Efficient Transfer Learning with Large Language Models

Yoon Kim MIT

(work with Demi Guo, Alexander Rush, Hunter Lang, Monica Agrawal, David Sontag)

Language Models

I see a beautiful city and a brilliant ...

Albert Camus was a French philosopher, author ...

GameStop stock rises after chairman buys ...

Masked Language Models

Autoregressive Language Models

Language Modeling

$$\max_{\theta} \prod_{(w,c)\in\mathcal{D}} p_{\theta}(w \mid c) \qquad w = \text{ word}$$

$$c = \text{ context}$$

w = masked wordc = surrounding words

w = next wordc = previous words

Language Modeling Objective

Language models can implicitly capture much linguistic/world knowledge through their parameters.

Transfer learning paradigm: finetuning / prompting.

Transfer Learning via Finetuning

Transfer Learning via Prompting

Pretraining Phase Conditioning via Language "Prompts"

Task-Specific Model

Review: the acting was subpar.

Positive or Negative?

Transfer Learning with Language Models

						Examples	Size	Adaptation	Labeled data	Inference	
	000	000	000			BERT	100M-10B				
	8					RoBERTa XLNet		Fine-tuning	>16	Fast	
The	cat	sat	on	the	mat	BART T5					
	8	8	00	00		GPT-3	10B-500B			Slow	
000			000		000	GLaM TO FLAN		Prompting	<16		
The	cat	sat	on	the	mat	PaLM					

Transfer Learning with Language Models

- Task-specific parameters ⇒ memory does not scale well to multiple tasks.
- X Still requires nontrivial amounts of labeled data.

Transfer Learning with Language Models

Efficient Transfer Learning with Language Models

Memory Efficiency:

"Parameter-Efficient Transfer Learning with Diff Pruning"

(with Demi Guo, Alexander Rush; ACL '21)

Inference Efficiency:

"Co-training Improves Prompt-based Learning for Large

Language Models"

(with Hunter Lang, Monica Agrawal, David Sontag; ICML '22)

Efficient Transfer Learning with Language Models

Memory Efficiency:

"Parameter-Efficient Transfer Learning with Diff Pruning"

(with Demi Guo, Alexander Rush; ACL '21)

Inference Efficiency:

"Co-training Improves Prompt-based Learning for Large

Language Models"

(with Hunter Lang, Monica Agrawal, David Sontag; ICML '22)

Transfer Learning via Full Fine-tuning

Transfer Learning via Full Fine-tuning

Transfer Learning via Full Fine-tuning

- Full fine-tuning: need to store full set of parameters for each task ⇒ hard to scale to multiple tasks.
- Model already learns linguistic and world knowledge through pretraining ⇒ unnecessary/wasteful to fine-tune all parameters.

(Parameter-inefficiency)

Existing Approaches for Parameter Efficiency

- Model compression:
 - Pruning [Goden et al. '20, Sajjad et al. '20, Chen et al. '20]
 - o Distillation [Sanh et al. '19, Sun et al. '20, Jiao et al. '20] Still requires 10%-30% of the full parameters to maintain performance.

Existing Approaches for Parameter Efficiency

- Model compression:
 - Pruning [Goden et al. '20, Sajjad et al. '20, Chen et al. '20]
 - Distillation [Sanh et al. '19, Sun et al. '20, Jiao et al. '20]
 Still requires 10%-30% of the full parameters to maintain performance.
- Adapters [Houlsby et al. '19]:
 - Small narrow layers that are inserted in between wider model layers.
 - Pretrained model remains fixed, only the adapters are fine-tuned for each task. (One adapter per task).
 - Only requires 2%-4% new parameters per task!

Diff Pruning

- Learn an extension to the existing pretrained model (which remains fixed).
- Model extension is parameterized as a vector ("<u>difference</u> vector") that additively modifies pretrained parameters.

$$\begin{aligned} \theta_{\tau_1} &= \theta_{\text{pretrained}} + \delta_{\tau_1} \\ \theta_{\tau_2} &= \theta_{\text{pretrained}} + \delta_{\tau_2} \\ \theta_{\tau_3} &= \theta_{\text{pretrained}} + \delta_{\tau_3} \\ &\vdots \\ \theta_{\tau_T} &= \theta_{\text{pretrained}} + \delta_{\tau_T} \end{aligned}$$

Diff Pruning

- Learn an extension to the existing pretrained model (which remains fixed).
- Model extension is parameterized as a vector ("<u>difference</u> vector") that additively modifies pretrained parameters.

$$\begin{aligned} \theta_{\tau_1} &= \theta_{\text{pretrained}} + \delta_{\tau_1} \\ \theta_{\tau_2} &= \theta_{\text{pretrained}} + \delta_{\tau_2} \\ \theta_{\tau_3} &= \theta_{\text{pretrained}} + \delta_{\tau_3} \\ &\vdots \\ \theta_{\tau_T} &= \theta_{\text{pretrained}} + \delta_{\tau_T} \end{aligned}$$

If the extension (diff vector) is sparse, then additional memory per task will be marginal.

Diff Pruning Objective

• For each task τ :

$$\min_{\delta_{\tau}} \sum_{n=1}^{N} -\log p(y^{(n)} \mid x^{(n)}; \, \theta_{\mathsf{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})$$

Diff Pruning Objective

• For each task au:

$$\min_{\delta_{ au}} \sum_{n=1}^{N} -\log p(y^{(n)} \,|\, x^{(n)} \,;\, heta_{\mathsf{pretrained}} + \delta_{ au}) + \lambda R(\delta_{ au})$$

Task-specific negative log likelihood

Regularizer on diff vector

• If regularizer can learn a sparse diff vector such that $\|\delta_{\tau}\|_{0} \ll \|\theta_{\text{pretrained}}\|_{0}$ then we only need a few additional parameters per task!

Original Objective

$$\min_{\delta_{\tau}} \ L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})$$

Lo-norm regularizer

$$R(\delta_{\tau}) = \sum_{i=1}^{d} \mathbb{1}\{\delta_{\tau,i} \neq 0\}$$

Not amenable to gradient-based optimization

Original Objective

$$\min_{\delta_{\tau}} \ L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})$$

Lo-norm regularizer

$$R(\delta_{ au}) = \sum_{i=1}^d \mathbb{1}\{\delta_{ au,i}
eq 0\}$$

(Still) not amenable to gradient-based optimization

Decompose diff vector

$$\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0, 1\}^d, \ w_{\tau} \in \mathbb{R}^d$$

Reparameterized Objective

$$\min_{z_{\tau}, w_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau})$$

Original Objective

$$\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})$$

Lo-norm regularizer

$$R(\delta_{\tau}) = \sum_{i=1}^{d} \mathbb{1}\{\delta_{\tau,i} \neq 0\}$$

Decompose diff vector

$$\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0, 1\}^d, \ w_{\tau} \in \mathbb{R}^d$$

Lower bound

$$\min_{\alpha_{\tau}, w_{\tau}} \mathbb{E}_{z_{\tau} \sim p(z_{\tau}; \alpha_{\tau})} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau}) \right]$$

Optimize over distribution parameterized by $\, lpha_{ au} \,$

$$p(z_{\tau}; \alpha_{\tau}) = \prod_{i=1}^{d} \sigma(\alpha_{\tau,i})^{z_{\tau,i}} \times (1 - \sigma(\alpha_{\tau,i}))^{1-z_{\tau,i}}$$

Issue: Tractable optimization requires policy gradients.

Original Objective

$$\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})$$

Lo-norm regularizer

$$R(\delta_{\tau}) = \sum_{i=1}^{a} \mathbb{1}\{\delta_{\tau,i} \neq 0\}$$

Decompose diff vector

$$\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0, 1\}^d, \ w_{\tau} \in \mathbb{R}^d$$

Lower bound

$$\min_{lpha_{ au}, w_{ au}} \ \mathbb{E}_{z_{ au} \sim p(z_{ au}; \, lpha_{ au})} \left[L(\mathcal{D}_{ au}, heta_{\mathsf{pretrained}} + z_{ au} \odot w_{ au}) + \lambda R(z_{ au} \odot w_{ au}) \right]$$

Continuous relaxation

$$z_{\tau} \in \{0,1\}^d \to \tilde{z}_{\tau} \in [0,1]^d$$

$$u \sim U[0, 1]$$

$$s_{\tau} = \sigma(\log u - \log(1 - u) + \alpha_{\tau})$$

$$\bar{s}_{\tau} = (r - l) \times s_{\tau} + l$$

$$\tilde{z}_{\tau} = \min(1, \max(0, \bar{s}_{\tau}))$$

Stretched Hard-Concrete distribution [Louizos et al. '18]

Original Objective

$$\min_{\delta_{\tau}} L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})$$

Lo-norm regularizer

$$R(\delta_{\tau}) = \sum_{i=1}^{d} \mathbb{1}\{\delta_{\tau,i} \neq 0\}$$

Decompose diff vector

$$\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0, 1\}^d, \ w_{\tau} \in \mathbb{R}^d$$

Lower bound

$$\min_{\alpha_{\tau}, w_{\tau}} \ \mathbb{E}_{z_{\tau} \sim p(z_{\tau}; \, \alpha_{\tau})} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau}) \right]$$

Continuous relaxation

$$z_{\tau} \in \{0,1\}^d \to \tilde{z}_{\tau} \in [0,1]^d$$

Reparameterization trick

⇒ lower-variance gradient estimator.

$$\min_{\alpha_{\tau}, w_{\tau}} \mathbb{E}_{u \sim U[0,1]} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) + \lambda R(\tilde{z}_{\tau} \odot w_{\tau}) \right]$$

Original Objective

 $\min_{\delta_{\tau}} \ L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \delta_{\tau}) + \lambda R(\delta_{\tau})$

 $R(\delta_{\tau}) = \sum_{i=1}^{a} \mathbb{1}\{\delta_{\tau,i} \neq 0\}$ L₀-norm regularizer

 $\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0,1\}^d, \ w_{\tau} \in \mathbb{R}^d$ Decompose diff vector

 $\min_{\alpha_{\tau}, w_{\tau}} \ \mathbb{E}_{z_{\tau} \sim p(z_{\tau}; \, \alpha_{\tau})} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + z_{\tau} \odot w_{\tau}) + \lambda R(z_{\tau} \odot w_{\tau}) \right]$ Lower bound

 $z_{\tau} \in \{0,1\}^d \to \tilde{z}_{\tau} \in [0,1]^d$

regularizer!

Continuous relaxation

Reparameterization trick

 $\min_{\alpha_{\tau}, w_{\tau}} \ \mathbb{E}_{u \sim U[0,1]} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) + \lambda R(\tilde{z}_{\tau} \odot w_{\tau}) \right]$

 $\mathbb{E}_{u \sim U[0,1]}\left[R(ilde{z}_{ au} \odot w_{ au})
ight] = \sum_{i=1}^d \sigma\left(lpha_{ au,i} - \lograc{-l}{r}
ight)$

Closed-form solution for

Diff Pruning

$$\min_{\alpha_{\tau}, w_{\tau}} \mathbb{E}_{u \sim U[0,1]} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) \right] + \lambda \sum_{i=1}^{d} \sigma \left(\alpha_{\tau,i} - \log \frac{-l}{r} \right)$$

- After training α_{τ} should be very negative for many dimensions.
- Use this to get a sparse binary vector from:

$$p(z_{\tau}; \alpha_{\tau}) = \prod_{i=1}^{a} \sigma(\alpha_{\tau,i})^{z_{\tau,i}} \times (1 - \sigma(\alpha_{\tau,i}))^{1 - z_{\tau,i}}$$

Final diff vector given by:

$$\delta_{\tau} = z_{\tau} \odot w_{\tau}, \quad z_{\tau} \in \{0,1\}^d, \ w_{\tau} \in \mathbb{R}^d$$

Diff Pruning with Targeted Sparsity

$$\min_{\alpha_{\tau}, w_{\tau}} \mathbb{E}_{u \sim U[0,1]} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) \right] + \lambda \sum_{i=1}^{d} \sigma \left(\alpha_{\tau,i} - \log \frac{-l}{r} \right)$$
$$\delta_{\tau} = z_{\tau} \odot w_{\tau}, \qquad z_{\tau} \in \{0,1\}^{d}, \ w_{\tau} \in \mathbb{R}^{d}$$

- Sparsity can be softly controlled by λ , but we often want *exact* sparsity control (e.g., memory budget).
- Targeted sparsity via projection onto L₀-ball (magnitude pruning):
 - \circ Take the top t% of non-zero values of δ_{τ} based on magnitude.
 - Continue fine-tuning for a few epochs.
- Standard magnitude pruning on the diff vector.

Structured Diff Pruning

$$\min_{\alpha_{\tau}, w_{\tau}} \mathbb{E}_{u \sim U[0,1]} \left[L(\mathcal{D}_{\tau}, \theta_{\mathsf{pretrained}} + \tilde{z}_{\tau} \odot w_{\tau}) \right] + \lambda \sum_{i=1}^{d} \sigma \left(\alpha_{\tau,i} - \log \frac{-l}{r} \right)$$

$$\delta_{\tau} = z_{\tau} \odot w_{\tau}, \qquad z_{\tau} \in \{0,1\}^{d}, \ w_{\tau} \in \mathbb{R}^{d}$$

Partition each dimension into groups based on matrices/biases (393 groups for BERTLARGE):

$$\delta_{\tau,i}^j = z_{\tau,i} \times z_{\tau}^j \times w_{\tau,i}$$

Encourages entire groups to have zero diff vector.

Diff Pruning

Diff Pruning

(Image from https://medium.com/@lukas.hauzenberger/an-practical-introduction-to-diff-pruning-for-bert-4278ee4be750)

Experiments

- Experiments on standard GLUE benchmark with BERTLARGE.
- (Mostly) the same hyperparameters for all datasets.

Experiments

- Experiments on standard GLUE benchmark with BERTLARGE.
- (Mostly) the same hyperparameters for all datasets.
- Additional tricks:

$$heta_ au = heta_ ext{pretrained} + \delta_ au$$
 Initialized to zero. $\delta_ au = z_ au \odot w_ au, \quad z_ au \in \{0,1\}^d, \ w_ au \in \mathbb{R}^d$ $p(z_ au; oldsymbol{lpha_ au}) = \prod_{i=1}^d \sigma(lpha_{ au,i})^{z_{ au,i}} imes (1-\sigma(lpha_{ au,i}))^{1-z_{ au,i}}$

Initialized to positive value to discourage sparsity in the beginning.

Results

	Total params	New params per task	QNLI*	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE QQP	Avg
Full finetuning	9.00×	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1 72.1	80.9

Total number of parameters for all 9 tasks as a multiplier on top of BERTLARGE

	Total params	New params per task	QNLI*	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	80.9

Total number of parameters for all 9 tasks as a multiplier on top of BERTLARGE

	Total params	New params per task	QNLI*	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	80.9

Additional parameters per task (as a function of BERTLARGE)

Total number of parameters for all 9 tasks as a multiplier on top of BERTLARGE

	Total params	New params per task	QNLI*	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	80.9
	per t	tional para ask (as a t Tlarge)									age G rman	

	Total params	New params per task	QNLI*	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	$9.00 \times$	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	80.9
Adapters	$1.32 \times$	3.6%	90.7	94.0	84.9	85.1	59.5	89.5	86.9	71.5	71.8	80.4

Adapters from Houlsby et al. '19

	Total params	New params per task	QNLI*	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	80.9
Adapters	$1.32 \times$	3.6%	90.7	94.0	84.9	85.1	59.5	89.5	86.9	71.5	71.8	80.4
Last layer	$1.34 \times$	3.8%	79.8	91.6	71.4	72.9	40.2	80.1	67.3	58.6	63.3	68.2
Non-adap. diff pruning	$1.05 \times$	0.5%	89.7	93.6	84.9	84.8	51.2	81.5	78.2	61.5	68.6	75.5

- 1. Fine-tune as usual to obtain task-specific parameters $\theta_{ au}$
- 2. Calculate diff vector as $\theta_{\tau} \theta_{\text{pretrained}}$
- 3. Magnitude pruning + fine-tuning on diff vector.

	Total params	New params per task	QNLI*	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	80.9
Adapters	$1.32 \times$	3.6%	90.7	94.0	84.9	85.1	59.5	89.5	86.9	71.5	71.8	80.4
Last layer	$1.34 \times$	3.8%	79.8	91.6	71.4	72.9	40.2	80.1	67.3	58.6	63.3	68.2
Non-adap. diff pruning	$1.05 \times$	0.5%	89.7	93.6	84.9	84.8	51.2	81.5	78.2	61.5	68.6	75.5
Diff pruning	$1.05 \times$	0.5%	92.9	93.8	85.7	85.6	60.5	87.0	83.5	68.1	70.6	79.4
Diff pruning (struct.)	$1.05 \times$	0.5%	93.3	94.1	86.4	86.0	61.1	89.7	86.0	70.6	71.1	80.6

(with BERTBASE)

	Total params	New params per task	QNLI	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	90.9	93.4	83.9	83.4	52.8	87.5	85.2	67.0	71.1	79.5
DistilBERT ₆	$5.53 \times$	61.5%	88.9	92.5	82.6	81.3	49.0	86.9	81.3	58.4	70.1	76.8
TinyBERT ₆	$5.53 \times$	61.5%	90.4	93.1	84.6	83.2	51.1	87.3	83.7	70.0	71.6	79.4
DistilBERT ₄	$4.31 \times$	47.9%	85.2	91.4	78.9	78.0	32.8	82.4	76.1	54.1	68.5	71.9
$TinyBERT_4$	$1.20 \times$	13.3%	87.7	92.6	82.5	81.8	44.1	86.4	80.4	66.6	71.3	77.0
$MobileBERT_{TINY}$	$1.24 \times$	13.9%	89.5	91.7	81.5	81.6	46.7	87.9	80.1	65.1	68.9	77.0
Diff pruning (struct.)	1.05×	0.5%	90.0	92.9	83.7	83.4	52.0	88.0	84.5	66.4	70.3	79.0

(with BERTBASE)

	Total params	New params per task	QNLI	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	90.9	93.4	83.9	83.4	52.8	87.5	85.2	67.0	71.1	79.5
DistilBERT ₆	5.53×	61.5%	88.9	92.5	82.6	81.3	49.0	86.9	81.3	58.4	70.1	76.8
TinyBERT ₆	5.53×	61.5%	90.4	93.1	84.6	83.2	51.1	87.3	83.7	70.0	71.6	79.4
DistilBERT ₄	4.31×	47.9%	85.2	91.4	78.9	78.0	32.8	82.4	76.1	54.1	68.5	71.9
${\sf TinyBERT}_4$	1.20×	13.3%	87.7	92.6	82.5	81.8	44.1	86.4	80.4	66.6	71.3	77.0
$Mobile BERT_{TINY}$	$1.24 \times$	13.9%	89.5	91.7	81.5	81.6	46.7	87.9	80.1	65.1	68.9	77.0
Diff pruning (struct.)	1.05×	0.5%	90.0	92.9	83.7	83.4	52.0	88.0	84.5	66.4	70.3	79.0

Requires 120%-553% BERTBASE parameters for all 9 tasks.

⇒ Diff pruning becomes more memory-efficient as the number of tasks increases.

Caveat: these models are smaller ⇒ faster inference.

(with BERTBASE)

	Total params	New params per task	QNLI	SST-2	$MNLI_m$	$MNLI_{mm}$	CoLA	MRPC	STS-B	RTE	QQP	Avg
Full finetuning	9.00×	100%	90.9	93.4	83.9	83.4	52.8	87.5	85.2	67.0	71.1	79.5
DistilBERT ₆	5.53×	61.5%	88.9	92.5	82.6	81.3	49.0	86.9	81.3	58.4	70.1	76.8
TinyBERT ₆	5.53×	61.5%	90.4	93.1	84.6	83.2	51.1	87.3	83.7	70.0	71.6	79.4
DistilBERT ₄	$4.31 \times$	47.9%	85.2	91.4	78.9	78.0	32.8	82.4	76.1	54.1	68.5	71.9
$TinyBERT_4$	$1.20 \times$	13.3%	87.7	92.6	82.5	81.8	44.1	86.4	80.4	66.6	71.3	77.0
MobileBERT _{TINY}	$1.24 \times$	13.9%	89.5	91.7	81.5	81.6	46.7	87.9	80.1	65.1	68.9	77.0
Diff pruning (struct.)	1.05×	0.5%	90.0	92.9	83.7	83.4	52.0	88.0	84.5	66.4	70.3	79.0

Requires 120%-553% BERTBASE parameters for all 9 tasks.

⇒ Diff pruning becomes more memory-efficient as the number of tasks increases.

	New params per task	Storage (MB) per task
Full finetuning	100%	1297.0
Adapters (weights only)	3.6%	49.0
Diff pruning (positions + weights)	0.5%	13.6

Analysis: Sparsity vs. Performance

Analysis: Distribution of Non-zero Diffs

Summary

- Open questions:
 - Is memory-scaling per task actually a concern?
 - Adapters vs. prefix-tuning vs. additive updates?
 - Sparse fine-tuning for continual learning?

Summary

Open questions:

- Is memory-scaling per task actually a concern?
- Adapters vs. prefix-tuning vs. additive updates?
- Sparse fine-tuning for continual learning?

Recent works:

- BitFit [Ben-Zaken et al. '22]: Only tune bias vectors ⇒ competitive performance with only 0.08% parameters per task!
- FISH [Sung et al. '21]: Use (an approximation of) Fisher Information matrix to prune diff vector.

Efficient Transfer Learning with Language Models

Memory Efficiency:

"Parameter-Efficient Transfer Learning with Diff Pruning"

with Demi Guo, Alexander Rush; ACL '21)

Inference Efficiency:

"Co-training Improves Prompt-based Learning for Large

Language Models"

(with Hunter Lang, Monica Agrawal, David Sontag; ICML '22)

Transfer Learning via Prompting

Prompt-based Few- and Zero-shot Learning

Translate the following sentence from English to French.

English: I'm not a cat

French:

Zero-shot Learning for Machine Translation

Review: this movie was great.
Positive or Negative? Positive

Review: the acting was subpar.

Positive or Negative?

Few-shot Learning for Text Classification

Prompt-based Learning

- ✓ Model remains fixed ⇒ memory does not increase with the number of tasks (unlike BERT fine-tuning).
- ✓ Non-trivial performance with only a few (or no) examples.

Prompt-based Learning

- ✓ Model remains fixed ⇒ memory does not increase with the number of tasks (unlike BERT fine-tuning).
- ✓ Non-trivial performance with only a few (or no) examples.
- Prompt-based capabilities seem to emerge only when model sizes are large enough [Wei et al. '21] ⇒ inference is expensive!

Inference Efficiency for Few-shot Prompting

						Examples	Size	Adaptation	Labeled data	Inference
	000		000			BERT				
						RoBERTa XLNet	100M-10B	Fine-tuning	>16	Fast
8	8				000	BART T5				
The	cat	sat	on	the	mat					
	000		000		000	GPT-3				
8		8	000			GLaM TO	10B-500B	Prompting	<16	Slow
The	cat	sat	on	the	mat	FLAN PaLM				

Inference Efficiency for Few-shot Prompting

						Examples	Size	Adaptation	Labeled data	Inference
8					000	BERT				
8				8		RoBERTa XLNet	100M-10B	Fine-tuning	>16	Fast
The	cat	sat	on	the	mat	BART T5				
						GPT-3 GLaM				
The	cat	Sat	on	the	mat	TO FLAN PaLM	10B-500B	Prompting	<16	Really slow

Inference Efficiency for Few-shot Prompting

						Examples	Size	Adaptation	Labeled data	Inference	
						BERT	100M-10B	Fine-tuning	>16		
		8	8	8		RoBERTa XLNet				Fast	
The	cat	sat	on	the	mat	BART T5					
	000	000		000							
000	8	8	8	0		GPT-3					
8	8	8		000		GLaM T0 FLAN	10B-500B	Prompting	<16	Really slow	
The	cat	sat	on	the	mat	PaLM	Palm Can we get the best of both worlds?				

Co-Training [Blum and Mitchell '98]

A semi-supervised approach for leveraging unlabeled data.

View

• Pair of models are trained over different "views" of the same underlying data.

 $\phi_0(X)$

VIEW	$\varphi_0(\mathbf{M})$	$\varphi_1(A)$
Model	h_0	h_1
	Lab tests	X-ray

 $\phi_1(X)$

Co-Training [Blum and Mitchell '98]

- A semi-supervised approach for leveraging unlabeled data.
- Pair of models are trained over different "views" of the same underlying data.

Text on web page

Query that led to article

Co-Training [Blum and Mitchell '98]

- A semi-supervised approach for leveraging unlabeled data.
- Pair of models are trained over different "views" of the same underlying data.

View	$\phi_0(X)$	$\phi_1(X)$
Model	h_0	h_1

• The two models $h_0(\phi_0(X))$ and $h_1(\phi_1(X))$ are iteratively trained on confidently-labeled data points from the other model.

Round 1

• Train h_0 on small labeled data.

Labeled

Data (Small)

- ullet Train h_0 on small labeled data
- Apply h_0 on view $\phi_0(X)$ of unlabeled data.

- ullet Train h_0 on small labeled data.
- Apply h_0 on view $\phi_0(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.

- Train h_0 on small labeled data.
- Apply h_0 on view $\phi_0(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.
- Train h_1 on view $\phi_1(X)$ on pseudo-labeled data.

- Apply h_1 on view $\phi_1(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.

- Apply h_1 on view $\phi_1(X)$ of unlabeled data.
- Get confidently-labeled data as pseudo-labels.
- Retrain h_0 on view $\phi_0(X)$ on pseudo-labels.

If the views are "different enough", then the learned classifier will have low error [Blum and Mitchel '98; Balcan et al. '05]

$$\phi_0(X)$$

 $\phi_1(X)$

Pretrained LM

Another pretrained LM with different inductive biases?

Co-Training for Inference Efficiency

Simple idea:

- Prompted GPT-3 as the initial model.
- BERT as the other model ⇒
 Faster inference!
- Implicit ensembling of different inductive biases.

Final model

Co-Training for Inference Efficiency

Simple idea:

- Prompted GPT-3 as the initial model.
- BERT as the other model ⇒
 Faster inference!
- Implicit ensembling of different inductive biases.

Questions:

 How to learn a model over prompted GPT-3 to make it amenable to updating?

Co-Training for Inference Efficiency

Simple idea:

- Prompted GPT-3 as the initial model.
- BERT as the other model ⇒
 Faster inference!
- Implicit ensembling of different inductive biases.

Questions:

- How to learn a model over prompted GPT-3 to make it amenable to updating?
- How to select confident labels?

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

```
Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True, False, or Unknown?
Answer: False

Hepburn's family will receive proceeds from the sale.
Question: Proceeds go to Hepburn's family. True, False or Unknown?
```

Prompt

Labeled examples

Unlabeled input

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Usual approach: k-shot prompting ⇒ Feed k labeled data as a single prompt

$\phi_0(X)$: Prompted GPT-3 probabilities as view 0

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output probabilities from k prompted models

$\phi_0(X)$: Prompted GPT-3 probabilities as view 0

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output probabilities from k prompted models

```
Oil prices fall back as Yukos oil threat lifted.
Question: Oil prices dropped. True, False, or Unknown?
Answer: True

Hepburn's family will receive proceeds from the sale.
Question: Proceeds go to Hepburn's family. True, False or Unknown?
```

```
The cost of consumer of the United States fell in June.
Question: U.S. consumer spending dived in June. True,
False, or Unknown?
Answer: False

Hepburn's family will receive proceeds from the sale.
Question: Proceeds go to Hepburn's family. True, False or Unknown?
```

Prompt

Labeled examples

Unlabeled input

$\phi_0(X)$: Prompted GPT-3 probabilities as view 0

Example: RTE (Textual Entailment) with two labeled examples (k=2)

Our approach: k one-shot prompts ⇒ Concatenate GPT-3 output probabilities from k prompted models

 Simple averaging does not work well because (i) the probabilities are not well calibrated [Zhao et al. '21], (ii) there are no learnable parameters.

$$h_0(\phi_0(x)) = \frac{1}{k} \sum_{i=1}^k \phi_0^{(i)}(x)$$

• Parameterized label model over $\phi_0(x) \in \mathbb{R}^{k \times V}$:

$$\mathbf{l}_{i} = \operatorname{ReLU}\left(W^{(i)}\phi_{0}^{(i)}(x)\right) \qquad W^{(i)} \in \mathbb{R}^{l \times V}$$

$$h_{0}(x; W, \alpha) = \operatorname{softmax}\left(\sum_{i=1}^{k} \alpha_{i} \mathbf{l}_{i}\right)$$

$$\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)$$


```
l Label tokens {True, False, Unknown}
```

V Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, ...}

$$\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)$$


```
Label tokens
{True, False, Unknown}
```

V Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, ...}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

(See paper on how to obtain the set of verbalizer tokens in a task-agnostic way)

$$\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)$$

$$W^{(i)} \in \mathbb{R}^{l \times V} \quad \phi^{(i)}(x) \in \mathbb{R}^{V}$$

$$W^{(i)} \in \mathbb{R}^{l imes V} \quad \phi^{(i)}(x) \in \mathbb{R}^{V}$$

$$\mathsf{a} = \frac{1}{P_{\mathsf{GPT-3}}(\mathit{next word} = \mathsf{True} \,|\, \mathit{prompt} = "")}$$

$$\mathsf{b} = \frac{1}{P_{\mathsf{GPT-3}}(\mathit{next word} = \mathsf{False} \,|\, \mathit{prompt} = "")}$$

Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, ...}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

Part of the matrix $W^{(i)}$ applied to these tokens is initialized to $\operatorname{Diag}\left(\frac{1}{\phi_{\bullet}^{(i)}(x,t)}\right)$

where $\phi_0^{(i)}(x_{cf})$ is label probability vector the output from an empty prompt [Zhao et al. '21].

(Rest are initialized to 0.)

$$\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)$$

Both True and true would contribute to True

$$W^{(i)} \in \mathbb{R}^{l \times V} \quad \phi^{(i)}(x) \in \mathbb{R}^{V}$$

$$\begin{aligned} \mathbf{a} &= \frac{1}{P_{\mathsf{GPT-3}}(\textit{next word} = \mathsf{True} \,|\, \textit{prompt} = \text{``''})} \\ \mathbf{b} &= \frac{1}{P_{\mathsf{GPT-3}}(\textit{next word} = \mathsf{False} \,|\, \textit{prompt} = \text{``''})} \end{aligned}$$

Label tokens
{True, False, Unknown}

V Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, ...}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

Part of the matrix $W^{(i)}$ applied to these tokens is initialized to $\operatorname{Diag}\left(\frac{\mathbf{1}}{\phi_0^{(i)}(x_{cf})}\right)$

Inituition: initially the model uses the label token probabilities, but can learn to use verbalizer tokens that are related.

$$\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)$$

Both True and true would contribute to True

$$W^{(i)} \in \mathbb{R}^{l \times V} \quad \phi^{(i)}(x) \in \mathbb{R}^{V}$$

$$\begin{aligned} \mathbf{a} &= \frac{1}{P_{\mathsf{GPT-3}}(\textit{next word} = \mathsf{True} \,|\, \textit{prompt} = \text{``''})} \\ \mathbf{b} &= \frac{1}{P_{\mathsf{GPT-3}}(\textit{next word} = \mathsf{False} \,|\, \textit{prompt} = \text{``''})} \end{aligned}$$

Label tokens
{True, False, Unknown}

V Verbalizer tokens {True, False, Unknown, true, false, unknown, Yes, No, yes, no, ...}

Assume WLOG that the first l dimensions of $\phi^{(i)}(x)$ correspond to label tokens.

Part of the matrix $W^{(i)}$ applied to these tokens is initialized to $\operatorname{Diag}\left(\frac{\mathbf{1}}{\phi_{\bullet}^{(i)}(x,t)}\right)$

Inituition: initially the model uses the label token probabilities, but can learn to use verbalizer tokens that are related.

ReLU can ignore certain prompt/label combinations.

$$\mathbf{l}_i = \text{ReLU}\left(W^{(i)}\phi_0^{(i)}(x)\right)$$

$$h_0(x; W, \alpha) = \operatorname{softmax}\left(\sum_{i=1}^k \alpha_i \mathbf{l}_i\right)$$

Aggregation layer that sums of probabilities from different verbalizer tokens into the label token.

Calibration layer that learns to weight the different $\mathbf{l}_i \in \mathbb{R}^l$ vectors

The weights α_i are initialized to 1 to weight all prompts equally.

Final softmax over l labels gives probabilities with which to select confident labels. (Pseudo-labels to train the smaller model).

$\phi_1(X)$: Frozen embeddings from smaller MLM

h_1 : Classifier over MLM embeddings

Pseudo-labeling

- Select $\beta = 50\%$ of unlabeled dataset initially.
- Increase this by $\beta' = 10\%$ at each round for 5 rounds of co-training.

Pseudo-labeling

- Select $\beta = 50\%$ of unlabeled dataset initially.
- Increase this by $\beta' = 10\%$ at each round for 5 rounds of co-training.
- Initial model (from prompted GPT-3) can have very low probability for some labels ⇒ naive strategy of just taking the most confident labels can miss some labels.
- Make the (weak) assumption that each label is at least 1% of the dataset ⇒
 ensures each label is included in each pseudo-labeling round.

Pseudo-labeling

- Select $\beta = 50\%$ of unlabeled dataset initially.
- Increase this by $\beta' = 10\%$ at each round for 5 rounds of co-training.
- Initial model (from prompted GPT-3) can have very low probability for some labels ⇒ naive strategy of just taking the most confident labels can miss some labels.
- Make the (weak) assumption that each label is at least 1% of the dataset ⇒
 ensures each label is included in each pseudo-labeling round.
- $\phi_0(X)$: use model confidence to select most confident labels $\phi_1(X)$: use *cut statistic* [Muhlenbach et al. '04] to select most confident labels to better take into account representation geometry.

Putting it all together

Putting it all together

Putting it all together

Experiments

- Test on datasets traditionally difficult for few-shot learning:
 - Textual entailment (RTE, CB)
 - Question classification (TREC)
- Prompts/hyperparameters inherited from previous work to minimize label leakage.
- Co-training parameters (e.g., initial coverage, number of rounds) selected on small subset of TREC ⇒ TREC results not "true" few-shot.
- Same exact setup across all datasets.

Using 4 labeled examples only

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)

Using 4 labeled examples only

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021)	*	60.4 (8.1)	60.7 (6.7)	69.7 (1.4)

CBU [Zhao et al '21]: rescale GPT-3 probabilities based on null prompt

$$\text{Diag}\left(\frac{\mathbf{1}}{\phi_0^{(i)}(x_{cf})}\right) \qquad \qquad \text{a} = \frac{1}{P_{\text{GPT-3}}(\textit{next word} = \text{True}\,|\,\textit{prompt} = \text{``''})} \\ \text{b} = \frac{1}{P_{\text{GPT-3}}(\textit{next word} = \text{False}\,|\,\textit{prompt} = \text{``''})}$$

Using 4 labeled examples only

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021)	*	60.4 (8.1)	60.7 (6.7)	69.7 (1.4)
Prompt-based FT (Gao et al., 2021)	*	52.8 (0.9)	84.4 (3.2)	54.8 (2.9)

Prompt-based FT [Gao et al. '21]: full DeBERTa fine-tuning with prompted inputs (uses 2 examples per class ⇒ 6 examples for CB and 12 examples for TREC)

Using 4 labeled examples only

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021)	*	60.4 (8.1)	60.7 (6.7)	69.7 (1.4)
Prompt-based FT (Gao et al., 2021)	*	52.8 (0.9)	84.4 (3.2)	54.8 (2.9)
Label Model (no co-training)	ϕ_0	62.8	76.8	77.2
Label Model $ o$ DeBERTa distillation	ϕ_1	67.2 (0.5)	81.6 (2.2)	63.3 (0.4)

Using 4 labeled examples only

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021)	*	60.4 (8.1)	60.7 (6.7)	69.7 (1.4)
Prompt-based FT (Gao et al., 2021)	*	52.8 (0.9)	84.4 (3.2)	54.8 (2.9)
Label Model (no co-training)	ϕ_0	62.8	76.8	77.2
Label Model \rightarrow DeBERTa distillation	ϕ_1	67.2 (0.5)	81.6 (2.2)	63.3 (0.4)
Label Model + <i>co-training</i>	ϕ_0	64.9 (1.1)	83.5 (2.3)	78.3 (1.2)
DeBERTa-large + <i>co-training</i>	ϕ_1	67.4 (2.3)	86.2 (3.2)	80.6 (1.1)

Using 4 labeled examples only

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021)	*	60.4 (8.1)	60.7 (6.7)	69.7 (1.4)
Prompt-based FT (Gao et al., 2021)	*	52.8 (0.9)	84.4 (3.2)	54.8 (2.9)
Label Model (no co-training)	ϕ_0	62.8	76.8	77.2
Label Model \rightarrow DeBERTa distillation	ϕ_1	67.2 (0.5)	81.6 (2.2)	63.3 (0.4)
Label Model + <i>co-training</i>	ϕ_0	64.9 (1.1)	83.5 (2.3)	78.3 (1.2)
DeBERTa-large + co-training	ϕ_1	67.4 (2.3)	86.2 (3.2)	80.6 (1.1)

Same-sized models.

More than 100x smaller than GPT-3!

Using 4 labeled examples only

Model	View	RTE (2-class)	CB (3-class)	TREC (6-class)
GPT-3 4-shot (from Zhao et al. (2021))	*	58.7 (11.9)	45.2 (19.4)	60.2 (7.6)
Calibrate Before Use (CBU) (Zhao et al., 2021)	*	60.4 (8.1)	60.7 (6.7)	69.7 (1.4)
Prompt-based FT (Gao et al., 2021)	*	52.8 (0.9)	84.4 (3.2)	54.8 (2.9)
Label Model (no co-training)	ϕ_0	62.8	76.8	77.2
Label Model \rightarrow DeBERTa distillation	ϕ_1	67.2 (0.5)	81.6 (2.2)	63.3 (0.4)
Label Model + <i>co-training</i>	ϕ_0	64.9 (1.1)	83.5 (2.3)	78.3 (1.2)
DeBERTa-large + co-training	ϕ_1	67.4 (2.3)	86.2 (3.2)	80.6 (1.1)
Label Model on full train	ϕ_0	67.8 (0.5)	82.7 (0.8)	91.9 (1.1)
DeBERTa-large on full train	ϕ_1	93.3	95.2	96.7
GPT-3 32-shot [†] (Brown et al., 2020)	*	69.0	75.6	*

Analysis

Co-Training for Zero-shot Learning

To [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

Co-Training for Zero-shot Learning

To [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

 $h_0(\phi_0(X))$ appended to T0

Soft prompt vectors word embeddings.

Co-Training for Zero-shot Learning

To [Sanh et al. '21]: trained on tasks converted as natural instructions ⇒ meaningful zero-shot learning performance.

Soft prompt vectors $h_0(\phi_0(X))$ appended to T0 word embeddings.

 $h_1(\phi_1(X))$

DeBFRTa + MI P classifier (same as before).

Results: Zero-shot

Model/Algorithm	View	RTE	СВ	BoolQ
T0-3B (best) (Sanh et al., 2022)	ϕ_0	68.9	66.1	59.1
T0-3B zero-shot (no co-training)	ϕ_0	68.9	58.9	56.4
T0-3B soft prompt + <i>co-training</i>	ϕ_0	87.0	67.9	49.1
DeBERTa-large + co-training	ϕ_1	86.3	67.9	48.9
T0-3B soft prompt on full train	ϕ_0	90.6	80.4	86.9
DeBERTa-large on full train	ϕ_1	93.3	95.2	86.1

Analysis

Summary

- Co-training can effectively distill few-shot and zero-shot capabilities from larger language models to much more efficient models.
- Future directions:
 - Extension to structured cases.
 - Co-training aware prompting.
 - Prompt-aware pretraining.

Efficient Transfer Learning with Language Models

Various notions of efficiency:

- Memory efficiency: parameters, storage cost
- Inference efficiency: FLOPs, energy, speed
- Data efficiency: labeled data, unlabeled data

Important to think about target use case when striving for efficiency!

Thanks!