,c)\in\mathcal{D}} p_{\theta}(w | c) \qquad \begin{array}{l} w = \text{ word} \\ c = \text{ context} \end{array}
$$

 $w =$ masked word $c =$ surrounding words

 $w =$ next word $c =$ previous words

Language Modeling Objective

Language models can implicitly capture much linguistic/world knowledge through their parameters.

Transfer learning paradigm: finetuning / prompting.

Transfer Learning via Finetuning

Transfer Learning via Prompting

Transfer Learning with Language Models

The

cat

sat

the

on

mat

Transfer Learning with Language Models

- ✔ Good performance and reasonably fast inference.
- Task-specific parameters ⇒ memory does not scale well to multiple tasks. X
- X Still requires nontrivial amounts of labeled data.

Transfer Learning with Language Models

10B-500B Prompting <16 Slow

Efficient Transfer Learning with Language Models

Memory Efficiency:

"Parameter-Efficient Transfer Learning with Diff Pruning"

(with Demi Guo, Alexander Rush; ACL '21)

Inference Efficiency: "Co-training Improves Prompt-based Learning for Large Language Models"

(with Hunter Lang, Monica Agrawal, David Sontag; ICML '22)

Efficient Transfer Learning with Language Models

Memory Efficiency:

"Parameter-Efficient Transfer Learning with Diff Pruning"

(with Demi Guo, Alexander Rush; ACL '21)

Transfer Learning via Full Fine-tuning

Transfer Learning via Full Fine-tuning

Transfer Learning via Full Fine-tuning

- Full fine-tuning: need to store full set of parameters for each task \Rightarrow hard to scale to multiple tasks.
- Model already learns linguistic and world knowledge through pretraining ⇒ unnecessary/wasteful to fine-tune all parameters.

(Parameter-inefficiency)

Existing Approaches for Parameter Efficiency

- Model compression:
	- Pruning [Goden et al. '20, Sajjad et al. '20, Chen et al. '20] ○ Distillation [Sanh et al. '19, Sun et al. '20, Jiao et al. '20] Still requires 10%-30% of the full parameters to maintain performance.

Existing Approaches for Parameter Efficiency

● Model compression:

○ Pruning [Goden et al. '20, Sajjad et al. '20, Chen et al. '20] ○ Distillation [Sanh et al. '19, Sun et al. '20, Jiao et al. '20] Still requires 10%-30% of the full parameters to maintain performance.

- Adapters [Houlsby et al. '19]:
	- Small narrow layers that are inserted in between wider model layers.
	- Pretrained model remains fixed, only the adapters are fine-tuned for each task. (One adapter per task).
	- Only requires 2%-4% new parameters per task!

Diff Pruning

- Learn an *extension* to the existing pretrained model (which remains fixed).
- Model extension is parameterized as a vector ("difference vector") that additively modifies pretrained parameters.

$$
\theta_{\tau_1} = \theta_{\text{pretrained}} + \delta_{\tau_1}
$$

$$
\theta_{\tau_2} = \theta_{\text{pretrained}} + \delta_{\tau_2}
$$

$$
\theta_{\tau_3} = \theta_{\text{pretrained}} + \delta_{\tau_3}
$$

$$
\vdots
$$

$$
\theta_{\tau_T} = \theta_{\text{pretrained}} + \delta_{\tau_T}
$$

Diff Pruning

- Learn an *extension* to the existing pretrained model (which remains fixed).
- Model extension is parameterized as a vector ("difference vector") that additively modifies pretrained parameters.

$$
\theta_{\tau_1} = \theta_{\text{pretrained}} + \delta_{\tau_1}
$$
\n
$$
\theta_{\tau_2} = \theta_{\text{pretrained}} + \delta_{\tau_2}
$$
\n
$$
\theta_{\tau_3} = \theta_{\text{pretrained}} + \delta_{\tau_3}
$$
\n
$$
\vdots
$$
\n
$$
\theta_{\tau_T} = \theta_{\text{pretrained}} + \delta_{\tau_T}
$$

If the extension (diff vector) is sparse, then additional memory per task will be marginal.

Diff Pruning Objective

• For each task τ :

$$
\min_{\delta_{\tau}} \ \sum_{n=1}^{N} -\log p(y^{(n)}\,|\,x^{(n)}\,;\,\theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

Diff Pruning Objective

 \bullet For each task τ :

$$
\min_{\delta_{\tau}} \sum_{n=1}^{N} -\log p(y^{(n)} | x^{(n)}; \theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

Task-specific negative
log likelihood
diff vector

on

• If regularizer can learn a sparse diff vector such that $\|\delta_\tau\|_0 \ll \|\theta_{\sf{pretrained}}\|_0$ then we only need a few additional parameters per task!

Original Objective

L0-norm regularizer

$$
\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

 $R(\delta_\tau) = \sum_{i=1}^d \mathbb{1}\{\delta_{\tau,i} \neq 0\}$

Not amenable to gradient-based optimization

Original Objective

L0-norm regularizer

$$
\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

 $R(\delta_{\tau}) = \sum_{i=1}^d \mathbb{1}\{\delta_{\tau,i} \neq 0\}$

(Still) not amenable to gradient-based optimization

Decompose diff vector

$$
\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0, 1\}^d, w_{\tau} \in \mathbb{R}^d
$$

Reparameterized **Objective**

 $\min_{z \to w} L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau})$ z_{τ} , w_{τ}

Original Objective

$$
\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

L0-norm regularizer

$$
R(\delta_{\tau}) = \sum_{i=1}^d \mathbb{1}\{\delta_{\tau,i} \neq 0\}
$$

Decompose diff vector

Lower bound

$$
\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0, 1\}^d, w_{\tau} \in \mathbb{R}^d
$$

$$
\min_{\alpha_{\tau},w_{\tau}} \mathbb{E}_{z_{\tau} \sim p(z_{\tau};\,\alpha_{\tau})} \left[L(\mathcal{D}_{\tau},\theta_{\mathsf{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau}) \right]
$$

Optimize over distribution parameterized by α_{τ} .

$$
p(z_{\tau}; \alpha_{\tau}) = \prod_{i=1}^{d} \sigma(\alpha_{\tau,i})^{z_{\tau,i}} \times (1 - \sigma(\alpha_{\tau,i}))^{1-z_{\tau,i}}
$$

Issue: Tractable optimization requires policy gradients.

Original Objective

$$
\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

L0-norm regularizer

$$
R(\delta_{\tau}) = \sum_{i=1}^d \mathbb{1}\{\delta_{\tau,i} \neq 0\}
$$

Decompose diff vector

$$
\delta_{\tau}=z_{\tau}\odot w_{\tau},\quad z_{\tau}\in\{0,1\}^{d},~w_{\tau}\in\mathbb{R}^{d}
$$

Lower bound

$$
\min_{\alpha_{\tau},w_{\tau}} \mathbb{E}_{z_{\tau} \sim p(z_{\tau};\,\alpha_{\tau})} \left[L(\mathcal{D}_{\tau},\theta_{\text{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau}) \right]
$$

Continuous relaxation

$$
z_\tau \in \{0,1\}^d \rightarrow \tilde{z}_\tau \in [0,1]^d
$$

 $u \sim U[0,1]$ $s_{\tau} = \sigma(\log u - \log(1-u) + \alpha_{\tau})$ Stretched Hard-Concrete $\bar{s}_{\tau} = (r - l) \times s_{\tau} + l$ distribution [Louizos et al. '18] $\tilde{z}_{\tau} = \min(1, \max(0, \bar{s}_{\tau}))$

Original Objective

$$
\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

L0-norm regularizer

$$
R(\delta_{\tau}) = \sum_{i=1}^d \mathbb{1}\{\delta_{\tau,i} \neq 0\}
$$

Decompose diff vector

$$
\delta_{\tau}=z_{\tau}\odot w_{\tau},\quad z_{\tau}\in\{0,1\}^{d},\;w_{\tau}\in\mathbb{R}^{d}
$$

Lower bound

$$
\min_{\alpha_{\tau},w_{\tau}} \mathbb{E}_{z_{\tau} \sim p(z_{\tau};\,\alpha_{\tau})} \left[L(\mathcal{D}_{\tau},\theta_{\text{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau}) \right]
$$

Continuous relaxation

$$
z_\tau \in \{0,1\}^d \rightarrow \tilde{z}_\tau \in [0,1]^d
$$

Reparameterization trick ⇒ lower-variance gradient estimator.

$$
\min_{\alpha_{\tau},w_{\tau}} \mathbb{E}_{u \sim U[0,1]} [L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) + \lambda R(\tilde{z}_{\tau} \odot w_{\tau})]
$$

Original Objective

$$
\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\text{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})
$$

L0-norm regularizer

$$
R(\delta_{\tau}) = \sum_{i=1}^d \mathbb{1}\{\delta_{\tau,i} \neq 0\}
$$

Decompose diff vector

$$
\delta_{\tau}=z_{\tau}\odot w_{\tau},\quad z_{\tau}\in\{0,1\}^{d},\;w_{\tau}\in\mathbb{R}^{d}
$$

Lower bound

$$
\min_{\alpha_{\tau},w_{\tau}} \mathbb{E}_{z_{\tau} \sim p(z_{\tau};\,\alpha_{\tau})} \left[L(\mathcal{D}_{\tau},\theta_{\text{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau}) \right]
$$

Continuous relaxation

Reparameterization trick

$$
z_{\tau} \in \{0,1\}^d \to \tilde{z}_{\tau} \in [0,1]^d
$$

 $\min_{\alpha_{\tau},w_{\tau}}\; \mathbb{E}_{u \sim U[0,1]}\left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) + \lambda R(\tilde{z}_{\tau} \odot w_{\tau})\right]$ $\mathbb{E}_{u \sim U[0,1]}\left[R(\tilde{z}_\tau \odot w_\tau)\right] = \sum_{i=1}^d \sigma\left(\alpha_{\tau,i} - \log \frac{-l}{r}\right).$ Closed-form solution for regularizer!

Diff Pruning

$$
\min_{\alpha_{\tau},w_{\tau}}\ \mathbb{E}_{u \sim U[0,1]}\left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau})\right] + \lambda \sum_{i=1}^d \sigma\left(\alpha_{\tau,i} - \log \frac{-l}{r}\right)
$$

- After training α_{τ} should be very negative for many dimensions.
- Use this to get a sparse binary vector from:

$$
p(z_{\tau}; \, \alpha_{\tau}) = \prod_{i=1}^d \sigma(\alpha_{\tau, i})^{z_{\tau, i}} \times (1 - \sigma(\alpha_{\tau, i}))^{1 - z_{\tau, i}}
$$

• Final diff vector given by:

$$
\delta_{\tau} = z_{\tau} \odot w_{\tau}, \qquad z_{\tau} \in \{0, 1\}^d, \ w_{\tau} \in \mathbb{R}^d
$$

Diff Pruning with Targeted Sparsity

$$
\min_{\alpha_{\tau},w_{\tau}}\ \mathbb{E}_{u \sim U[0,1]}\left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau})\right] + \lambda \sum_{i=1}^d \sigma\left(\alpha_{\tau,i} - \log \frac{-l}{r}\right)
$$

$$
\delta_{\tau} = z_{\tau} \odot w_{\tau}, \qquad z_{\tau} \in \{0, 1\}^d, \ w_{\tau} \in \mathbb{R}^d
$$

- Sparsity can be softly controlled by λ , but we often want *exact* sparsity control (e.g., memory budget).
- Targeted sparsity via projection onto L₀-ball (magnitude pruning): \circ Take the top *t*% of non-zero values of δ_{τ} based on magnitude. ○ Continue fine-tuning for a few epochs.
- Standard magnitude pruning on the *diff vector*.

Structured Diff Pruning

$$
\min_{\alpha_{\tau},w_{\tau}} \mathbb{E}_{u \sim U[0,1]} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) \right] + \lambda \sum_{i=1}^{d} \sigma \left(\alpha_{\tau,i} - \log \frac{-l}{r} \right)
$$

$$
\delta_{\tau} = z_{\tau} \odot w_{\tau}, \qquad z_{\tau} \in \{0, 1\}^d, \ w_{\tau} \in \mathbb{R}^d
$$

● Partition each dimension into *groups* based on matrices/biases (393 groups for BERTLARGE):

$$
\delta_{\tau,i}^j = z_{\tau,i} \times z_{\tau}^j \times w_{\tau,i}
$$

• Encourages entire groups to have zero diff vector.

Diff Pruning

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)

Diff Pruning

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)

Experiments

- Experiments on standard GLUE benchmark with BERTLARGE.
- (Mostly) the same hyperparameters for all datasets.

Experiments

- Experiments on standard GLUE benchmark with BERTLARGE.
- (Mostly) the same hyperparameters for all datasets.
- Additional tricks:

$$
\theta_{\tau} = \theta_{\text{pretrained}} + \delta_{\tau}
$$
\nInitialized to zero.

\n
$$
\delta_{\tau} = z_{\tau} \odot w_{\tau}, \qquad z_{\tau} \in \{0, 1\}^{d}, w_{\tau} \in \mathbb{R}^{d}
$$
\n
$$
p(z_{\tau}; \alpha_{\tau}) = \prod_{i=1}^{d} \sigma(\alpha_{\tau, i})^{z_{\tau, i}} \times (1 - \sigma(\alpha_{\tau, i}))^{1 - z_{\tau, i}}
$$

Initialized to positive value to discourage sparsity in the beginning.

Results

Total number of parameters Results for all 9 tasks as a multiplier on top of BERTLARGE

Total number of parameters Results for all 9 tasks as a multiplier on top of BERTLARGE

Total number of parameters Results for all 9 tasks as a multiplier on top of BERTLARGE

Results

Adapters from Houlsby et al. '19

Results

- 1. Fine-tune as usual to obtain task-specific parameters θ_{τ}
- 2. Calculate diff vector as $\theta_{\tau} \theta_{pretrained}$
- 3. Magnitude pruning + fine-tuning on diff vector.

Results

(with BERTBASE)

(with BERTBASE)

	Total params	New params per task				QNLI SST-2 MNLI _m MNLI _{mm} CoLA MRPC STS-B RTE QQP						Avg
Full finetuning	$9.00\times$	100%	90.9	93.4	83.9	83.4	52.8	87.5	85.2	67.0	71.1	79.5
DistilBERT ₆	$5.53\times$	61.5%	88.9	92.5	82.6	81.3	49.0	86.9	81.3	58.4	70.1	76.8
$TinyBERT_{6}$	$5.53\times$	61.5%	90.4	93.1	84.6	83.2	51.1	87.3	83.7	70.0	71.6	79.4
DistilBERT ₄	$4.31\times$	47.9%	85.2	91.4	78.9	78.0	32.8	82.4	76.1	54.1 68.5		71.9
$TinyBERT_{4}$	$1.20\times$	13.3%	87.7	92.6	82.5	81.8	44.1	86.4	80.4	66.6	71.3	77.0
Mobile BERT _{TINY}	$1.24\times$	13.9%	89.5	91.7	81.5	81.6	46.7	87.9	80.1	65.1	68.9	77.0
Diff pruning (struct.) $1.05 \times$		0.5%	90.0	92.9	83.7	83.4	52.0	88.0	84.5	66.4	70.3	79.0

Requires 120%-553% BERTBASE parameters for all 9 tasks. ⇒ Diff pruning becomes more memory-efficient as the number of tasks increases.

Caveat: these models are $smaller \Rightarrow faster inference.$
Smaller \Rightarrow faster inference.

Requires 120%-553% BERT BASE parameters for all 9 tasks. ⇒ Diff pruning becomes more memory-efficient as the number of tasks increases.

Analysis: Sparsity vs. Performance

Analysis: Distribution of Non-zero Diffs

Summary

- Open questions:
	- Is memory-scaling per task actually a concern?
	- Adapters vs. prefix-tuning vs. additive updates?
	- Sparse fine-tuning for continual learning?

Summary

- Open questions:
	- Is memory-scaling per task actually a concern?
	- Adapters vs. prefix-tuning vs. additive updates?
	- Sparse fine-tuning for continual learning?
- **Recent works:**
	- BitFit [Ben-Zaken et al. '22]: Only tune bias vectors ⇒ competitive performance with only 0.08% parameters per task!
	- FISH [Sung et al. '21]: Use (an approximation of) Fisher Information matrix to prune diff vector.

Efficient Transfer Learning with Language Models

Inference Efficiency: "Co-training Improves Prompt-based Learning for Large Language Models"

(with Hunter Lang, Monica Agrawal, David Sontag; ICML '22)

Transfer Learning via Prompting

Prompt-based Few- and Zero-shot Learning

Je ne suis pas un chat

Translate the following sentence from English to French.

English: I'm not a cat French:

> Zero-shot Learning for Machine Translation

Review: this movie was great. Positive or Negative? Positive

Review: the acting was subpar. Positive or Negative?

> Few-shot Learning for Text Classification

Prompt-based Learning

- Model remains fixed \Rightarrow memory does not increase with the number of tasks (unlike BERT fine-tuning). ✓
- Non-trivial performance with only a few (or no) examples. ✓

Prompt-based Learning

- Model remains fixed \Rightarrow memory does not increase with the number of tasks (unlike BERT fine-tuning). ✓
- Non-trivial performance with only a few (or no) examples. ✓
- \star Prompt-based capabilities seem to emerge only when model sizes are \star large enough [Wei et al. '21] ⇒ inference is expensive! ✗

Inference Efficiency for Few-shot Prompting

PaLM

 $\overline{\text{8}}$

mat

8

the

181

on

8

The

 $\overline{\mathrm{8}}$

cat

8

sat

Inference Efficiency for Few-shot Prompting

Inference Efficiency for Few-shot Prompting

Co-Training [Blum and Mitchell '98]

- A semi-supervised approach for leveraging unlabeled data.
- Pair of models are trained over different "views" of the same underlying data.

Co-Training [Blum and Mitchell '98]

- A semi-supervised approach for leveraging unlabeled data.
- Pair of models are trained over different "views" of the same underlying data.

View

Model

Samoyed Dogs Are Basically A Breed Of Big, Fluffy, Sentient **Clouds** Amy Pilkington $\begin{array}{ccc} \textcircled{1} & \textcircled{1} & \textcircled{2} & \textcircled{3} \end{array}$ You know what I love? Dogs and doggo lingo.

Done donnes muneus numerative floods and workers Beneatriese of heads as

point and the other model.
However, community from the other model.
Ringo, and the i

Text on web page **Query that led to article**

 $\phi_1(X)$

 h_1

Co-Training [Blum and Mitchell '98]

- A semi-supervised approach for leveraging unlabeled data.
- Pair of models are trained over different "views" of the same underlying data.

View	$\phi_0(X)$	$\phi_1(X)$
Model	h_0	h_1

The two models $h_0(\phi_0(X))$ and $h_1(\phi_1(X))$ are iteratively trained on confidently-labeled data points from the other model.

Model 0 Round 1
 $h_0(\phi_0(X))$ Round 1 Labeled Data (Small)

• Train h_0 on small labeled data.

- Train h_0 on small labeled data
- Apply h_0 on view $\phi_0(X)$ of unlabeled data.

- Train h_0 on small labeled data.
- Apply h_0 on view $\phi_0(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.

- Train h_0 on small labeled data.
- Apply h_0 on view $\phi_0(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.
- Train h_1 on view $\phi_1(X)$ on pseudo-labeled data.

- Apply h_1 on view $\phi_1(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.

- Apply h_1 on view $\phi_1(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.
- Retrain h_0 on view $\phi_0(X)$ on pseudo-labels.

If the views are "different enough", then the learned classifier will have low error [Blum and Mitchel '98; Balcan et al. '05]

 $\phi_0(X)$

 $\phi_1(X)$

Pretrained LM

Another pretrained LM with different inductive biases?
Co-Training for Inference Efficiency

Simple idea:

- Prompted GPT-3 as the initial model.
- \bullet BERT as the other model \Rightarrow Faster inference!
- Implicit ensembling of different inductive biases.

Co-Training for Inference Efficiency

Simple idea:

- **Prompted GPT-3 as the initial** model.
- BERT as the other model \Rightarrow Faster inference!
- Implicit ensembling of different inductive biases.

Questions:

How to learn a model over prompted GPT-3 to make it amenable to updating?

Co-Training for Inference Efficiency

Simple idea:

- **Prompted GPT-3 as the initial** model.
- BERT as the other model \Rightarrow Faster inference!
- Implicit ensembling of different inductive biases.

Questions:

- How to learn a model over prompted GPT-3 to make it amenable to updating?
- How to select confident labels?

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Oil prices fall back as Yukos oil threat lifted. Question: Oil prices dropped. True, False, or Unknown? Answer: True

The cost of consumer of the United States fell in June. Question: U.S. consumer spending dived in June. True, False, or Unknown? Answer: False

Hepburn's family will receive proceeds from the sale. Question: Proceeds go to Hepburn's family. True, False or Unknown?

Prompt Labeled examples Unlabeled input

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

{True, False, Unknown, true, false, unknown, Yes, No, yes, no, …}

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

{True, False, Unknown, true, false, unknown, Yes, No, yes, no, …}

$\phi_0(X)$: Prompted GPT-3 probabilities as view 0

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output probabilities from k prompted models

$\phi_0(X)$: Prompted GPT-3 probabilities as view 0

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output probabilities from k prompted models

Oil prices fall back as Yukos oil threat lifted. Question: Oil prices dropped. True, False, or Unknown? Answer: True

Hepburn's family will receive proceeds from the sale. Question: Proceeds go to Hepburn's family. True, False or Unknown?

The cost of consumer of the United States fell in June. Question: U.S. consumer spending dived in June. True, False, or Unknown? Answer: False

Hepburn's family will receive proceeds from the sale. Question: Proceeds go to Hepburn's family. True, False or Unknown?

$\phi_0(X)$: Prompted GPT-3 probabilities as view 0

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output probabilities from k prompted models

• Simple averaging does not work well because (i) the probabilities are not well calibrated [Zhao et al. '21], (ii) there are no learnable parameters.

$$
h_0(\phi_0(x)) = \frac{1}{k} \sum_{i=1}^k \phi_0^{(i)}(x)
$$

• Parameterized label model over $\phi_0(x) \in \mathbb{R}^{k \times V}$.

$$
\mathbf{l}_{i} = \text{ReLU}\left(W^{(i)}\phi_{0}^{(i)}(x)\right) \qquad W^{(i)} \in \mathbb{R}^{l \times V}
$$

$$
h_{0}(x; W, \alpha) = \text{softmax}\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{l}_{i}\right)
$$

 $\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)$

Label tokens {True, False, Unknown}

Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, …}

$$
\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)
$$

Label tokens {True, False, Unknown}

Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, …}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

(See paper on how to obtain the set of verbalizer tokens in a task-agnostic way)

$$
I_{i} = \text{ReLU}\left(W^{(i)}\phi_{0}^{(i)}(x)\right)
$$
\n
$$
\begin{bmatrix}\n a & 0 & 0 & 0 & \dots & 0 \\
0 & b & 0 & 0 & \dots & 0 \\
0 & b & 0 & 0 & \dots & 0\n \end{bmatrix}\n \begin{bmatrix}\n \begin{matrix}\n \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{
$$

Label tokens {True, False, Unknown}

Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, …}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

Part of the matrix $W^{(i)}$ applied to these tokens is initialized to Diag $\left(\frac{1}{\phi^{(i)}(x-t)}\right)$

an empty prompt [Zhao et al. '21]. where $\phi_0^{(i)}(x_{cf})$ is label probability vector the output from

(Rest are initialized to 0.)

$$
\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)
$$

Unknown e zser True. true… Both True and true would contribute to True4 0 0 0 2 … 0 0 3 0 0 0 … 0 . 0 0 2 0 0 … 0 . . $W^{(i)} \in \mathbb{R}^{l \times V}$ $\phi^{(i)}(x) \in \mathbb{R}^{V}$ $a = \frac{1}{P_{\text{GPT-3}}(next\ word = True | prompt = \text{""})}$ $b = \frac{1}{P_{\text{GPT-3}}(next\ word = False | prompt = \text{""})}$ Label tokens {True, False, Unknown}

Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, …}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

Part of the matrix $W^{(i)}$ applied to these tokens is initialized to $\mathbf{Diag}\left(\frac{1}{\phi^{(i)}(x-t)}\right)$

Inituition: initially the model uses the label token probabilities, but can learn to use verbalizer tokens that are related.

$$
\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)
$$

Unknown e zser True. true… Both True and true would contribute to True4 0 0 0 2 … 0 0 3 0 0 0 … 0 . 0 0 2 0 0 … 0 . . $W^{(i)} \in \mathbb{R}^{l \times V}$ $\phi^{(i)}(x) \in \mathbb{R}^{V}$ $a = \frac{1}{P_{\mathsf{GPT}\text{-}3}(\textit{next word} = \texttt{True} \, | \, \textit{prompt} = \texttt{``''})}$ $b = \frac{1}{P_{\text{GPT-3}}(next\ word = False | prompt = \text{""})}$ Label tokens {True, False, Unknown}

Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, …}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

Part of the matrix $W^{(i)}$ applied to these tokens is initialized to $\frac{1}{\text{Diag}\left(\frac{1}{\phi^{(i)}_k(x-t)}\right)}$

Inituition: initially the model uses the label token probabilities, but can learn to use verbalizer tokens that are related.

ReLU can ignore certain prompt/label combinations.

$$
\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)
$$

Aggregation layer that sums of probabilities from different verbalizer tokens into the label token.

$$
h_0(x;W,\alpha) = \text{softmax}\left(\sum_{i=1}^k \alpha_i \mathbf{l}_i\right)
$$

Calibration layer that learns to weight the different $\mathbf{l}_i \in \mathbb{R}^l$ vectors

The weights α_i are initialized to 1 to weight all prompts equally.

Final softmax over l labels gives probabilities with which to select confident labels. (Pseudo-labels to train the smaller model).

$\phi_1(X)$: Frozen embeddings from smaller MLM

Hepburn's family will receive proceeds from the sale. [SEP] Proceeds go to Hepburn's family.

h_1 : Classifier over MLM embeddings

Pseudo-labeling

- Select $\beta = 50\%$ of unlabeled dataset initially.
- Increase this by $\beta' = 10\%$ at each round for 5 rounds of co-training.

Pseudo-labeling

- Select β = 50% of unlabeled dataset initially.
- Increase this by $\beta' = 10\%$ at each round for 5 rounds of co-training.
- Initial model (from prompted GPT-3) can have very low probability for some labels \Rightarrow naive strategy of just taking the most confident labels can miss some labels.
- Make the (weak) assumption that each label is at least 1% of the dataset ⇒ ensures each label is included in each pseudo-labeling round.

Pseudo-labeling

- Select β = 50% of unlabeled dataset initially.
- Increase this by $\beta' = 10\%$ at each round for 5 rounds of co-training.
- Initial model (from prompted GPT-3) can have very low probability for some labels \Rightarrow naive strategy of just taking the most confident labels can miss some labels.
- Make the (weak) assumption that each label is at least 1% of the dataset ⇒ ensures each label is included in each pseudo-labeling round.
- ϕ ϕ ₀ (X) : use model confidence to select most confident labels $\phi_1(X)$: use *cut statistic* [Muhlenbach et al. '04] to select most confident labels to better take into account representation geometry.

Putting it all together

Putting it all together

Putting it all together

Experiments

- Test on datasets traditionally difficult for few-shot learning:
	- Textual entailment (RTE, CB)
	- Question classification (TREC)
- Prompts/hyperparameters inherited from previous work to minimize label leakage.
- Co-training parameters (e.g., initial coverage, number of rounds) selected on small subset of TRFC \Rightarrow TRFC results not "true" few-shot.
- Same exact setup across all datasets.

Using 4 labeled examples only

Using 4 labeled examples only

CBU [Zhao et al '21]: rescale GPT-3 probabilities based on null prompt

$$
\text{Diag}\left(\frac{1}{\phi_0^{(i)}(x_{cf})}\right) \qquad \qquad \text{a} = \frac{1}{P_{\text{GPT-3}}(\text{next word} = \text{True} \mid \text{prompt} = \text{""})}
$$
\n
$$
\text{b} = \frac{1}{P_{\text{GPT-3}}(\text{next word} = \text{False} \mid \text{prompt} = \text{""})}
$$

Using 4 labeled examples only

Prompt-based FT [Gao et al. '21]: full DeBERTa fine-tuning with prompted inputs (uses 2 examples per class \Rightarrow 6 examples for CB and 12 examples for TREC)

Using 4 labeled examples only

Using 4 labeled examples only

Using 4 labeled examples only

Same-sized models.

More than 100x smaller than GPT-3!

Using 4 labeled examples only

Analysis

Co-Training for Zero-shot Learning

T0 [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

Co-Training for Zero-shot Learning

T0 [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

Co-train
Co-Training for Zero-shot Learning

T0 [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

Co-train

Results: Zero-shot

Analysis

Summary

- Co-training can effectively distill few-shot and zero-shot capabilities from larger language models to much more efficient models.
- Future directions:
	- Extension to structured cases.
	- Co-training aware prompting.
	- Prompt-aware pretraining.

Efficient Transfer Learning with Language Models

Various notions of efficiency:

- Memory efficiency: parameters, storage cost
- Inference efficiency: FLOPs, energy, speed
- Data efficiency: labeled data, unlabeled data

Important to think about target use case when striving for efficiency!

Thanks!