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Abstract

Understanding natural language involves complex underlying processes by which

meaning is extracted from surface form. One approach to operationalizing such phe-

nomena in computational models of natural language is through probabilistic latent

variable models, which can encode structural dependencies among observed and un-

observed variables of interest within a probabilistic framework. Deep learning, on the

other hand, offers an alternative computational approach to modeling natural lan-

guage through end-to-end learning of expressive, global models, where any phenomena

necessary for the task are captured implicitly within the hidden layers of a neural net-

work. This thesis explores a synthesis of deep learning and latent variable modeling

for natural language processing applications. We study a class of models called deep

latent variable models, which parameterize components of probabilistic latent vari-

able models with neural networks, thereby retaining the modularity of latent variable

models while at the same time exploiting rich parameterizations enabled by recent ad-

vances in deep learning. We experiment with different families of deep latent variable

models to target a wide range of language phenomena—from word alignment to parse

trees—and apply them to core natural language processing tasks including language

modeling, machine translation, and unsupervised parsing.

We also investigate key challenges in learning and inference that arise when work-

ing with deep latent variable models for language applications. A standard approach
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for learning such models is through amortized variational inference, in which a global

inference network is trained to perform approximate posterior inference over the la-

tent variables. However, a straightforward application of amortized variational infer-

ence is often insufficient for many applications of interest, and we consider several

extensions to the standard approach that lead to improved learning and inference. In

summary, each chapter presents a deep latent variable model tailored for modeling

a particular aspect of language, and develops an extension of amortized variational

inference for addressing the particular challenges brought on by the latent variable

model being considered. We anticipate that these techniques will be broadly applica-

ble to other domains of interest.
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1
Introduction

Understanding natural language involves complex underlying processes by which

meaning is extracted from surface form. One approach to operationalizing such phe-

nomena in computational models of natural language is through probabilistic latent

variable models, which provide a modular, probabilistic framework for specifying prior

knowledge and structural relationships in complex datasets. Latent variable mod-

els have a long and rich history in natural language processing, having contributed
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to fundamental advances such as statistical alignment for translation (Brown et al.,

1993), topic modeling (Blei et al., 2003), unsupervised part-of-speech tagging (Brown

et al., 1992), and unsupervised parsing (Klein & Manning, 2004), among others. Deep

learning, on the other hand, offers an alternative computational approach to model-

ing natural language through end-to-end learning of expressive, global models, where

any phenomena necessary for the task are captured implicitly within the hidden layers

of a neural network. Some major successes of deep learning in natural language pro-

cessing include language modeling (Bengio et al., 2003; Mikolov et al., 2010; Zaremba

et al., 2014; Radford et al., 2019), machine translation (Cho et al., 2014b; Sutskever

et al., 2014; Bahdanau et al., 2015; Vaswani et al., 2017), question answering (Seo

et al., 2017; Xiong et al., 2017; Wang & Jiang, 2017; Chen et al., 2017a), and more re-

cently, representation learning for natural language understanding tasks through deep

networks pretrained on self-supervised objectives (Peters et al., 2018; Devlin et al.,

2018).

There has been much recent, exciting work on combining the complementary strengths

of latent variable models and deep learning. Latent variable modeling makes it easy

to explicitly specify model constraints through conditional independence properties,

while deep learning makes it possible to parameterize these conditional likelihoods

with powerful function approximators. This thesis investigate these “deep latent vari-

able models” for natural language applications. We explore a variety of deep latent

variable models that target different language phenomena, from continuous latent

variable models of sentences (chapter 3) to attention in machine translation (chapter

4) to parse trees (chapter 5) and grammars (chapter 6). Core applications considered

in this thesis include language modeling, machine translation, and unsupervised pars-

ing.

2



While these deep latent variable models provide a rich, flexible framework for mod-

eling many natural language phenomena, difficulties exist: deep parameterizations of

conditional likelihoods usually make inference intractable, and latent variable objec-

tives often complicate backpropagation by introducing points of stochasticity into a

model’s computation graph. This thesis explores these issues at depth through the

lens of variational inference (Jordan et al., 1999; Wainwright & Jordan, 2008), a key

technique for performing approximate inference. We focus on a particular family of

techniques called amortized variational inference, which trains a global inference net-

work to output the parameters of an approximate posterior distribution given a set

of variables to be conditioned upon (Kingma & Welling, 2014; Rezende et al., 2014;

Mnih & Gregor, 2014). We show that a straightforward application of amortized vari-

ational inference is often insufficient for many applications of interest, and consider

several extensions to the standard approach that lead to improved learning and infer-

ence.

1.1 Thesis Outline

Each chapter begins by introducing a latent variable approach to modeling a partic-

ular aspect of language, which will bring about its own unique challenges in inference

and learning. We then develop and study techniques for addressing each of these chal-

lenges that we anticipate will be more broadly applicable to other domains of interest.

Concretely, the chapters are organized as follows:

• Chapter 2 gives a brief overview of latent variable models, exact and approxi-

mate inference, and the neural network machinery used throughout the thesis.

• Chapter 3 explores a continuous latent variable model of sentences with a fully

3



autoregressive generative model. We study a common failure mode in such

models known as posterior collapse, and propose an improved, semi-amortized

approach to approximate inference that is able to mitigate it.

• Chapter 4 provides a latent variable formulation of attention in neural machine

translation, motivated by alignment in traditional statistical machine transla-

tion systems. We experiment with continuous relaxation techniques in addition

to more traditional approaches for learning such models.

• Chapter 5 considers the problem of learning syntax-based language models

where the latent space corresponds to the set of parse trees for a sentence. We

show that posterior regularization through a structured inference network pro-

vides the appropriate inductive bias to facilitate the emergence of meaningful

tree structures.

• Chapter 6 revisits grammar induction with contemporary parameterization and

inference techniques. We combine classical dynamic programming algorithms

with amortized variational inference and show that this collapsed variational

inference approach can train richer grammars that go beyond the traditional

context-free assumptions.

• Finally, chapter 7 concludes and discusses future outlook.

1.2 Related Publications

Portions of this thesis appeared in the following publications:

• Chapters 1, 2, 7: Y. Kim, S. Wiseman, A.M. Rush. “A Tutorial on Deep La-

tent Variable Models of Natural Language,” EMNLP Tutorial, 2018.
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• Chapter 3: Y. Kim, S. Wiseman, A.C. Miller, D. Sontag, A.M. Rush. “Semi-

Amortized Variational Autoencoders,” In Proceedings of ICML, 2018.

• Chapter 4: Y. Deng, Y. Kim, J. Chiu, D. Guo, A.M. Rush. “Latent Align-

ment and Variational Attention,” In Proceedings of NeurIPS, 2018.

• Chapter 5: Y. Kim, A.M. Rush, A. Kuncoro, C. Dyer, G. Melis. “Unsuper-

vised Recurrent Neural Network Grammars,” In Proceedings of NAACL, 2019.

• Chapter 6: Y. Kim, C. Dyer, A.M. Rush. “Compound Probabilistic Context-

Free Grammars for Grammar Induction,” In Proceedings of ACL, 2019.

5



2
Background

2.1 Motivation

A probabilistic latent variable model specifies a joint distribution p(x, z) over unob-

served, latent variables z and observed variables x. Through a factorization of the

joint distribution into modular components, it becomes possible to express rich struc-

tural relationships and reason about observed and unobserved factors of variation in

Portions of this chapter appeared in Kim et al. (2018b).
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complex datasets within a probabilistic framework. Probabilistic latent variable mod-

els have a long and rich history in natural language processing. Influential applica-

tions of latent variable models include: part-of-speech induction with hidden Markov

models (Merialdo, 1994), word alignment from parallel corpora in statistical machine

translation (Brown et al., 1993), unsupervised morpheme discovery with latent seg-

mentation models (Creutz & Lagus, 2002), topic modeling with latent Dirichlet al-

location (Blei et al., 2003), unsupervised parsing with the constituent-context model

(Klein & Manning, 2002) and dependency model with valence (Klein & Manning,

2004), and supervised parsing with latent variable probabilistic context-free grammars

(Petrov et al., 2006). A core goal of latent variable modeling is often structure discov-

ery. For example, successful induction of formal linguistic structures such as genera-

tive grammars can yield scientific insights as to the underlying processes that govern

language acquisition, while thematic structures discovered through topic modeling can

organize and summarize large amounts of text data.

Deep learning, broadly construed, describes a set of tools and models for end-to-end

learning via numerical optimization against a predictive task. Key successes of deep

learning in natural language processing include: language modeling (Bengio et al.,

2003; Mikolov et al., 2010; Zaremba et al., 2014; Radford et al., 2019), machine trans-

lation (Cho et al., 2014b; Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al.,

2017), summarization (Rush et al., 2015; Cheng & Lapata, 2016; Nallapati et al.,

2016; See et al., 2017), question answering (Seo et al., 2017; Xiong et al., 2017; Wang

& Jiang, 2017; Chen et al., 2017a), text classification (Socher et al., 2013b; Kalch-

brenner et al., 2014; Kim, 2014; Tai et al., 2015), representation learning through

self-supervised objectives (Mikolov et al., 2013; Le & Mikolov, 2014; Peters et al.,

2018; Devlin et al., 2018), and classical NLP tasks such as tagging (Collobert et al.,
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2011; Lample et al., 2016; Ma & Hovy, 2016; He et al., 2017; Strubell et al., 2018)

and parsing (Chen & Manning, 2014; Vinyals et al., 2015; Dyer et al., 2015; Kitaev

& Klein, 2018). A primary goal of deep learning is generally predictive accuracy; we

are interested in learning expressive, global models that are rich enough to model the

underlying data and at the same time have the right inductive biases such that they

generalize well to unseen examples.

In this thesis we study deep latent variable models, which combine the modularity

of probabilistic latent variable models with the flexible modeling capabilities of deep

networks. The overarching goal of deep latent variable models is to accurately model

the underlying data with deep learning while at the same time exploiting latent vari-

ables for model interpretability, transparency, controllability, and structure discovery.

The term “deep” in deep latent variable models refers to both (1) deep parameteri-

zations of conditional distributions within latent variable models and (2) the use of

deep neural networks to perform approximate inference over latent variables. As we

will shortly see, these two uses of the term are connected: flexible parameterizations

of distributions over high dimensional data enabled by deep networks generally lead

to models in which exact posterior inference is intractable, which subsequently require

the use of a separate inference network to perform approximate posterior inference in

the model.

We begin this background chapter by briefly reviewing neural networks and latent

variable models. We then discuss learning and inference in these models, both in the

case where exact inference over the latent variables is tractable and when it is not.

We conclude with an exposition of amortized variational inference and variational

autoencoders, a central framework for learning deep latent variable models.
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2.2 Notation

We will generally use x to denote the observed data and z to refer to the unobserved

latent variables. In this thesis x is usually a sequence of discrete tokens,

x = [x1, . . . , xT ]

where each xi ∈ V. Here V = {1, . . . , V } is a finite vocabulary set of size V , and T

is the sequence length. The latent variable z can be a continuous vector (chapter 3),

a categorical variable (chapter 4), a binary tree (chapter 5), or a combination thereof

(chapter 6). Both x, z are random variables (i.e., measurable functions from sample

space Ω to Rn), though x will almost always be observed.

We use px(y; θ) to refer to the mass/density function of the random variable x pa-

rameterized by θ evaluated at y. When there is no ambiguity with regard to the ran-

dom variable over which the distribution is induced, we will often drop the subscript

on the mass/density function, or use a different letter (e.g. q instead of p for varia-

tional distributions). We overload p in two ways. First, we use p to more generally

refer to a distribution over a random variable, e.g. when x(n) is sampled from a distri-

bution p(x; θ),

x(n) ∼ p(x; θ).

This distinction is in practice a mere formality since we always characterize distribu-

tions with their density/mass functions. The second use of p is to refer to the proba-

9



bility of an event, e.g. if x is discrete,

p(x = y; θ) = px(y; θ).

In order to simplify notation, we also overload x to additionally refer to the realiza-

tion of the random variable . For example, when we use Ep(x)[f(x)] to refer to the

expectation of a function f(x),

Ep(x)[f(x)] =
∑
x

p(x)f(x),

we use x in the random variable sense in “Ep(x)[f(x)]” and in the realization sense in

“
∑

x p(x)f(x)”. The entropy of a distribution p(x) is

H[p(x)] = Ep(x) [− log p(x)] ,

and the Kullback–Leibler divergence between two distributions p(x) and q(x) is

KL[p(x) ∥ q(x)] = Ep(x)

[
log

p(x)

q(x)

]
.

We often use bold letters (e.g. x instead of x and z instead of z) to emphasize the

fact that we are working with vectors/sequences. Vector concatenation between two

vectors u, v is denoted as [u;v]. We will index vectors/matrices with square brack-

ets or subscripts, e.g. h[i] or hi for the i-th element of a vector h, and W[i] or Wi is

the i-th row of a matrix W. Bracketed superscripts are used to index different data

points, e.g. x(1:N) = {x(n)}Nn=1 = {x(1), . . . , x(N)} for a corpus of N sentences.

10



2.3 Neural Networks

We now briefly introduce the neural network machinery to be used throughout the

thesis. Neural networks are parameterized nonlinear functions, which transform an in-

put vector e into features h using parameters θ. For example, a multilayer perceptron

(MLP) computes features as follows:

h = MLP(e; θ) = Vf(We+ b) + a,

where f is an element-wise nonlinearity, such as tanh, ReLU, or sigmoid functions,

and the set of neural network parameters is given by θ = {V,W,a,b}. In practice

multilayer perceptrons are often augmented with residual layers (He et al., 2015),

batch normalization (Ioffe & Szegedy, 2015), layer normalization (Ba et al., 2016),

and other modifications. We also make use of sequential neural networks (SeqNN)

which operate over a sequence of input vectors e1:T = [e1, . . . , eT ] to output a se-

quence of features h1:T = [h1, . . . ,hT ] as follows:

h1:T = SeqNN(e1:T ; θ),

For example, the classical Elman RNN (Elman, 1990) computes each ht as

ht = σ(Uet +Vht−1 + b),

where σ is the sigmoid function and θ = {U,V,b}. Commonly-employed sequential

neural network architectures include long short-term memory (LSTM) (Hochreiter

& Schmidhuber, 1997), gated recurrent units (GRU) (Cho et al., 2014b), and Trans-

11



formers (Vaswani et al., 2017). In this thesis we generally remain agnostic with re-

gard to the particular architecture and simply treat MLP(· ; θ) and SeqNN(· ; θ) as

(sub)differentiable functions with respect to θ, though for completeness we will often

specify the architecture and hyperparameters when describing the experimental setup

in each chapter.

As neural networks operate over vector representations of data, the first step in

neural network-based approaches for natural language processing is to represent each

word xt with its vector representation et. This is usually done through an embedding

matrix,

et = E[xt],

where E is a |V| × d matrix and E[xt] is the word embedding corresponding to token

xt (i.e. xt-th row of E). It is also common practice to work with subword pieces as

the atomic unit, for example characters or subword units obtained from byte pair en-

coding (Sennrich et al., 2016). Again we remain agnostic with regard to the level of

atomicity and simply treat the input as a sequence of discrete tokens from a vocabu-

lary V.

Finally, neural networks make use of the softmax layer which applies an element-

wise exponentiation to a vector s ∈ Rn and renormalizes, i.e. y = softmax(s) means

that each element of y is given by

softmax(s)[k] = y[k] =
exp(s[k])∑K
v=1 exp(s[v])

.

The softmax layer is often used to parameterize a distribution over a discrete space
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over K elements, for example as the final output layer of a deep network or as an in-

termediate attention layer (chapter 4).

2.4 Latent Variable Models

A probabilistic latent variable model specifies a joint distribution p(x, z; θ) over the

observed variable x and the unobserved variable z, where the distribution is parame-

terized by θ. For example, the Naive Bayes model assumes that a corpus of sentences,

{x(n)}Nn=1, where each sentence x(n) = [x
(n)
1 , . . . , x

(n)
T ] has the same number of T to-

kens for simplicity, is generated according to the following probabilistic process:

1. For each sentence, sample latent variable z(n) ∈ {1, . . . ,K} from a Categorical

prior p(z; µ) with parameter µ ∈ ∆K−1. That is,

z(n) ∼ p(z;µ)

p(z(n) = k; µ) = µ[k],

where

∆K−1 =

{
s :

K∑
k=1

s[k] = 1, s[k] ≥ 0 ∀ k

}

is the K − 1-simplex.

2. Given z(n), sample each token x(n)t ∈ {1, . . . , V } independently from a Categori-

cal distribution with parameter πz ∈ ∆V−1. That is,

x
(n)
t ∼ p(xt | z(n);π)

p(x
(n)
t = v | z(n) = k;π) = πk[v],
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where πk[v] is the probability of drawing word index v given that the latent

variable z(n) takes on the value k.

Then, the probability of a sentence x(n) = [x
(n)
1 , . . . , x

(n)
T ] given z(n) is

p(x = x(n) | z = z(n); π) =

T∏
t=1

πz(n) [x
(n)
t ] .

This generative process defines a factorization of the joint probability distribution of

the entire corpus as

p({x(n), z(n)}Nn=1;π,µ) =

N∏
n=1

p(z = z(n);µ) p(x = x(n) | z = z(n);π)

=

N∏
n=1

µ[z(n)]

T∏
t=1

πz(n) [x
(n)
t ].

The directed graphical model that delineates this generative process is shown in Fig-

ure 2.1, where we show random variables in circles (observed variables are shaded)

and model parameters without circles.1 It is clear that the graphical model specifies

both the stochastic procedure for generating the data as well as the factorization of

the joint distribution into conditional distributions. This model assumes that each

token in x is generated independently, conditioned on z. This assumption is clearly

naive (hence the name) but greatly reduces the number of parameters that need to

be estimated. Letting θ = {µ,π}, the total number of parameters in this generative

model is K + KV , where we have K parameters for µ and V parameters in πz for
1Graphical models provide a convenient framework for delineating the set of conditional

independence assumptions that hold in a latent variable model. For example, directed graphi-
cal models factorize the joint distribution based on a top-down traversal of a graph. However,
some latent variable models considered in this thesis (such as probabilistic context-free gram-
mars in chapter 6) cannot conveniently be represented within the framework of graphical
models.
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Figure 2.1: Graphical model for the Naive Bayes model. For simplicity, all sequences are depicted
as having T tokens. All distributions are categorical, and the parameters are µ ∈ ∆K−1 and
π = {πk ∈ ∆V−1}Kk=1.

each of the K values of z.2

The Naive Bayes model is one of the simplest examples of a latent variable model

of discrete sequences such as text. Intuitively, since each sentence x(n) comes with a

corresponding latent variable z(n) governing its generation, we can see the z(n) val-

ues as inducing a clustering over the sentences {x(n)}Nn=1; sentences generated by the

same value of z(n) belong to the same cluster. Throughout this thesis we will explore

how different conditional independence assumptions in a latent variable model lead to

different structures being encoded by the latent variables.

2.4.1 Deep Latent Variable Models

Deep latent variable models parameterize the conditional distributions in a latent

variable model with neural networks. For example, a “deep” Naive Bayes model might
2This model is overparameterized since we only need V − 1 parameters for a Categorical

distribution over a set of size V . This is rarely an issue in practice.

15



parameterize p(x | z; θ) as follows:

p(x = x(n) | z = z(n); θ) =

T∏
t=1

softmax(MLP(z(n); θ))[x
(n)
t ],

where z(n) is the one-hot vector representation of z(n). Note that this modification

does not change the underlying conditional independence assumptions; only the pa-

rameterization is changed. Concretely, whereas in the previous case we had a scalar

πz[xt] for each z ∈ {1, . . . ,K} and xt ∈ {1, . . . , V } (constrained that they are valid

probabilities), we now parameterize πz such that it is the output of a neural network.

We will see in chapter 6 that probabilistic models with the same conditional inde-

pendence assumptions but different parameterizations (i.e., scalar vs. neural param-

eterization) lead to different learning dynamics due to parameter sharing and other

inductive biases from neural networks and the associated algorithms for optimizing

them.

Another reason we are interested in deep latent variable models is that neural net-

works make it possible to define flexible distributions over high-dimensional data

(such as text) without using too many parameters. As an example, let us now con-

sider a sentence model similar to the Naive Bayes model, but which avoids the Naive

Bayes assumption above (whereby each token is generated independently given z) us-

ing a sequential neural network such as an RNN. This will allow the probability of

x
(n)
t to depend on the entire history x(n)<t = [x

(n)
1 , . . . , x

(n)
t−1] of tokens preceding x

(n)
t . In
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this deep variant, we might then define the probability of x given latent variable z as

p(x = x(n) | z = z(n); θ) =
T∏
t=1

p(xt = x
(n)
t |x<t = x

(n)
<t , z = z(n); θ)

=
T∏
t=1

softmax(Wh
(n)
t−1)[x

(n)
t ],

where the hidden states ht are obtained as

h
(n)
t = σ(Ue

(n)
t +Vh

(n)
t−1 +Tz(n) + b),

e
(n)
t = E[x

(n)
t ].

That is, the probability distribution over xt given z is given by a linear transforma-

tion over the hidden states produced by an Elman RNN that conditions on z through

an additional matrix T during each hidden state update. Here the parameters of the

conditional distribution are given by θ = {W,U,V,T,E,b}, and we show the cor-

responding graphical model in Figure 2.2. Note that unlike the deep Naive Bayes

extension above, this is a more flexible probabilistic model with less stringent con-

ditional independence assumptions. Further, this deep model allows for avoiding the

Naive Bayes assumption while still using only O(d2 + V d+Kd) parameters, assuming

h
(n)
t ∈ Rd. On the other hand, a direct scalar parameterization of this model would

require O(KV T ) parameters, clearly highlighting the advantages afforded by neural

network parameterizations.
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Figure 2.2: Graphical model representation of a categorical latent variable model with tokens
generated by an RNN. For simplicity, all sequences are depicted as having T tokens. The z(n)’s are
drawn from a Categorical distribution with parameter µ, while x(n) is drawn from an RNN. The
parameters of the RNN are given by θ = {W,U,V,T,E,b}. See the text for more details.

2.5 Learning and Inference

After defining a latent variable model, we are interested in two related tasks: (1) we

would like to be able to learn the parameters θ of the model based on observed data

x(1:N), and (2) we would like to be able to perform posterior inference over the model.

That is, we’d like to be able to compute the posterior distribution p(z |x; θ) (or ap-

proximations thereof) over the latent variables, given some data x. Note that poste-

rior inference requires calculating the marginal distribution p(x; θ), since

p(z |x; θ) = p(x, z; θ)

p(x; θ)
,

and hence we sometimes use “inference” to also refer to the calculation of the marginal

distribution. As we will see, learning and inference are intimately connected because

learning often uses inference as a subroutine.
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2.5.1 Maximum Likelihood Estimation

The dominant approach to learning latent variable models in a probabilistic setting is

to maximize the log marginal likelihood of observed data. This is equivalent to min-

imizing the KL-divergence between the true data distribution p⋆(x) and the model

distribution p(x; θ),

KL[p⋆(x) ∥ p(x; θ)] = Ep⋆(x)

[
log

p⋆(x)

p(x; θ)

]

where the latent variable z has been marginalized out, i.e.

p(x; θ) =
∑
z

p(x, z; θ),

in the case that z is discrete. (The sum should be replaced with an integral if z is

continuous). Assuming that each training example x(n) is sampled independently and

identically from the true data distribution,

x(n)
i.i.d.∼ p⋆(x),

maximimum likelihood learning corresponds to the following optimization problem:

argmin
θ

KL[p⋆(x) ∥ p(x; θ)] = argmin
θ

Ep⋆(x)

[
log

p⋆(x)

p(x; θ)

]
= argmax

θ
Ep⋆(x) [log p(x; θ)]

≈ argmax
θ

1

N

N∑
n=1

log p(x(n); θ),
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where in the last line we approximate the expectation over p⋆(x) with Monte Carlo

samples from the data generating distribution (i.e. the training set).

2.5.2 Tractable Exact Inference

We begin with the case where the log marginal likelihood, i.e.

log p(x; θ) = log
∑
z

p(x, z; θ)

is tractable to evaluate. As mentioned above, this is equivalent to assuming posterior

inference is tractable. In cases where p(x, z; θ) is parameterized by a deep model, the

maximum likelihood problem,

argmax
θ

N∑
n=1

log p(x(n); θ),

is usually not possible to solve for exactly. We will assume, however, that p(x, z; θ) is

differentiable with respect to θ. The main tool for optimizing such models, then, is

gradient-based optimization. In particular, define the log marginal likelihood over the

training set x(1:N) = {x(1), . . . , x(n)} as

L(θ) = log p(x(1:N); θ)

=

N∑
n=1

log p(x(n); θ)

=

N∑
n=1

log
∑
z

p(x(n), z; θ).
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The gradient is given by

∇θL(θ) =
N∑

n=1

∇θ
∑

z p(x
(n), z; θ)

p(x(n); θ)
(chain rule)

=
N∑

n=1

∑
z

p(x(n), z; θ)

p(x(n); θ))
∇θ log p(x

(n), z; θ) (since ∇p(x, z) = p(x, z)∇ log p(x, z))

=
N∑

n=1

Ep(z |x(n);θ)[∇θ log p(x
(n), z; θ)].

The above gradient expression involves an expectation over the posterior p(z |x(n); θ),

and therefore is an example of how posterior inference is used as a subroutine in

learning. With this expression for the gradient in hand, we may then learn by up-

dating the parameters as

θ(i+1) = θ(i) + η∇θL(θ
(i)),

where η is the learning rate and θ(0) is initialized randomly. In practice the gradient

is calculated over mini-batches (i.e. random subsamples of the training set), and adap-

tive learning rates such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler, 2012), and

Adam (Kingma & Ba, 2015) are often used.

More generally, gradient ascent on the log marginal likelihood is an instance of an

Expectation-Maximization (EM) algorithm (Dempster et al., 1977). The EM algo-

rithm is an iterative method for learning latent variable models that admit tractable

posterior inference. It maximizes a lower bound on the log marginal likelihood at each

iteration. Given randomly-initialized starting parameters θ(0), the algorithm updates

the parameters via the following alternating procedure:

1. E-step: Derive the posterior under current parameters θ(i), i.e., p(z |x = x(n); θ(i))

for all data points n = 1, . . . , N .
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2. M-step: Define the expected complete data likelihood as

Q(θ, θ(i)) =
N∑

n=1

Ep(z |x(n); θ(i))[log p(x
(n), z; θ)],

and then maximize this with respect to θ, holding θ(i) fixed,

θ(i+1) = argmax
θ

Q(θ, θ(i)).

It can be shown that EM improves the log marginal likelihood at each iteration, i.e.

N∑
n=1

log p(x(n); θ(i+1)) ≥
N∑

n=1

log p(x(n); θ(i)).

In cases where finding the exact argmax in the M-step is not possible (as will be the

case with deep latent variable models), we can perform a gradient-based optimiza-

tion step on Q. This highlights the connection between gradient ascent on the log

marginal likelihood and EM, since

∇θQ(θ, θ(i)) =
N∑

n=1

Ep(z |x(n); θ(i))[∇θ log p(x
(n), z; θ)]

= ∇θL(θ).

This variant of EM is sometimes referred to as generalized expectation maximization

(Dempster et al., 1977; Neal & Hinton, 1998; Murphy, 2012). The EM algorithm can

in general be been seen as performing coordinate ascent on a lower bound on the log

marginal likelihood (Bishop, 2006). This view will become useful in the next section

where we consider cases where exact posterior inference is intractable, and will moti-
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vate variational inference, a class of methods which uses approximate but tractable

posteriors in place of the true posterior.

2.5.3 Variational Inference

Previously we have considered cases in which posterior inference (or equivalently,

calculation of the marginal likelihood) is tractable. Now we consider cases in which

posterior inference is intractable. Variational inference (Hinton & van Camp, 1993;

Jordan et al., 1999) is a technique for approximating an intractable posterior distribu-

tion p(z |x; θ) with a tractable surrogate. In the context of learning the parameters of

a latent variable model, variational inference can be used in optimizing a lower bound

on the log marginal likelihood that involves only an approximate posterior over latent

variables, rather than the exact posteriors we have been considering until now.

We begin by defining a set of distributions Q, known as the variational family,

whose elements are distributions q(z;λ) parameterized by λ (we only consider pa-

rameteric families in this thesis). That is, Q contains distributions over the latent

variables z. We will use Q to denote the entire variational family, and q(z;λ) ∈ Q

to refer to a particular variational distribution within the variational family, which

is picked out by λ. Working with continuous latent variable z, we now derive a lower

bound on the log marginal likelihood log p(x; θ) = log
∫
z p(x, z; θ)dz that makes use of
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the variational distribution q(z;λ):

log p(x; θ)

=

∫
q(z;λ) log p(x; θ) dz (since log p(x; θ) is non-random)

=

∫
q(z;λ) log

p(x, z; θ)

p(z |x; θ)
dz (rewriting p(x; θ))

=

∫
q(z;λ) log

(
p(x, z; θ)

q(z;λ)

q(z;λ)

p(z |x; θ)

)
dz (multiplying by 1)

=

∫
q(z;λ) log

p(x, z; θ)

q(z;λ)
dz +

∫
q(z;λ) log

q(z;λ)

p(z |x; θ)
dz (distribute log)

=

∫
q(z;λ) log

p(x, z; θ)

q(z;λ)
dz +KL[q(z;λ) ∥ p(z |x; θ)] (definition of KL divergence)

= Eq(z;λ)

[
log

p(x, z; θ)

q(z;λ)

]
+KL[q(z;λ) ∥ p(z |x; θ)] (definition of expectation)

= ELBO(θ, λ;x) + KL[q(z;λ) ∥ p(z |x; θ)] (definition of ELBO)

≥ ELBO(θ, λ;x) (KL always non-negative)

The above derivation shows that log p(x; θ) is equal to a quantity called the evidence

lower bound, or ELBO, plus the KL divergence between q(z;λ) and the posterior dis-

tribution p(z |x; θ). Since the KL divergence is always non-negative, the ELBO is a

lower-bound on log p(x; θ), and it is this quantity that we attempt to maximize with

variational inference.3

The form of the ELBO is worth looking at more closely. First, note that it is a

function of θ, λ (the data x is fixed), and lower bounds the log marginal likelihood

log p(x; θ) for any λ. The bound is tight if the variational distribution equals the true
3Note that this derivation requires that the support of the variational distribution lie

within the support of the true posterior, i.e., p(z |x; θ) = 0 =⇒ q(z;λ) = 0 for all z. Other-
wise, the second equality would have a division by zero. In contrast, we can have q(z;λ) = 0
and p(z |x; θ) > 0 for some z, since the integral remains unchanged if we just integrate over
the set E = {z : q(z;λ) > 0}.
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posterior, i.e.

q(z;λ) = p(z |x; θ) =⇒ log p(x; θ) = ELBO(θ, λ;x).

It is also immediately evident that

ELBO(θ, λ;x) = log p(x; θ)−KL[q(z;λ) ∥ p(z |x; θ)].

In some scenarios the model parameters θ are given (and thus fixed), and the re-

searcher is tasked with finding the best variational approximation to the true poste-

rior. Under this setup, log p(x; θ) is a constant with respect to λ and therefore maxi-

mizing the ELBO is equivalent to minimizing KL[q(z;λ) ∥ p(z |x; θ)]. However for our

purposes we are also interested in learning the generative model parameters θ.

Letting x(1:N) = {x(1), . . . , x(N)} be the training set, the ELBO over the entire

dataset is given by the sum of individual ELBOs,

ELBO(θ, λ(1:N);x(1:N)) =

N∑
n=1

ELBO(θ, λ(n);x(n)) =

N∑
n=1

Eq(z;λ(n))

[
log

p(x(n), z; θ)

q(z;λ(n))

]
,

where the variational parameters are given by λ(1:N) = [λ(1), . . . , λ(n)] (i.e. we have

λ(n) for each data point x(n)). Since x(n) are assumed to be drawn i.i.d, it is clear that

the aggregate ELBO lower bounds the log likelihood of the training corpus,

ELBO(θ, λ(1:N);x(1:N)) ≤ log p(x(1:N); θ).

It is this aggregate ELBO that we wish to maximize with respect to θ and λ(1:N) to

train our model.
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One possible strategy for maximizing the aggregate ELBO is coordinate ascent,

where we maximize the objective with respect to the λ(n)’s keeping θ fixed, then max-

imize with respect to θ keeping the λ(n)’s fixed. In particular, we arrive at the follow-

ing:

1. Variational E-step: For each n = 1, . . . , N , maximize the ELBO for each x(n)

holding θ(i) fixed,

λ(n) = argmax
λ

ELBO(θ(i), λ;x(n))

= argmin
λ

KL[q(z;λ(n)) ∥ p(z |x(n); θ(i))],

where the second equality holds since log p(x; θ(i)) is a constant with respect to

the λ(n)’s.

2. Variational M-step: Maximize the aggregate ELBO with respect to θ holding

the λ(n)’s fixed,

θ(i+1) = argmax
θ

N∑
n=1

ELBO(θ, λ(n);x(n))

= argmax
θ

N∑
n=1

Eq(z;λ(n))[log p(x
(n), z; θ)],

where the second equality holds since the Eq(z;λ(n))[− log q(z;λ(n))] portion of

the ELBO is constant with respect to θ.

This style of training is also known as variational expectation maximization (Neal &

Hinton, 1998). In variational EM, the E-step, which usually performs exact posterior

inference, is instead replaced with variational inference which finds the best varia-
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tional approximation to the true posterior. The M-step maximizes the expected com-

plete data likelihood where the expectation is taken with respect to the variational

posterior distribution.

If we consider the case where the variational family is flexible enough to include

the true posterior,4 then it is clear that the above reduces to the EM algorithm, since

in the first step KL[q(z;λ(n)) ∥ p(z |x(n); θ(i))] is minimized when q(z;λ(n)) equals the

true posterior. Therefore, we can view EM as performing coordinate ascent on the

ELBO where the variational family is arbitrarily flexible. Of course, this case is unin-

teresting since we have assumed that exact posterior inference is intractable. We are

therefore interested in choosing a variational family that is flexible enough and at the

same time allows for tractable optimization.

In practice, performing coordinate ascent on the entire dataset is usually too ex-

pensive. The variational E-step can instead be performed over mini-batches. As with

generalized EM, the M-step can also be modified to perform gradient-based opti-

mization. It is also possible to perform the E-step only approximately, again using

gradient-based optimization. This style of approach leads to a class of methods called

stochastic variational inference (SVI) (Hoffman et al., 2013). Concretely, for each x(n)

in the mini-batch (of size B) we can randomly initialize λ(n)0 and perform gradient

ascent on the ELBO with respect to λ for K steps,

λ
(n)
k = λ

(n)
k−1 + η∇λ ELBO(θ, λ

(n)
k ;x(n)), k = 1, . . . ,K.

Then the M-step, which updates θ, proceeds with the variational parameters λ(1)K , . . . , λ
(B)
K

4That is, ∀x ∃λx such that q(z;λx) = p(z |x; θ) ∀z.
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held fixed,

θ(i+1) = θ(i) + η∇θ

B∑
n=1

E
q(z |λ(n)

K )

[
log p(x(n), z; θ(i))

]
.

Variational inference is a rich field of active research, and we have only covered a

small portion of it in this section. For example, we have not covered coordinate as-

cent variational inference, which allows for closed-form updates in the E-step for con-

ditionally conjugate models. We refer the interested reader to Wainwright & Jordan

(2008), Blei et al. (2017), and Zhang et al. (2017) for further reading.

2.5.4 Amortized Variational Inference

The variational E-step requires that we (approximately) find the best variational pa-

rameters λ(n) for each x(n). Even in mini-batch settings, this optimization procedure

can be expensive, especially if a closed-form update is not available, which is typi-

cally the case in deep latent variable models. In such cases, one could rely on iterative

methods to find approximately optimal variational parameters as in SVI (see previous

section), but this may still be prohibitively expensive since each gradient calculation

∇λ ELBO(θ, λ;x(n)) requires backpropagating gradients through the generative model.

As an alternative, we can instead predict the variational parameters by applying

a neural network, called an inference network,5 to the input x(n) for which we would

like to calculate an approximate posterior:

λ(n) = enc(x(n);ϕ).

The inference network is trained to perform variational inference for all the data
5Also referred to as a recognition network or an encoder.
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Figure 2.3: (Top) Traditional variational inference uses variational parameters λ(n) for each data
point x(n). (Bottom) Amortized variational inference employs a global inference network ϕ that is
run over the input x(n) to produce the local variational distributions.

points, i.e.

max
ϕ

N∑
n=1

ELBO(θ, enc(x(n);ϕ);x(n)).

The inference network parameters ϕ is itself optimized with gradient ascent. Impor-

tantly, the same encoder network can be used for all x(n) we are interested in, and

it is therefore unnecessary to optimize separate λ(n) for each x(n) we encounter. This

style of inference is also known as amortized variational inference (AVI) (Kingma &

Welling, 2014; Rezende et al., 2014; Mnih & Gregor, 2014), as the task of performing

approximate posterior inference is amortized across each optimization step and data

point through the shared encoder.6 This is illustrated in Figure 2.3. AVI is usually
6Amortized inference is a more general concept and has been applied to a variety of set-

tings, including structured prediction (Srikumar et al., 2012; Tu & Gimpel, 2018), Monte
Carlo sampling (Paige & Wood, 2016), and Bethe free energy minimization (Wiseman & Kim,
2019).
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Inference (E-step) minq(z) KL[q(z) ∥ p(z |x; θ)]

Exact posterior inference q(z) = p(z |x; θ)
Maximum a posteriori (MAP) q(z) = 1{z = argmaxz p(z |x; θ)}
Coord. ascent variational inference (CAVI) q(zj) ∝ exp

(
Eq(z−j) [log p(x, z; θ)]

)
Stochastic variational inference (SVI) q(z;λ), λ = λ+ η∇λ ELBO(θ, λ;x)
Amortized variational inference (AVI) q(z;λ), λ = enc(x;ϕ)

Learning (M-step) maxθ Eq(z)[log p(x, z; θ)]

Analytic update θ = argmaxθ Eq(z)[log p(x, z; θ)]

Gradient-based update θ = θ + ηEp(z |x;θ)[∇θ log p(x, z; θ)]

Other approximations θ ≈ argmaxθ Eq(z)[log p(x, z; θ)]

Table 2.1: A simplified landscape of the different optimization methods for training latent vari-
able models with maximum likelihood learning. The “Expectation” or “Inference” step (E-step)
correponds to performing posterior inference, i.e. minimizing KL[q(z) ∥ p(z |x; θ)]. The “Maxi-
mization” or “Learning” step (M-step) corresponds to maximizing the complete data likelihood
under the inferred posterior, i.e. Eq(z)[log p(x, z; θ)].

much faster than both SVI and traditional VI, as one can simply run the inference

network over x(n) to obtain the variational parameters, which should approximate the

true posterior well if the inference network is sufficiently expressive and well-trained.

Summary Table 2.1 gives a greatly simplified overview of the different methods for

training latent variable models with maximum likelihood learning. At a high level,

many methods can be viewed as performing iterative optimization which alternates

between performing an update on the auxiliary variational parameters (E-step) and

an update on the model parameters under the inferred posterior (M-step). Table 2.2

shows how different combinations of E- and M-steps lead to different, commonly-

utilized methods for learning latent variable models.
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Method E-step M-step

Expectation maximization Exact posterior Analytic
Log marginal likelihood Exact posterior Gradient
Hard EM MAP Analytic
Variational EM CAVI/SVI Analytic/Gradient/Other
Variational autoencoder AVI Gradient

Table 2.2: Different combinations of E-step and M-step lead to different methods for learning
latent variable models.

2.5.5 Variational Autoencoders

Training deep latent variable models with amortized variational inference leads to a

family of models called variational autoencoders (VAE) (Kingma & Welling, 2014).7

For latent variable models that factorize as

p(x, z; θ) = p(x | z; θ)p(z; θ),

we can rearrange the ELBO as follows:

ELBO(θ, ϕ;x) = Eq(z |x;ϕ)

[
log

p(x, z; θ)

q(z;ϕ)

]
= Eq(z |x;ϕ)

[
log

p(x | z; θ)p(z; θ)
q(z;ϕ)

]
= Eq(z |x;ϕ) [log p(x | z; θ)]−KL [q(z |x;ϕ)∥p(z; θ)] .

Above, for brevity we have written ELBO(θ, ϕ;x) in place of ELBO(θ, enc(x;ϕ);x),

and q(z |x;ϕ) in place of q(z; enc(x;ϕ)), and we will use this notation going forward.

The autoencoder part of the name stems from the fact that and the first term in the
7While the term “variational autoencoder” is widely-used, it is somewhat less than ideal

since it does not explicitly separate the model (i.e. the underlying generative model) from
inference (i.e. how one performs inference in the model).
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above derivation is the expected reconstruction likelihood of x given the latent vari-

ables z, which is roughly equivalent to an autoencoding objective. The second term

can be viewed as a regularization term that pushes the variational distribution to be

close to the prior.

Gradients In the standard VAE setup, the inference network and the generative

model are jointly trained by maximizing the ELBO with gradient ascent:

θ(i+1) = θ(i) + η∇θ ELBO(θ(i), ϕ(i);x(n))

ϕ(i+1) = ϕ(i) + η∇ϕ ELBO(θ(i), ϕ(i);x(n)).

The above update uses a fixed learning rate for a single data point, but in practice

adaptive learning rates and mini-batches are used. Note that unlike the coordinate

ascent-style training from previous section, θ and ϕ are trained together end-to-end.

We now derive the gradient expressions for both θ and ϕ. The gradient of the

ELBO with respect to θ is given by

∇θ ELBO(θ, ϕ;x) = Eq(z |x;ϕ)[∇θ log p(x, z; θ)],

where we can push the gradient inside the expectations since the distribution over

which we are taking the expectation does not depend on θ.8 For the gradient with
8This is valid under the assumption that we can differentiate under the integral sign (i.e.

swap the gradient/integral signs), which holds under mild conditions, e.g. conditions which
satisfy the hypotheses of the dominated convergence theorem.
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respect to ϕ, we first separate the ELBO into two parts,

∇ϕ ELBO(θ, ϕ;x) = ∇ϕEq(z |x;ϕ)

[
log

p(x, z; θ)

q(z |x;ϕ)

]
= ∇ϕEq(z |x;ϕ)[log p(x, z; θ)]−∇ϕEq(z |x;ϕ)[log q(z |x;ϕ)].

Unlike the case with θ, we cannot simply push the gradient sign inside the expecta-

tion since the distribution with which we are taking the expectation depends on ϕ.

We derive the gradients of the two terms in the above expression separately. The first

term involves the score function gradient estimator (Glynn, 1987; Williams, 1992; Fu,

2006),

∇ϕEq(z |x;ϕ)[log p(x, z; θ)]

= ∇ϕ

∫
log p(x, z; θ)× q(z |x;ϕ) dz

=

∫
log p(x, z; θ)×∇ϕq(z |x;ϕ) dz (differentiate under integral)

=

∫
log p(x, z; θ)× q(z |x;ϕ)×∇ϕ log q(z |x;ϕ) dz (since ∇q = q∇ log q)

= Eq(z |x;ϕ)[log p(x, z; θ)×∇ϕ log q(z |x;ϕ)].
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The second term is given by,

∇ϕEq(z |x;ϕ)[log q(z |x;ϕ)]

= ∇ϕ

∫
log q(z |x;ϕ)× q(z |x;ϕ) dz

=

∫
∇ϕ

(
log q(z |x;ϕ)× q(z |x;ϕ)

)
dz (differentiate under integral)

=

∫
q(z |x;ϕ)∇ϕ log q(z |x;ϕ) + log q(z |x;ϕ)∇ϕq(z |x;ϕ) dz (product rule)

=

∫
∇ϕq(z |x;ϕ) dz +

∫
log q(z |x;ϕ)×∇ϕq(z |x;ϕ) dz (apply ∇q = q∇ log q)

= 0 +

∫
log q(z |x;ϕ)×∇ϕq(z |x;ϕ) dz

(∫
∇q = ∇

∫
q = ∇1 = 0

)
=

∫
log q(z |x;ϕ)× q(z |x;ϕ)×∇ϕ log q(z |x;ϕ) (apply ∇q = q∇ log q again)

= Eq(z |x;ϕ)[log q(z |x;ϕ)×∇ϕ log q(z |x;ϕ)]

Putting it all together, we have

∇ϕ ELBO(θ, ϕ;x) = Eq(z |x;ϕ)

[
log

p(x, z; θ)

q(z |x;ϕ)
×∇ϕ log q(z |x;ϕ)

]
,

which is reminiscent of policy gradient-style reinforcement learning with reward given

by

log
p(x, z; θ)

q(z |x;ϕ)
.

This expectation can again be estimated with Monte Carlo samples. While the Monte

Carlo gradient estimator is unbiased it will suffer from high variance, and a common

strategy to reduce the variance is to use a control variate B. First observe that we
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can subtract B from the reward and not affect the gradient, i.e.

∇ϕ ELBO(θ, ϕ;x) = Eq(z |x;ϕ)

[(
log

p(x, z; θ)

q(z |x;ϕ)
−B

)
∇ϕ log q(z |x;ϕ)

]
,

since

Eq(z |x;ϕ)[B ×∇ϕ log q(z |x;ϕ)] =
∫
B × q(z |x;ϕ)×∇ϕ log q(z |x;ϕ) dz

=

∫
B ×∇ϕq(z |x;ϕ) dz

= ∇ϕ

∫
B × q(z |x;ϕ) dz

= 0

as long as B does not depend on the latent variable z or ϕ. We can then estimate the

above gradient instead with Monte Carlo samples. Common techniques for B include

a running average of previous rewards, a learned function (Mnih & Gregor, 2014),

or combinations thereof. In chapters 4 and 5 we experiment with different control

variates for training such models.

Pathwise Gradient Estimators The above expression for the gradient with re-

gard to ϕ is agnostic with regard to the family of variational distributions q(z |x;ϕ).

Now let us derive an alternative gradient estimator which does assume a particular

family. In particular, suppose our variational posterior family is multivariate Gaus-

sian with diagonal covariance matrix, i.e.,

q(z |x;ϕ) = N (z;µ, diag(σ2)),
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where the parameters are again given by the inference network

µ,σ2 = enc(x;ϕ).

(In general we use N (z;µ,Σ) to refer to the density of a multivariate Gaussian distri-

bution with mean vector µ and the covariance matrix Σ). In this case we can exploit

this choice of variational family to derive another estimator. In particular, we observe

that our variational family of Gaussian distributions is reparameterizable (Kingma

& Welling, 2014; Rezende et al., 2014; Glasserman, 2013) in the sense that we can

obtain a sample from the variational posterior by sampling from a base noise distribu-

tion and applying a deterministic transformation,

ϵ ∼ N (ϵ;0, I), z = µ+ σϵ.

Observe that z remains distributed according to N (z;µ,diag(σ2)), but we may now

express the gradient with respect to ϕ as

∇ϕEq(z |x;ϕ)

[
log

p(x, z; θ)

q(z |x;ϕ)

]
= ∇ϕEN (ϵ;0,I)

[
log

p(x, z = µ+ σϵ; θ)

q(z = µ+ σϵ |x;ϕ)

]
= EN (ϵ;0,I)

[
∇ϕ log

p(x, z = µ+ σϵ; θ)

q(z = µ+ σϵ |x;ϕ)

]
,

where the second equality follows since the expectation no longer depends on ϕ.

The estimator derived from this reparameterization trick just discussed is called a

pathwise gradient estimator, and empirically yields much lower-variance estimators

compared to the score function gradient estimator.9 Intuitively, the pathwise gradient
9However, there are cases where the score function gradient estimator has lower variance.

See, for example, Mohamed et al. (2019).
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Ch. Latent Variable Generative Model Learning & Inference

3 Continuous vector Autoregressive neural Semi-Amortized VI
language model (amortized + stochastic VI)

4 Categorical variable Sequence-to-sequence Continuous relaxation
model with attention with Gumbel-Softmax

5 Unlabeled binary Recurrent neural Posterior regularization
parse tree network grammars with CRF inference network

6 Grammar & Compound probabilistic Collapsed amortized VI
Continuous vector context-free grammars with dynamic programming

Table 2.3: Summary of different latent variables, generative models, and learning & inference
techqniues explored in this thesis.

estimator “differentiates through” the generative model and therefore has more infor-

mation than the score function gradient estimator, which treats the generative model

as a black-box reward function. In this thesis, we utilize the pathwise estimator when

possible, though we will also study latent variable models in which the reparameteri-

zation trick is not straightforwardly applicable, for example when z is discrete.

2.6 Thesis Roadmap

This thesis studies different latent variable models that target various language phe-

nomena. Table 2.3 summarizes the different types of latent variables, generative mod-

els, and learning/inference techniques explored in this thesis.
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3
Latent Variable Model of Sentences &

Semi-Amortized Variational Inference

3.1 Introduction

In this chapter we consider a continuous latent variable model of text where we as-

sume that each sentence/paragraph is generated from a continuous vector. The gener-

The material in this chapter is adapted from Kim et al. (2018a).
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ative model parameterizes the probability distribution over the next word through an

autoregressive neural language model that composes the sentence-level latent variable

with representations of previously-generated tokens (Bowman et al., 2016), similar to

the example model we saw in 2.4.1. One motivation for this type of approach is to

model global properties of sentences with a latent vector while simultaneously using

an autoregressive model to target local properties. However, it is well known that a

straightforward application of amortized variational inference to train such models

results in a phenomenon known as posterior collapse, whereby the generative model

does not make use of the latent variable, ultimately rendering it meaningless (Bow-

man et al., 2016; Yang et al., 2017). This chapter develops a semi-amortized inference

approach that augments amortized variational inference with stochastic variational in-

ference. We find that this technique is able to partially mitigate posterior collapse in

variational autoencoders even when utilizing an expressive generative model.

3.2 Background

We begin by reviewing the generative model from Bowman et al. (2016) and the repa-

rameterization trick as it applies to this particular model. We then discuss an impor-

tant issue called posterior collapse that arises when training latent variable models

which utilize a fully-autoregressive generative model (3.2.2), as well as the amortiza-

tion gap that results from suboptimal variational parameters obtained from a global

inference network (3.2.3).
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3.2.1 Generative Model

Let us revisit the variational autoencoder from 2.5.5 with a spherical Gaussian prior

and a Gaussian variational family, see how it may be learned in practice with gradient-

based optimization utilizing pathwise gradient estimators. In this chapter we work

with the following generative model from Bowman et al. (2016),

• First sample latent vector z ∼ N (z;0, I), z ∈ Rd.

• Sample each token sequentially as follows:

xt ∼ p(xt |x<t, z; θ) ,

p(xt |x<t, z; θ) = softmax(Wht−1 + b) ,

ht = LSTM(ht−1, [ext ; z]).

Concretely, the distribution over the next token is given by a softmax function over

an affine transformation of a context vector ht, which is obtained through an LSTM

network that conditions on the sentence-level latent variable z by feeding it as addi-

tional input alongside the word embedding at each time step.

For learning θ, recall that we want to maximize the ELBO, which lower bounds the

log marginal likelihood

log p(x; θ) ≥ ELBO(θ, ϕ;x)

= Eq(z |x;ϕ)

[
log

p(x, z; θ)

q(z |x;ϕ)

]
= Eq(z |x;ϕ)[log p(x | z; θ)]−KL[q(z |x;ϕ) ∥N (z;0, I)].
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Define the variational family Q to be the set of Gaussian distributions with diagonal

covariance matrices, whose parameters are predicted from an inference network. That

is,

q(z |x;ϕ) = N (z;µ, diag(σ2)),

where

µ,σ2 = enc(x;ϕ), µ ∈ Rd,σ2 ∈ Rd
≥0.

A popular parameterization for the inference network enc(x;ϕ) is

s1:T = SeqNN(e1:T ;ϕ),

µ = MLP1(sT ),

logσ = MLP2(sT ).

As we saw in 2.5.5, an estimator for the gradient with respect to θ is simple to ob-

tain. For the gradient with respect to ϕ, we first observe that the generative process

factorizes the joint distribution as

p(x, z; θ) = p(x | z; θ)×N (z;0, I),

so we can also express the gradient of the ELBO with respect to ϕ as

∇ϕ ELBO(θ, ϕ;x) = ∇ϕEq(z |x;ϕ)[log p(x | z; θ)]−∇ϕKL[q(z |x;ϕ) ∥N (z;0, I)].
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Beginning with the second term, the KL divergence between a diagonal Gaussian and

the spherical Gaussian has an analytic solution given by

KL[q(z |x;ϕ) ∥N (z;0, I)] = −1

2

d∑
j=1

(logσ2
j − σ2

j − µ2
j + 1),

and therefore ∇ϕKL[q(z |x;ϕ) ∥N (z;0, I)] is easy to calculate. For the first term, we

use the pathwise gradient estimator,

∇ϕEq(z |x;ϕ)[log p(x | z; θ)] = ∇ϕEN (ϵ;0,I)[log p(x |µ+ σϵ; θ)]

= EN (ϵ;0,I)[∇ϕ log p(x |µ+ σϵ; θ)],

where we approximate the expectation with a single sample. We can then perform

end-to-end gradient-based training with respect to both the generative model θ and

the inference network ϕ.

3.2.2 Posterior Collapse

We now discuss an important issue which affects training of the text variational au-

toencoders with a fully autoregressive generative model. In the model introduced

above, the likelihood model is allowed to fully condition on the entire history through

the RNN’s state ht,

ht = LSTM(ht−1, [xt−1; z])

p(xt = v |x<t, z; θ) = softmax(Wht)[v],
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with the motivation for this approach being to capture global properties with z. How-

ever, Bowman et al. (2016) observe that these types of models experience posterior

collapse (or latent variable collapse), whereby the likelihood model p(x | z; θ) ignores

the latent variable and simply reduces to a non-latent variable language model. That

is, x and z become independent. Indeed, looking at the ELBO in more detail, we ob-

serve that if the distribution over x can be modeled without z, the model is incen-

tivized to make the variational posterior approximately equal to the prior,

KL[q(z |x;ϕ) ∥ p(z; γ)] ≈ 0,

regardless of how expressively one parameterizes q(z |x;ϕ) (here γ parameterizes the

prior). More formally, Chen et al. (2017b) show that this phenomenon may be justi-

fied under the “bits-back” argument: if the likelihood model is rich enough to model

the true data distribution p⋆(x) without using any information from z, then the global

optimum is obtained by setting

p(x | z; θ) = p⋆(x)

p(z |x; θ) = q(z |x;ϕ) = p(z; γ).

Since any distribution p(x) can be factorized autoregressively as

p(x) = p(x1)
T∏
t=2

p(xt |x<t),

it is possible that a richly parameterized deep network can model p⋆(x) without re-

lying on z. As such, to avoid posterior collapse, past work has made conditional in-

dependence assumptions and instead used multilayer perceptrons (Miao et al., 2016,
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2017) or convolutional networks (Yang et al., 2017; Semeniuta et al., 2017; Shen et al.,

2018a) to parameterize the likelihood model, often at the cost of predictive accuracy

(i.e. perplexity). In this chapter we consider an alternative approach which targets

posterior collapse while still utilizing expressive generative models.

3.2.3 Amortization Gap

Another issue in variational autoencoders is the amortization gap, which arises from

restricting the variational family to be the class of distributions whose parameters are

obtainable by running a parameteric inference network over the input. While such

a global parameterization allows for fast training/inference, it may be too strict of a

restriction compared to methods such as stochastic variational inference (see 2.5.3)

which obtain variational parameters for each datum via local optimization. In partic-

ular, letting λ⋆ be the best variational parameter for a given data point,

λ⋆ = argmin
λ

KL[q(z;λ) ∥ p(z |x; θ)]

we can break down the inference gap—the gap between the variational posterior from

the inference network and the true posterior—as follows,

KL[q(z |x;ϕ) ∥ p(z |x; θ)]︸ ︷︷ ︸
inference gap

= KL[q(z;λ⋆) ∥ p(z |x; θ)]︸ ︷︷ ︸
approximation gap

+

KL[q(z |x;ϕ) ∥ p(z |x; θ)]−KL[q(z;λ⋆) ∥ p(z |x; θ)]︸ ︷︷ ︸
amortization gap

.

Therefore the inference gap consists of two parts: the approximation gap, which is the

gap between the true posterior and the best possible variational posterior within Q,
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and the amortization gap, which quantifies the gap between inference network pos-

terior and the best possible variational posterior. Cremer et al. (2018) observe that

this amortization gap in practice can be large even for richly parameterized inference

networks.

3.3 Semi-Amortized Variational Autoencoders

In this chapter we consider a method that combines amortized and stochastic varia-

tional inference to reduce the inference gap, which results in better training of gen-

erative models and partially addresses the posterior collapse phenomenon described

above. In particular we propose a semi-amortized approach to training deep latent

variable models which combines amortized variational inference (AVI) with stochastic

variational inference (SVI). This semi-amortized variational autoencoder (SA-VAE) is

trained using a combination of AVI and SVI steps:

1. Sample x ∼ p⋆(x)

2. Set λ0 = enc(x;ϕ)

3. For k = 0, . . . ,K − 1,

λk+1 = λk + α∇λ ELBO(λk, θ;x)

4. Update θ based on dELBO(λK ,θ;x)
dθ

5. Update ϕ based on dELBO(λK ,θ;x)
dϕ

As in AVI, we make use of a global inference network which outputs variational

parameters (step 2). Then, as in SVI, we perform local optimization to refine the
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variational parameters for K steps (step 3). Note that the above notation distin-

guishes between the gradient ∇θf and the total derivative df
dθ . To be more precise,

we use ∇uif(û) ∈ Rdim(ui) to refer to the i-th block of the gradient of f evaluated at

û = [û1, . . . , ûm], and further use df
dv to denote the total derivative of f with respect

to v, which exists if u is a differentiable function of v. In general ∇uif(û) ̸=
df
dui

since

other components of u could be a function of ui. This will indeed be the case in our

approach; when we calculate ELBO(λK , θ;x), λK is a function of the data point x,

the generative model θ, and the inference network ϕ.

For training we need to compute the total derivative of the final ELBO with re-

spect to θ, ϕ (i.e., steps 4 and 5 above). Unlike in AVI, in order to update the en-

coder and generative model parameters, this total derivative requires backpropagating

through the SVI updates. Specifically this requires backpropagating through gradient

ascent (Domke, 2012; Maclaurin et al., 2015). Following past work, this backpropa-

gation step can be done efficiently with fast Hessian-vector products (LeCun et al.,

1993; Pearlmutter, 1994). Consider the case where we perform one step of refinement,

λ1 = λ0 + α∇λ ELBO(λ0, θ;x),

and for brevity let

L = ELBO(λ1, θ;x).

To backpropagate through this, we receive the derivative dL
dλ1

and use the chain rule,

where Hui,ujf(û) ∈ Rdim(ui)×dim(uj) is the matrix formed by taking the i-th group of

rows and the j-th group of columns of the Hessian of f evaluated at û. We can then

backpropagate dL
dλ0

through the inference network to calculate the total derivative, i.e.
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Algorithm 1 Semi-Amortized Variational Autoencoders
Input: inference network ϕ, generative model θ,

inference steps K, learning rate α, momentum γ,
loss function f(λ, θ, x) = −ELBO(λ, θ;x)

Sample x ∼ pD(x)
λ0 ← enc(x;ϕ)
v0 ← 0
for k = 0 to K − 1 do

vk+1 ← γvk −∇λf(λk, θ, x)
λk+1 ← λk + αvk+1

end for
L ← f(λK , θ, x)
λK ← ∇λf(λK , θ, x)
θ ← ∇θf(λK , θ, x)
vK ← 0
for k = K − 1 to 0 do

vk+1 ← vk+1 + αλk+1

λk ← λk+1 −Hλ,λf(λk, θ, x)vk+1

θ ← θ −Hθ,λf(λk, θ, x)vk+1

vk ← γvk+1

end for
dL
dθ ← θ
dL
dϕ ←

dλ0
dϕ λ0

Update θ, ϕ based on dL
dθ ,

dL
dϕ

dL
dϕ = dλ0

dϕ
dL
dλ0

. Similar rules can be used to derive dL
dθ .1 The full forward/backward

step, which uses gradient descent with momentum on the negative ELBO, is shown in

Algorithm 1.

3.3.1 Implementation Details

In our implementation we calculate Hessian-vector products with finite differences

(LeCun et al., 1993; Domke, 2012), which was found to be more memory-efficient

than automatic differentiation, and therefore crucial for scaling our approach to rich
1We refer the reader to Domke (2012) for the full derivation.
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inference networks/generative models. Specifically, we estimate Hui,ujf(û)v with

Hui,ujf(û)v ≈
1

ϵ

(
∇uif(û0, . . . , ûj + ϵv, . . . , ûm)−∇uif(û0, . . . , ûj . . . , ûm)

)

where ϵ is some small number (we use ϵ = 10−5).2 We further clip the results (i.e.

rescale the results if the norm exceeds a threshold) before and after each Hessian-

vector product as well as during SVI, which helped mitigate exploding gradients and

further gave better training signal to the inference network.

dL
dλ0

=
dλ1
dλ0

dL
dλ1

= (I+ αHλ,λ ELBO(λ0, θ;x))
dL
dλ1

=
dL
dλ1

+ αHλ,λ ELBO(λ0, θ;x)
dL
dλ1

Concretely, we define the clip(·) function as

clip(u, η) =


η

∥u∥2u , if ∥u∥2 > η

u , otherwise

and use this to clip the results at various points. Algorithm 2 shows the modified ver-

sion of Algorithm 1 which makes use of clipping,3 and we use this to perform end-to-
2Since in our case the ELBO is a non-deterministic function due to sampling (and dropout,

if applicable), care must be taken when calculating Hessian-vector product with finite differ-
ences to ensure that the source of randomness is the same when calculating the two gradient
expressions.

3Without gradient clipping, in addition to numerical issues we empirically observed
the model to degenerate to a case whereby it learned to rely too much on iterative in-
ference, and thus the initial parameters from the inference network were poor. Another
way to provide better signal to the inference network is to train against a weighted sum∑K

k=0 wk ELBO(λk, θ;x) for wk ≥ 0.
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Algorithm 2 Semi-Amortized Variational Autoencoders with Clipping
Input: inference network ϕ, generative model θ,

inference steps K, learning rate α, momentum γ,
loss function f(λ, θ, x) = −ELBO(λ, θ;x),
gradient clipping parameter η

Sample x ∼ pD(x)
λ0 ← enc(x;ϕ)
v0 ← 0
for k = 0 to K − 1 do

vk+1 ← γvk − clip(∇λf(λk, θ, x), η)
λk+1 ← λk + αvk+1

end for
L ← f(λK , θ, x)
λK ← ∇λf(λK , θ, x)
θ ← ∇θf(λK , θ, x)
vK ← 0
for k = K − 1 to 0 do

vk+1 ← vk+1 + αλk+1

λk ← λk+1 −Hλ,λf(λk, θ, x)vk+1

λk ← clip(λk, η)
θ ← θ − clip(Hθ,λf(λk, θ, x)vk+1, η)
vk ← γvk+1

end for
dL
dθ ← θ
dL
dϕ ←

dλ0
dϕ λ0

Update θ, ϕ based on dL
dθ ,

dL
dϕ

end training of our generative model θ and inference network ϕ.

3.4 Empirical Study

3.4.1 Experimental Setup

Data We apply our approach to train a generative model of text on the commonly-

used Yahoo questions corpus from Yang et al. (2017), which has 100K examples for

training and 10K examples for validation/test. Each example consists of a question
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followed by an answer from Yahoo Answers. The preprocessed dataset from Yang

et al. (2017) takes the top 20K words as the vocabulary after lower-casing all tokens.

Hyperparameters The architecture and hyperparameters are identical to the

LSTM-VAE baselines considered in Yang et al. (2017), except that we train with SGD

instead of Adam, which was found to perform better for training LSTMs. Specifically,

both the inference network and the generative model are one-layer LSTMs with 1024

hidden units and 512-dimensional word embeddings. The last hidden state of the en-

coder is used to predict the vector of variational posterior means/log variances, as

outlined in 3.2.1. The reparameterized sample from the variational posterior is used

to predict the initial hidden state of the generative LSTM and additionally fed as

input at each time step. The latent variable is 32-dimensional. Following previous

works (Bowman et al., 2016; Sønderby et al., 2016; Yang et al., 2017), we utilize a

KL-cost annealing strategy whereby the multiplier on the KL term is increased lin-

early from 0.1 to 1.0 each batch over 10 epochs. All models are trained with stochas-

tic gradient descent with batch size 32 and learning rate 1.0, where the learning rate

starts decaying by a factor of 2 each epoch after the first epoch at which validation

performance does not improve. This learning rate decay is not triggered for the first

15 epochs to ensure adequate training. We train for 30 epochs or until the learn-

ing rate has decayed 5 times, which was enough for convergence for all models. The

model parameters are initialized over U(−0.1, 0.1) and gradients are clipped at 5. For

models trained with iterative inference we perform SVI via stochastic gradient de-

scent with momentum 0.5 and learning rate 1.0. Gradients are clipped during the

forward/backward SVI steps, also at 5 (see Algorithm 2).
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Baselines In addition to autoregressive/VAE/SVI baselines, we consider two other

approaches that also combine amortized inference with iterative refinement. The first

approach is from Krishnan et al. (2018), where the generative model takes a gradi-

ent step based on the final variational parameters and the inference network takes

a gradient step based on the initial variational parameters, i.e. we update θ based

on ∇θ ELBO(λK , θ;x) and update ϕ based on dλ0
dϕ ∇λ ELBO(λ0, θ;x). The forward

step (steps 1-3) is identical to SA-VAE. We refer to this baseline as VAE + SVI. In

the second approach, based on Salakhutdinov & Larochelle (2010) and Hjelm et al.

(2016), we train the inference network to minimize the KL-divergence between the

initial and the final variational distributions, keeping the latter fixed. Specifically, let-

ting g(ν, ω) = KL[q(z |x; ν) ∥ q(z |x;ω)], we update θ based on ∇θ ELBO(λK , θ;x) and

update ϕ based on dλ0
dϕ ∇νg(λ0, λK). Note that the inference network is not updated

based on dg
dϕ , which would take into account the fact that both λ0 and λK are func-

tions of ϕ. We found g(λ0, λK) to perform better than the reverse direction g(λK , λ0).

We refer to this setup as VAE + SVI + KL.

Code Our code is available at https://github.com/harvardnlp/sa-vae.

3.4.2 Results

Results from the various models are shown in Table 3.1. Our baseline models (LM/VAE/SVI

in Table 3.1) are already quite strong, however models trained with VAE/SVI make

negligible use of the latent variable and practically collapse to a language model, as

first observed by Bowman et al. (2016).4 In contrast, models that combine amortized
4Models trained with word dropout (+ Word-Drop in Table 3.1) do make use of the

latent space but significantly underperform a language model.
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Model NLL KL PPL

LSTM-LM 334.9 − 66.2
LSTM-VAE ≤ 342.1 0.0 ≤ 72.5
LSTM-VAE + Init ≤ 339.2 0.0 ≤ 69.9
CNN-LM 335.4 − 66.6
CNN-VAE ≤ 333.9 6.7 ≤ 65.4
CNN-VAE + Init ≤ 332.1 10.0 ≤ 63.9

LM 329.1 − 61.6
VAE ≤ 330.2 0.01 ≤ 62.5
VAE + Init ≤ 330.5 0.37 ≤ 62.7
VAE + Word-Drop 25% ≤ 334.2 1.44 ≤ 65.6
VAE + Word-Drop 50% ≤ 345.0 5.29 ≤ 75.2
SVI (K = 10) ≤ 331.4 0.16 ≤ 63.4
SVI (K = 20) ≤ 330.8 0.41 ≤ 62.9
SVI (K = 40) ≤ 329.8 1.01 ≤ 62.2
VAE + SVI (K = 10) ≤ 331.2 7.85 ≤ 63.3
VAE + SVI (K = 20) ≤ 330.5 7.80 ≤ 62.7
VAE + SVI + KL (K = 10) ≤ 330.3 7.95 ≤ 62.5
VAE + SVI + KL (K = 20) ≤ 330.1 7.81 ≤ 62.3
SA-VAE (K = 10) ≤ 327.6 5.13 ≤ 60.5
SA-VAE (K = 20) ≤ 327.5 7.19 ≤ 60.4

Table 3.1: Results on the Yahoo dataset. Top results are from Yang et al. (2017), while the bot-
tom results are from this work. For latent variable models we show the negative ELBO which up-
per bounds the negative log likelihood (NLL). Models with + Init means the encoder is initialized
with a pretrained language model, while models with + Word-Drop are trained with word-
dropout. KL portion of the ELBO indicates latent variable usage, and PPL refers to perplexity. K
refers to the number of inference steps used for training/testing.
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Figure 3.1: (Left) Perplexity upper bound of various models when trained with 20 steps (except
for VAE) and tested with varying number of SVI steps from random initialization. (Right) Same
as the left except that SVI is initialized with variational parameters obtained from the inference
network.

inference with iterative refinement make use of the latent space and the KL term is

significantly above zero.5 VAE + SVI and VAE + SVI + KL do not outperform a

language model, while SA-VAE modestly outperforms it.

One might wonder if the improvements are coming from simply having a more

flexible inference scheme at test time, rather than from learning a better generative

model. To test this, for the various models we discard the inference network at test

time and perform SVI for a variable number of steps from random initialization. The

results are shown in Figure 3.1 (left). It is clear that the learned generative model

(and the associated ELBO landscape) is quite different—it is not possible to train

with VAE and perform SVI at test time to obtain the same performance as SA-VAE

(although the performance of VAE does improve slightly from 62.7 to 62.3 when we

run SVI for 40 steps from random initialization). Figure 3.1 (right) has the results

for a similar experiment where we refine the variational parameters initialized from
5A high KL term does not necessarily imply that the latent variable is being utilized in a

meaningful way (it could simply be due to bad optimization). In later sections we investigate
the learned latent space in more detail.
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the inference network for a variable number of steps at test time. We find that the

inference network provides better initial parameters than random initialization and

thus requires fewer iterations of SVI to reach the optimum. We do not observe im-

provements for running more refinement steps than was used in training at test time.

Interestingly, SA-VAE without any refinement steps at test time has a substantially

nonzero KL term (KL = 6.65, PPL = 62.0). This indicates that the posterior collapse

phenomenon when training LSTM-based VAEs for text is partially due to optimiza-

tion issues. Finally, while Yang et al. (2017) found that initializing the encoder with

a pretrained language model improved performance (+ Init in Table 3.1), we did not

observe this on our baseline VAE model when we trained with SGD and hence did

not pursue this further.

3.4.3 Analysis of Latent Variables

We investigate what the latent variables are learning through saliency analysis with

our best model (SA-VAE trained with 20 steps). Specifically, we calculate the output

saliency of each token xt with respect to z as

Eq(z;λ)

[ ∥∥∥ d log p(xt |x<t, z; θ)

dz

∥∥∥
2

]
,

where ∥ · ∥2 is the l2 norm and the expectation is approximated with 5 samples from

the variational posterior. Saliency is therefore a measure of how much the latent vari-

able is being used to predict a particular token. We visualize the output saliency of a

few examples from the test set in Figure 3.2 (top).

The previous definition of saliency measures the influence of z on the output xt. We

can also roughly measure the influence of the input xt on the latent representation z,

54



where can i buy an affordable stationary bike ? try this place , they have every type imaginable with

prices to match . http : UNK </s>

if our economy collapses , will canada let all of us cross their border ? no , a country would have to

be stupid to let that many people cross their borders and drain their resources . </s>

<s> where can i buy an affordable stationary bike ? try this place , they have every type imaginable with

prices to match . http : UNK </s>

where can i find a good UNK book for my daughter ? i am looking for a website that sells christmas

gifts for the UNK . thanks ! UNK UNK </s>

where can i find a good place to rent a UNK ? i have a few UNK in the area , but i ’m not

sure how to find them . http : UNK </s>

<s> which country is the best at soccer ? brazil or germany . </s>

who is the best soccer player in the world ? i think he is the best player in the world . ronaldinho is

the best player in the world . he is a great player . </s>

will ghana be able to play the next game in 2010 fifa world cup ? yes , they will win it all .

</s>

Figure 3.2: (Top) Output saliency visualization of some examples from the test set. Here the
saliency values are rescaled to be between 0-100 within each example for easier visualization. Red
indicates higher saliency values. (Middle) Input saliency of the first test example from the top
(in blue), in addition to two sample outputs generated from the variational posterior (with their
saliency values in red). (Bottom) Same as the middle except we use a made-up example..

which we refer to as input saliency:

∥∥∥Eq(z;λ)

[d∥z∥2
dwt

] ∥∥∥
2

Here wt is the encoder word embedding for xt.6 We visualize the input saliency for

a test example (Figure 3.2, middle) and a made-up example (Figure 3.2, bottom).
6As the norm of z is a rather crude measure, a better measure would be obtained by an-

alyzing the spectra of the Jacobian dz
dwt

. However this is computationally too expensive to
calculate for each token in the corpus.
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Under each input example we also visualize a two samples from the variational pos-

terior, and find that the generated examples are often meaningfully related to the

input example.7 From a qualitative analysis of saliency, several things are apparent:

the latent variable seems to encode question type (i.e. if, what, how, why, etc.) and

therefore saliency is high for the first word; content words (nouns, adjectives, lexical

verbs) have much higher saliency than function words (determiners, prepositions, con-

junctions, etc.); saliency of the </s> token is quite high, indicating that the length

information is also encoded in the latent space. In the third example we observe that

the left parenthesis has higher saliency than the right parenthesis (0.32 vs. 0.24 on

average across the test set), as the latter can be predicted by conditioning on the for-

mer rather than on the latent representation z.

We quantitatively analyze output/input saliency across part-of-speech, token po-

sition, and word frequency in Figure 3.3: nouns (NN), adjectives (JJ), verbs (VB),

numbers (CD), and the </s> token have higher saliency than conjunctions (CC), de-

terminers (DT), prepositions (IN), and the TO token—the latter are relatively easier

to predict by conditioning on previous tokens; similarly, on average, tokens occurring

earlier have much higher saliency than those occurring later (Figure 3.3 shows abso-

lute position but the plot is similar with relative position); the latent variable is used

much more when predicting rare tokens. These results seem to suggest that the latent

variables are encoding interesting and potentially interpretable aspects of language.

While left as future work, it is possible that manipulations in the latent space of a

model learned this way could lead to controlled generation/manipulation of output

text (Hu et al., 2017; Mueller et al., 2017).
7We first sample z ∼ q(z |x;λK) then x ∼ p(x | z; θ). When sampling xt ∼ p(xt |x<t, z; θ)

we sample with temperature T = 0.25, i.e. p(xt |x<t, z; θ) = softmax( 1
T st−1) where st is the

vector with scores for all words.
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Figure 3.3: Saliency by part-of-speech tag, position, and log frequency for the output (top) and
the input (bottom). See text for the definitions of input/output saliency. The dotted gray line in
each plot shows the average saliency across all words.

3.5 Discussion

3.5.1 Limitations

A drawback of our approach (and other non-amortized inference methods) is that

each training step requires backpropagating through the generative model multiple

times, which can be costly especially if the generative model is expensive to com-

pute. This may potentially be mitigated through more sophisticated meta learning

approaches (Andrychowicz et al., 2016; Marino et al., 2018), or with more efficient

use of the past gradient information during SVI via averaging (Schmidt et al., 2013)

or importance sampling (Sakaya & Klami, 2017). One could also consider employ-

ing synthetic gradients (Jaderberg et al., 2017) to limit the number of backpropaga-

tion steps during training. Krishnan et al. (2018) observe that it is more important to
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train with iterative refinement during earlier stages (we also observed this in prelimi-

nary experiments), and therefore annealing the number of refinement steps as training

progresses could also speed up training.

Our approach is mainly applicable to variational families that avail themselves to

differentiable optimization (e.g. gradient ascent) with respect to the ELBO. In con-

trast, VAE + SVI and VAE + SVI + KL are applicable to more general optimization

algorithms.

3.5.2 Posterior Collapse: Optimization vs. Underlying Model

From the perspective of learning meaningful, interesting, and useful latent variables,

one might question the prudence of using an autoregressive model that fully condi-

tions on its entire history (as opposed to assuming some conditional independence)

given that p(x) can always be factorized as
∏T

t=1 p(xt |x<t), and therefore the model

is non-identifiable. We saw in 3.2.2 the generative model does not have to utilize

the latent variable if it is powerful enough.8 Our results however indicate that pos-

terior collapse is at least partially caused by optimization issues, and can be miti-

gated through better optimization of the variational distribution. Subsequent work

has found that improving optimization dynamics during training through various

strategies, for example (1) updating the inference network more aggressively (He

et al., 2019), (2) utilizing a cyclic scheduling of penalty on the KL term (Fu et al.,

2019), and (3) using a modified objective that does not penalize KL-usage up to a cer-

tain threshold (Li et al., 2019b), all allow for the use of fully autoregressive generative

models that do not ignore the latent variable.
8Indeed, such an argument has been used to favor generative models that exhibit indepen-

dence properties conditioned on z (Chen et al., 2017b; Miao et al., 2017; Yang et al., 2017),
and in chapter 6 we experiment further with such conditionally Markov models.
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3.6 Related Work

The semi-amortized approach introduced in this chapter is closely related to the line

of work which uses a separate model to initialize variational parameters and subse-

quently updates them through an iterative procedure (Salakhutdinov & Larochelle,

2010; Cho et al., 2013; Salimans et al., 2015; Hjelm et al., 2016; Krishnan et al., 2018;

Pu et al., 2017). Marino et al. (2018) utilize meta-learning to train an inference net-

work which learns to perform iterative inference by training a deep model to output

the variational parameters for each time step.

While differentiating through inference/optimization was initially explored by var-

ious researchers primarily outside the area of deep learning (Stoyanov et al., 2011;

Domke, 2012; Brakel et al., 2013), they have more recently been explored in the con-

text of hyperparameter optimization (Maclaurin et al., 2015) and as a differentiable

layer of a deep model (Belanger et al., 2017; Kim et al., 2017; Metz et al., 2017; Amos

& Kolter, 2017).

Initial work on VAE-based approaches to image modeling focused on simple gen-

erative models that assumed independence among pixels conditioned on the latent

variable (Kingma & Welling, 2014; Rezende et al., 2014). More recent works have

obtained substantial improvements in log-likelihood and sample quality through utiliz-

ing powerful autoregressive models (PixelCNN) as the generative model (Chen et al.,

2017b; Gulrajani et al., 2017). In contrast, modeling text with VAEs has remained

challenging. Bowman et al. (2016) found that using an LSTM generative model re-

sulted in a degenerate case whereby the variational posterior collapsed to the prior

and the generative model ignored the latent code (even with richer variational fam-

ilies). Many works on VAEs for text have thus made simplifying conditional inde-
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pendence assumptions (Miao et al., 2016), used less powerful generative models such

as convolutional networks (Yang et al., 2017; Semeniuta et al., 2017), or combined

a recurrent generative model with a topic model (Dieng et al., 2017; Wang et al.,

2018a). Note that unlike to sequential VAEs that employ different latent variables

at each time step (Chung et al., 2015; Fraccaro et al., 2016; Krishnan et al., 2017; Ser-

ban et al., 2017; Goyal et al., 2017a), in this work we focus on modeling the entire

sequence with a global latent variable.

Finally, since our work only addresses the amortization gap (the gap between the

log-likelihood and the ELBO due to amortization) and not the approximation gap

(due to the choice of a particular variational family) (Cremer et al., 2018), it can

be combined with existing work on employing richer posterior/prior distributions

within the VAE framework (Rezende & Mohamed, 2015a; Kingma et al., 2016; John-

son et al., 2016; Tran et al., 2016; Goyal et al., 2017b; Guu et al., 2017; Tomczak &

Welling, 2018).

3.7 Conclusion

In this chapter we have considered a continuous latent variable model of text where

each sentence/paragraph is generated from a continuous vector. We introduced an

improved, semi-amortized approach for training such models, which combines amor-

tized variational inference with stochastic variational inference. With the approach we

found that we were able to train deep latent variable models of text with an expres-

sive autogressive generative model that does not ignore the latent variable. Training

generative models that both model the underlying data well and learn useful latent

representations is an important avenue for future work.
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4
Latent Variable Model of Attention &

Relaxations of Discrete Spaces

4.1 Introduction

In this chapter we consider a discrete latent variable model of attention within the

sequence-to-sequence learning framework (Bahdanau et al., 2015). We model latent

The material in this chapter is adapted from Deng et al. (2018).
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alignment between source/target sentences as a sequence of discrete latent variables in

the context of neural machine translation (MT) systems.

Learning latent word alignments from parallel sentences has long been a core prob-

lem in statistical MT and represents one of the most successful applications of la-

tent variable modeling in NLP, starting with the seminal IBM models (Brown et al.,

1993), HMM-based alignment models (Vogel et al., 1996), and a fast log-linear repa-

rameterization of the IBM 2 model (Dyer et al., 2013). In contrast to statistical MT

systems, neural MT systems directly model the full distribution over the target sen-

tence conditioned on the source sentence without explicitly modeling alignments as

an intermediate step. They instead makes use of soft alignments via the soft attention

mechanism (Bahdanau et al., 2015). Alongside components such as residual blocks

and batch/layer normalization, soft attention provides a rich neural network building

block for controlling gradient flow and encoding inductive biases, and are now part of

the standard deep learning toolkit. However, more so than these other components,

which are generally treated as black boxes, researchers often use intermediate atten-

tion decisions directly as a tool for model interpretability (Lei et al., 2016; Alvarez-

Melis & Jaakkola, 2017a) or as a factor in final predictions (Shin et al., 2017). From

this perspective, soft attention plays the role of implicitly approximating latent align-

ments as in statistical MT systems (Brown et al., 1993; Koehn et al., 2007).

While soft attention works well empirically, explicitly modeling alignment as a la-

tent variable remains appealing for several reasons: (1) latent variables facilitate rea-

soning about dependencies in a modular and probabilistically principled way, e.g. al-

lowing composition with other models, (2) posterior inference provides a better basis

for model analysis and partial predictions than strictly feed-forward models, which

have been shown to underperform on alignment in machine translation (Koehn &
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Knowles, 2017), and finally (3) latent variable modeling may lead to better predic-

tive accuracy when properly trained. However, straightforwardly modeling attention

at each time step as a categorical latent variable (hard or discrete attention) has been

known to underperform (deterministic) soft attention, aside from a few exceptions

(Xu et al., 2015). In this chapter we revisit discrete attention models and show that

their underperformance vis-à-vis soft attention is due to a large gap between the log

marginal likelihood and the lower bound objective optimized by previous discrete at-

tention models. We propose an efficient variational attention approach that closes

this gap by training an inference network over the source and target sentence which

approximates the posterior attention distribution. Optimizing the evidence lower

bound with discrete latent variables is challenging since the reparameterization trick

described in 2.5.5 is not directly applicable. We experiment with two approaches to

obtaining low-variance estimators: (1) a score function gradient estimator with a

variance-reducing baseline from an auxiliary soft attention model and, (2) a path-

wise gradient estimator using the Gumbel-Softmax distribution (Jang et al., 2017;

Maddison et al., 2017) which relaxes the discrete space into a continuous space. We

find that with these approaches, we are able to learn discrete attention models which

outperform their soft counterparts and at the same time allow for greater model in-

trospection through posterior inference.

4.2 Background

We briefly review the attention mechanism in neural sequence-to-sequence learning,

in particular soft attention (4.2.1) and hard/discrete attention (4.2.2). We also dis-

cuss the Gumbel-Softmax distribution for approximately obtaining pathwise gradient
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esimators for discrete distributions (4.2.3).

4.2.1 Soft Attention

In sequence-to-sequence learning with attention networks (Bahdanau et al., 2015),

we model the distribution over the target sentence y = [y1, . . . , yT ] given the source

sentence x = [x1, . . . , xS ] with an autoregressive model,

p(y |x; θ) =
T∏
t=1

p(yt |x, y<t; θ),

where the distribution over the next token is given by an affine transformation fol-

lowed by a softmax over a feature vector ct,

p(yt |x, y<t; θ) = softmax(Wct + b)[yt].

The vector ct combines the previous decoder hidden state with an attention over en-

coder hidden states.1 Concretely, we first run sequential neural networks over the

source and target to obtain contextualized vector representations of each word,

s1:S = SeqNN(x1:S ; θencoder),

h1:T = SeqNN(y1:T ; θdecoder),

1Note that our use of “encoder” here refers to the sequential neural network over the
source sentence, and not the inference network in variational autoencoders.
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where x1:S and y1:T are the source/target word embeddings. Then, we obtain an at-

tention distribution over the source hidden states via a softmax,

αt,i =
exp (f(si,ht−1; θattention))∑S
j=1 exp (f(sj ,ht−1; θattention))

where f : Rd×Rd → R computes an affinity between the target word yt and the source

word xi (e.g. a dot product s⊤i ht−1 in the simplest case, in which case θattention = ∅).

We subsequently use the attention distribution to obtain a convex combination of

source hidden states, which is finally combined with ht−1 to produce ct,

ŝt =
S∑

i=1

αt,isi

ct = MLP([ht−1; ŝt]; θcontext).

We refer to the combination of source hidden states ŝt as the context vector since it

aggregates the context source sentence at each time step t. In this encoder-decoder

model the parameters are given by

θ = {θencoder, θdecoder, θattention, θcontext,W,b,X,Y},

where X/Y are the source/target word embeddings.

In practice many variants exist, including different parameterizations of SeqNN

(e.g. LSTMs (Luong et al., 2015), GRUs (Bahdanau et al., 2015), and Transformers

(Vaswani et al., 2017)), and the attention scoring function f(·) (e.g. MLP attention

(Bahdanau et al., 2015) and bilinear attention (Luong et al., 2015). Empirically the

soft attention mechanism works remarkably well, and alignment distributions learned
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this way often correspond to intuition (e.g. word alignment in machine translation).

4.2.2 Hard Attention

Note that there are no latent variables in the soft attention mechanism; it is a deter-

ministic feed-forward function. In contrast, in hard or discrete attention we posit a

categorical latent variable zt ∈ {1, . . . , S} at each time step whose distribution is given

by the attention scores, i.e.

p(zt = i |x, y<t; θ) = αt,i =
exp (f(si,ht−1; θattention))∑S
j=1 exp (f(sj ,ht−1; θattention))

.

Under this formulation, the distribution over the target token at each time step is

given by marginalizing over the unobserved latent variable zt,

log p(yt | y<t, x; θ) = log

(
S∑

i=1

p(zt = i |x, y<t; θ)p(yt | y<t, x, z; θ)

)

= log

(
S∑

i=1

αt,ip(yt | y<t, x, z; θ)

)
,

where

p(yt | y<t, x, z; θ) = softmax (WMLP([ht; s̄t]) + b) [yt],

s̄t =
S∑

i=1

1{zt = i}si

That is, the context vector s̄t in hard attention is obtained by a hard selection of a

vector in s1:S , instead of a convex combination as in soft attention. Another way to
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illuminate the difference between the two is in terms of an expectation over zt,

Hard Attention : log p(yt | y<t, x; θ) = log (E [softmax (WMLP([ht; s̄t]) + b)]) ,

Soft Attention : log p(yt | y<t, x; θ) = log (softmax (WMLP([ht;E[s̄t]]) + b)) ,

which holds since

Ep(zt |x,y<t;θ)[s̄t] =
S∑

i=1

p(zt = i |x, y<t; θ)si

= ŝt.

That is, whereas hard attention has an expectation after the softmax function over

the vocabulary, soft attention has an expectation before the softmax. This makes hard

attention O(S) times more expensive than soft attention, since the softmax must be

run S times for each possible value of zt.2

In cases where there are multiple attention steps (e.g. as in multi-hop attention)

or the source sentence length S is large, calculating the log marginal likelihood ex-

actly via enumeration over zt can be prohibitively expensive. In this case, a common

strategy is to maximize a lower bound on the log marginal likelihood using Jensen’s

inequality,

log p(yt | y<t, x; θ) = log (E [softmax (WMLP([ht; s̄t]) + b)] [yt])

≥ E [log(softmax(WMLP([ht; s̄t] + b)[yt])] ,

2However, the computation before the attention layer to get s1:S and h1:T is the same in
both hard/soft attention. Also note that the both soft and hard attention models have the
same set of parameters θ.
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which holds since log is concave. Then we can perform gradient-based optimization

with the score function estimator

∇θE[ log(softmax(WMLP([ht; s̄t] + b)[yt])] = E
[
∇θ log(softmax(WMLP([ht; s̄t] + b)[yt])

+ log(softmax(WMLP([ht; s̄t] + b)[yt])×∇θ log p(zt |x, y<t; θ)
]
,

where the resulting expectation can be estimated with Monte Carlo samples. This ap-

proach to training hard attention models was originally proposed by Xu et al. (2015)

for image captioning, who utilized variance reducing control variates derived from a

moving average of previous rewards. However, hard attention has generally under-

performed soft attention for other tasks (Ling & Rush, 2017). In section 4.3 we inves-

tigate this issue in more detail and propose a variational approach to training hard

attention models.

4.2.3 Pathwise Gradient Estimators for Discrete Distributions

We now discuss an alternative to the score function gradient estimator for training

discrete latent variable models, which utilizes the Gumbel-Max trick (Papandreou &

Yuille, 2011; Hazan & Jaakkola, 2012; Maddison et al., 2014). Concretely, suppose z

is a one-hot representation of a categorical random variable z with K categories and

unnormalized scores α, i.e.

p(z = k;α) = p(z[k] = 1;α) =
α[k]∑K
i=1α[i]

.
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Then we can draw a sample from p(z;α) by solving the following optimization prob-

lem,

ẑ = argmax
t∈∆K−1

(logα+ g)⊤t,

where ∆K−1 is the K−1-simplex and g = [g[1], . . . ,g[K]] is the vector of i.i.d samples

from a Gumbel distribution,

g[i]
i.i.d.∼ Gumbel(0, 1).

In this case we have ẑ ∼ p(z;α). Thus, the Gumbel-Max trick transforms the problem

of sampling from a discrete distribution to an optimization problem of finding the

argmax of perturbed logits of a discrete distribution. While this shows that we can

reparameterize a discrete distribution, we cannot straightforwardly perform gradient-

based optimization using this trick because the argmax function has zero gradients

almost everywhere.

If we replace the argmax above with a softmax and a temperature term τ > 0,

u = softmax
( logα+ g

τ

)
,

u[k] =
exp((logα[k] + g[k])/τ)∑K
i=1 exp((logα[i] + g[i])/τ)

,

we say that u is drawn from a Gumbel-Softmax distribution (Jang et al., 2017) with

parameters α and τ ,3

u ∼ Gumbel-Softmax(u;α, τ).

The Gumbel-Softmax defines a distribution on the simplex ∆K−1, and the density is
3Contemporaneous work by Maddison et al. (2017) calls this a Concrete distribution.
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given by

p(u;α, τ) = (K − 1)! τK−1
K∏
k=1

( α[k]u[k]−τ−1∑K
j=1α[i]u[i]−τ

)
.

(See Jang et al. (2017) and Maddison et al. (2017) for the derivation). Notably this

distribution is reparameterizable by construction since we can draw a sample by (1)

drawing Gumbel noise g, (2) transforming the noise as (g[i] + logα[i])/τ , and (3) ap-

plying a softmax to the transformed values. Importantly, unlike the argmax function,

softmax has nonzero gradients. While u is no longer discrete, we can anneal the tem-

perature τ → 0 as training progresses and hope that this will approximate a sample

from a discrete distribution.

We now discuss how we can use this to train a variational autoencoder with dis-

crete latent variables. Recall that the gradient of ELBO with respect to ϕ is

∇ϕ ELBO(θ, ϕ;x) = ∇ϕEq(z |x;ϕ)

[
log

p(x, z; θ)

q(z |x;ϕ)

]
= ∇ϕEq(z |x;ϕ) [log p(x | z; θ)]−∇ϕKL[q(z |x;ϕ) ∥ p(z; θ)] .

As in the Gaussian case from chapter 3, the KL-divergence between two discrete dis-

tributions is easy to calculate and thus ∇ϕKL[q(z |x;ϕ) ∥ p(z; θ)] is not an issue.

For the first term, we use the Gumbel-Softmax approximation to the discrete dis-

tribution. Suppose now α = enc(x;ϕ) and let qrelax(u |x;ϕ, τ) be the variational

Gumbel-Softmax distribution (note that τ could in theory also be a function of x),

where we have used subscripts in qrelax(·) to distinguish it from the original (discrete)

variational distribution q(z |x;ϕ). We might then hope that the gradient of the ELBO

obtained from the relaxed, Gumbel-Softmax distribution will well-approximate the
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true gradient,

∇ϕEq(z |x;ϕ) [log p(x | z; θ] ≈ ∇ϕEqrelaxed(u |x;ϕ,τ) [log p(x | z = u; θ)]

= Eg∼Gumbel [∇ϕ log p(x | z = softmax((g + logα)/τ); θ)] ,

where we can now push the gradient sign inside the expectation and use the path-

wise gradient estimator in the second inequality.4 Unlike the score function gradi-

ent estimator, the above estimator is biased and the variance will diverge to infinity

as τ → 0. Also note the above relaxation is only applicable if the likelihood model

p(x | z; θ), which was originally defined over a discrete latent space z ∈ {0, 1}K (and

the observed data), is well-defined for a continuous latent space u ∈ ∆K−1. While this

will indeed be the case for hard attention, for many models of interest this kind of re-

laxation is not possible, for example in models with dynamic computation graphs that

depend on different choices of the latent variable.

4.3 Variational Attention for Latent Alignment

Recall that log likelihood over the target sentence in the hard attention model is given

by a summation of individual log marginal likelihoods at each time step,

T∑
t=1

log p(yt | y<t, x; θ) =

T∑
t=1

log

(
S∑

i=1

p(zt = i |x, y<t; θ)p(yt | y<t, x, z; θ)

)
.

4Other variants of this approach are possible. For example we could use a straight-through
estimator, which use argmax on the forward pass and softmax only in the backward pass.
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Let us now consider the evidence lower bound for the log marginal likelihood in the

hard attention model for a single time step,

log p(yt | y<t, x; θ) ≥ Eq(zt |x,y;ϕ)[log p(yt |x, y<t, z; θ)]−

KL[q(zt |x, y;ϕ) ∥ p(zt |x, y<t; θ)].

We first observe that that the lower bound objective deriving from Jensen’s inequality

in section 4.2.2,

Ep(zt |x,y<t;θ) [log p(yt |x, y<t, zt; θ)] ,

is equal to the evidence lower bound when we take the variational distribution to be

the prior, i.e.,

q(zt |x, y;ϕ) = p(zt |x, y<t; θ).

This choice of variational distribution implicitly assumes that the posterior distribu-

tion over zt is independent from the prior, which is clearly suboptimal when modeling

alignment, since knowing yt can give a strong signal to which word in the source was

translated. This can lead to a large gap between the log marginal likelihood.

In this section, we consider a variational approach to minimize this gap by employ-

ing an inference network over the source and target sentences, as shown in Figure 4.1.

One way to parameterize the inference network is

q(zt = i |x, y;ϕ) = exp (f(si,ht;ϕ))∑S
j=1 exp (f(sj ,ht;ϕ))

.
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x1:7

y3y1:2

Mary did not slap the green witch

z3
p(z3 |x1:7,y1:2;θ)
q(z3 |x1:7,y1:9;ϕ)

Maria no daba una bofetada a la bruja verde

Figure 4.1: Sketch of variational attention applied to machine translation. Here the source sen-
tence x1:7 has 7 words and the target sentence y1:9 has 9 words. Two alignment distributions are
shown, for the blue prior p, and the red variational posterior q taking into account future observa-
tions. Our aim is to use q, which conditions on the entire target sentence, to improve estimates of
p and to support improved inference of z.

Observe that in contrast to the prior attention distribution which utilizes the previous

time’s hidden state ht−1 (because it has not generated yt yet), the inference network

instead uses ht, because it has access to all of y, i.e.

Prior Attention : p(zt = i |x, y<t; θ) =
exp (f(si,ht−1; θ))∑S
j=1 exp (f(sj ,ht−1; θ))

,

Variational Posterior : q(zt = i |x, y;ϕ) = exp (f(si,ht;ϕ))∑S
j=1 exp (f(sj ,ht;ϕ))

.

Here we use si,ht to refer to the source/target hidden states in both the prior and the

variational posterior to emphasize their similarity. However, in practice the inference

network has its own SeqNN parameters, and additionally utilizes a bi-directional de-

coder model such that the hidden state at time t can in theory utilize all past/future

information. The source/target word embedding matrices (X, Y) are shared between

the inference network and the generative model.

An estimator for the gradient with respect to θ in this generative model is simple

to obtain with Monte Carlo sampling (as usual). For the gradient with respect to ϕ,
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we experiment with two different estimators.

Score Function Gradient Estimator The first approach uses the score func-

tion gradient estimator from section 2.5.5 with a variance-reducing control variate

from a soft attention model. Concretely, the inference network parameters have the

following gradient expression,

Eq(zt |x,y;ϕ)

[
log p(yt |x, y<t, zt; θ)×∇ϕ log q(zt |x, y;ϕ)

]
−

∇ϕKL[q(zt |x, y;ϕ) ∥ p(zt |x, y<t; θ)].

The second term in the above expression for the gradient can be calculated easily

since it is simply the gradient of the KL divergence between two categorical distri-

butions, which can be calculated exactly via enumeration,

KL[q(zt |x, y;ϕ) ∥ p(zt |x, y<t; θ)] =
S∑

i=1

q(zt = i |x, y;ϕ) log q(zt = i |x, y;ϕ)
p(zt = i |x, y<t; θ)

.

For the first term (i.e. the score function gradient estimator) we use a control variate

Bt to reduce variance,

Eq(zt |x,y;ϕ)

[
(log p(yt |x, y<t; θ)−Bt)×∇ϕ log q(zt |x, y;ϕ)

]
,

where Bt is the output of the soft attention model at each time step,

Bt = log psoft(yt |x, y<t; θsoft)

= log(softmax (WMLP([ht;E[ŝt]]) + b) [yt])
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where θsoft parameterizes a deterministic soft attention model. The soft attention

model for producing the control variate (which has its own set of parameters) is trained

alongside the hard attention model with each mini-batch. Intuitively, the variational

posterior q(zt |x, y;ϕ) is adjusted such that its samples give higher reward (i.e. like-

lihood) than a comparable soft attention model. In practice we estimate the above

gradient expression with a single sample.

Pathwise Gradient Estimator T The second approach uses a pathwise gradi-

ent estimator from a Gumbel-Softmax relaxation of the discrete distribution for the

conditional likelihood, as described in section 4.2.3. First we reparameterize the con-

ditional likelihood in terms of the one-hot vector representation of zt. Letting zt be

the one-hot representation of zt, we then have

log p(yt |x, y, zt; θ) = log p(yt |x, y, zt; θ)

= log (softmax (WMLP([ht;Szt]) + b)) [yt],

where S ∈ Rd×S is the matrix obtained by stacking the source hidden states [s1, . . . , sS ].

Therefore the context vector is given by

Szt =
S∑

i=1

1{zt = i}si

= s̄t.

The variational distribution q(zt |x, y;ϕ) is also redefined in the obvious way. Letting

qrelax(ut |x, y;ϕ, τ) be the Gumbel-Softmax distribution over ut ∈ ∆S−1 with tempera-

75



ture τ , we are now ready to approximate the gradient as follows,

∇ϕEq(zt |x,y;ϕ) [log p(yt |x, y<t, zt; θ)] ≈ ∇ϕEqrelax(ut |x,y;ϕ,τ) [log p(yt |x, y<t, zt = ut; θ)]

= Eg∼Gumbel [∇ϕ log p(yt |x, y<t, zt = softmax((logαt + g)/τ); θ)] ,

where αt = [αt,1, . . . , αt,S ] is the vector of attention probabilities, g = [g1, . . . , gS ] is

the vector of i.i.d samples from Gumbel(0, 1). The expectation can be approximated

with a single sample to yield a low-variance (biased) estimator without the need for

any control variates. The temperature term τ is annealed to a small value during

training. Note that in deriving this estimator, it was crucial to work with the one-hot

vector representation of zt instead of the original integer representation zt in order to

“relax” the conditional likelihood which was originally only defined for discrete vari-

able zt. This ensured that the following definition of log likelihood over yt,

log p(yt |x, y<t, zt = ut) = log (softmax (WMLP([ht;Sut]) + b) [yt]) ,

was well-defined.

4.3.1 Test Time Inference

The model is trained to maximize a lower bound on the log likelihood of target sen-

tences y(1:N) conditioned on source sentences x(1:N). However, at test time we are

only given the source sentence and must produce the most likely output under the

model,

ŷ = argmax
y∈Y

p(y |x; θ),
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where Y is the set of all sentences in the target language (up to some predefined max-

imum length).5 As the argmax is intractable to obtain exactly, a common strategy

is to utilize beam search. For hard attention models we can marginalize over zt at

an additional multiplicative cost of O(S) at each time step, which is feasible but ex-

pensive. We therefore propose a K-Max decoding strategy which approximates the

prior p(zt |x, y<t; θ) with a sparser distribution that takes only the top K non-zero

elements, i.e.,

pK-Max(zt = i |x, y<t; θ) ∝ 1{p(zt = i |x, y<t; θ) ≥ uK} × p(zt = i |x, y<t; θ),

where uK is the K-th largest element of p(zt |x, y<t; θ). Then we estimate the marginal

likelihood as,

p(yt |x, y<t; θ) ≈
∑

{zt:pK(zt |x,y<t;θ)>0}

pK-Max(zt |x, y<t; θ)× p(yt |x, y<t; θ),

and we use this approximated token-level distribution within standard beam search

to obtain the approximate argmax for the hard attention model. This heuristic makes

the multiplicative cost constant with respect to S, and we found this to work well

empirically.

4.4 Empirical Study

4.4.1 Experimental Setup

Data Our experiments mainly utilize the IWSLT German to English dataset, which

contains 153K/7K/7K train/validation/test set of parallel sentences of translated
5The inference network ϕ is only used for training and discarded at test time.
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TED talks (Cettolo et al., 2014). This dataset is relatively small, but has become a

standard benchmark for experimental neural machine translation models. We follow

the same preprocessing as in Edunov et al. (2018) with a byte pair encoded vocabu-

lary of 14k tokens (Sennrich et al., 2016) and train on sequences of length up to 125.

To show that variational attention scales to large datasets, we also experiment on the

WMT 2017 English to German dataset which has approximately 4M sentences (Bojar

et al., 2017), utilizing the preprocessing in Vaswani et al. (2017). We use newstest2017

as the test set in this case. We evaluate using the BLEU score (Papineni et al., 2002),

as is standard in machine translation.

Hyperparameters The encoder is a two-layer bi-directional LSTM with 512 units

in each direction, and the decoder as a two-layer LSTM with 768 units. For the de-

coder, the convex combination of source hidden states at each time step from the at-

tention distribution is used as additional input at the next time step (i.e. the input-

feeding approach from Luong et al. (2015)). Word embeddings have 512 dimensions.

The inference network consists of two bi-directional LSTMs (also two-layer and 512-

dimensional) which is run over the source/target to obtain the hidden states at each

time step. For the attention scoring function f , we combine the hidden states using

bilinear attention (Luong et al., 2015) to produce the variational parameters. (In con-

trast the generative model uses MLP attention from (Bahdanau et al., 2015), though

we saw little difference between the two parameterizations). Only the word embed-

ding is shared between the inference network and the generative model.

Other training details include: batch size of 6, dropout rate of 0.3, parameter ini-

tialization over a uniform distribution U [−0.1, 0.1], gradient norm clipping at 5, and

training for 30 epochs with Adam (learning rate = 0.0003, β1 = 0.9, β2 = 0.999) with
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a learning rate decay schedule which starts halving the learning rate if validation per-

plexity does not improve. Most models converged well before 30 epochs. For decoding

we use beam search with beam size 10 and length penalty α = 1, from Wu et al.

(2016). The length penalty added about 0.5 BLEU points across all the models.

Baselines Experiments vary three components of the systems: (a) training objec-

tive (exact log marginal likelihood, lower bound from the prior, lower bound from the

variational posterior), (b) training estimation (sampling vs. exact calculation of the

expectation via enumeration, score function gradient estimator vs. pathwise gradient

estimator with the relaxed Gumbel-Softmax distribution), and (c) test inference (ex-

act enumeration vs K-max decoding). All models have the same architecture and the

exact same number of parameters θ. For the score function gradient estimator trained

with sampling, both the prior/variational models use the variance reducing control

variate from soft attention.

Code Our code is available at https://github.com/harvardnlp/var-attn.

4.4.2 Results

Table 4.1 shows the main results. We first note that hard attention from the prior un-

derperforms soft attention, even when the expectation in the gradient expression is

calculated exactly via enumeration. This indicates that the previous negative results

from hard attention can mostly be attributed to the large gap resulting from Jensen’s

inequality, rather than approximation issues (such as high variance gradient estima-

tors) from sampling. On the other hand, exact marginal likelihood outperforms soft

attention, showing the benefits of explicitly modeling attention as a latent variable.
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Model Training Objective ∇ Estimation PPL BLEU

Soft Attn log p(y |x,Ep(z | x)[z]) − 7.17 32.77
Marginal Likehood logEp(z | x)[p(y |x, z)] Enumeration 6.34 33.29
Hard Attn from Prior Ep(z | x)[p(y |x, z)] Enumeration 7.37 31.40
Hard Attn from Prior Ep(z | x)[p(y |x, z)] Score Function 7.38 31.00
Variational Attn Eq(z | x,y)[log p(y |x, z)]−KL Enumeration 6.08 33.68
Variational Attn Eq(z | x,y)[log p(y |x, z)]−KL Score Function 6.17 33.30
Variational Attn Eqrelax(u | x,y)[log p(y |x,u)]−KL Pathwise 6.51 33.08

Table 4.1: Evaluation on IWSLT 2014 German-English test set for the various models. ∇ estima-
tion indicates whether the gradients are calculated via enumeration or sampling. Sampled estima-
tors can either be a score function estimator with control variate from a soft attention model, or a
pathwise estimator from a Gumbel-Softmax relaxation to the discrete distribution We evaluate in-
trinsically on perplexity (PPL) (lower is better) and extrinsically on BLEU (higher is better), where
for BLEU we perform beam search with beam size 10 and length penalty with exact marginaliza-
tion over zt at each time step.

Surprisingly, variational attention with enumeration and score function gradients

performs better than optimizing the exact log marginal likelihood, despite the fact

that it is optimizing a lower bound. We believe that this is due to a posterior reg-

ularization effect on the generative model via the parameterization of the inference

network, where the global BiLSTM parameterization over source and target for q pro-

vides beneficial inductive bias and aids generalization.6,7 We observe that training

discrete attention with the pathwise gradient estimator from the relaxed, Gumbel-

Softmax distribution is a viable strategy. This model also outperforms soft attention

and slightly underperforms the model trained with enumeration/score function gradi-

ent estimator. Note that the pathwise gradient estimator does not require variance-

reducing control variates from the soft attention model and is hence more memory
6Note that it is also possible to have q(z) come from a pretrained external model, such as a

traditional alignment model (Dyer et al., 2013).
7In chapter 5 we investigate this posterior regularization effect in greater detail where we

use a more restrictive variational family to constrain the true posterior in order to encourage
desired structures to emerge.
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Figure 4.2: Test perplexity of different approaches while varying K to estimate
log p(yt |x, y<t; θ). Dotted lines compare soft baseline and variational with full enumeration.

efficient and faster to train than the score function gradient estimator.

On the larger WMT 2017 English-German task, our baseline soft attention reaches

24.10 BLEU score, while variational attention with the score function gradients reaches

24.98. This only reflects a reasonable setting without exhaustive hyerparameter tun-

ing, yet we show that we variational attention can improve upon deterministic soft

attention even in large data regimes.

4.4.3 Analysis

For model analysis, we limit our scope and focus on the prior/variational attention

models trained with the score function gradient estimator. Figure 4.2 shows the PPL

of different models as we increase K. Good performance requires K > 1, but we only

observe marginal benefits for K > 5. (We observed similar trends in BLEU). Thus the

K-Max approximation during predictive inference is a viable strategy for efficient in-

ference in hard attention models. We also observe that it is possible to train with soft

attention and test using K-Max with a small performance drop (Soft KMax in Ta-
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Model H[p(zt |x, y<t; θ)]

Soft Attention 1.24
Marginal Likelihood 0.82
Hard Attention from Prior 0.07
Variational Attention 0.52

Table 4.2: Entropy of the prior attention distributions p(zt |x, y<t; θ), averaged over target se-
quence length.

ble 4.2 (right)). This possibly indicates that soft attention models are approximating

latent alignment models even though they are trained on a non-latent variable objec-

tive. On the other hand, we find that training with latent alignments and testing with

soft attention performs poorly.

We next analyze the learned attention distributions in more detail. We show the

average entropy of the prior attention distributions in Table 4.2, where we average

across target sequence lengths. We observe that a model trained with hard atten-

tion from prior has very low entropy and is potentially overconfident. The opposite

holds true for a model trained with soft attention, and the variational attention model

falls somewhere in between. This is visualized in Figure 4.3 (right column), where we

show the attention distribution between the soft/variational attention models over a

fixed gold sentence. Besides performance, an advantage of these models is the abil-

ity to perform posterior inference, since the q function can be used directly to obtain

posterior alignments. This is in contrast with hard attention using the prior, where

the posterior is independent of the future information. Figure 4.3 shows the align-

ments of p and q for variational attention over a fixed sentence. We see that q is able

to use future information to correct alignments. We note that the inability of soft

and hard attention to produce good alignments has been noted as a major issue in

NMT (Koehn & Knowles, 2017). While q is not used directly in left-to-right NMT de-
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coding, it could be employed for other applications such as in an iterative refinement

approach to sequence generation (Novak et al., 2016; Lee et al., 2018).

(a) (b)

(c) (d)

Figure 4.3: (Left Column) Examples highlighting the difference between the prior attention
p(zt |x, y<t; θ) (red) and the variational posterior q(zt |x, y;ϕ) (blue) when translating from Ger-
man to English (left-to-right). The variational posterior is able to better handle reordering; in (a)
the variational posterior successfully aligns ‘turning’ to ‘verwandelt’, in (c) we see a similar pattern
with the alignment of the clause ‘that’s my brand’ to ‘das ist meine marke’. (Right Column) Com-
parisons between soft attention (green) and the prior attention from a model trained with varia-
tional attention (red). Alignments from both models are similar, but variational attention is lower
entropy. Both soft and variational attention rely on aligning the inserted English word ‘orientation’
to the comma in (b) since a direct translation does not appear in the German source.

83



4.5 Discussion

4.5.1 Limitations

Incorporating latent attention into neural models via the variational formulation is a

promising alternative to deterministic soft attention. However, there are some practi-

cal limitations. Variational attention with the score function gradients needs a good

control variate in the form of soft attention. We found this to be a necessary compo-

nent for adequately training the system. This may prevent this technique from work-

ing when S is intractably large or when soft attention is not an option. Similarly, the

Gumbel-Softmax approach with pathwise gradients requires that the generative model

be well defined for a continuously relaxed discrete latent variable, which may not be

applicable in general.

Contemporary architectures such as the Transformer (Vaswani et al., 2017) utilize

many repeated attention models. For instance the current best translation models

have the equivalent of 150 different attention queries per word translated. It is un-

clear if this approach can be used at that scale as predictive inference becomes combi-

natorial.

4.5.2 Attention as a Latent Variable

Soft attention was initially motivated as an approximation to latent alignment in ma-

chine translation,8 and is now an integral building block of contemporary deep ar-

chitectures such as Transformer networks. However, its utility as a tool for model

introspection is the subject of much current debate, as evidenced by a series of re-
8Indeed, the title of the original paper introducing soft attention is “Neural Machine

Translation by Jointly Learning to Align and Translate” (Bahdanau et al., 2015).
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cent papers that investigate soft attention’s ability (or lack thereof) to explain model

outputs (Jain & Wallace, 2019; Serrano & Smith, 2019; Wiegreffe & Pinter, 2019). It

would therefore be interesting to see if a latent variable formulation of attention can

provide a more robust and probabilistically rigorous alternative to soft attention for

model interpretability.

While our generative story interprets the categorical latent variable zt as perform-

ing selection over the input (i.e., selecting which word to translate) at each time step,

in practice we select over contextualized word representations [s1, . . . , sS ]. Each vec-

tor si can theoretically encode all information about the entire sentence x since it is

the output from a bi-directional model. Thus, just because we have zt = i does not

necessarily mean that the model is translating the particular word xi. This is both a

feature and a bug: it is a feature since it allows the model to softly select phrases with

a single categorical latent variable, which are easier to work with in terms of inference

(compared to, for example, binary vector-valued latent variables); it is a bug since it

means that zt cannot rigorously be interpreted as focusing on a single word (although

in practice alignments do seem to correspond to human intuition at the word-level).

An interesting future direction would involve working with latent variable versions

of structured attention (Kim et al., 2017) which can explicitly attend to contiguous

words (e.g., via a semi-Markov model), while at the same time employing encoders

with Markov properties such that si does not contain information about the entire

source sentence.
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4.6 Related Work

Neural soft attention was originally introduced as an alternative approach for neu-

ral machine translation (Bahdanau et al., 2015), and have subsequently been suc-

cessful on a wide range of tasks (see Cho et al. (2015) for a review of applications).

Recent work has combined neural attention with traditional alignment (Cohn et al.,

2016; Tu et al., 2016) and induced structure/sparsity (Martins & Astudillo, 2016; Kim

et al., 2017; Liu & Lapata, 2017; Zhu et al., 2017; Niculae & Blondel, 2017; Niculae

et al., 2018a; Mensch & Blondel, 2018), which can be combined with the variational

approaches outlined in this paper.

In contrast to soft attention models, hard attention (Xu et al., 2015; Ba et al.,

2015a) approaches use a single sample from a prior for training with a lower bound

resulting from Jensen’s inequality. These models have proven much more difficult to

train, and existing works typically treat hard attention as a black-box reinforcement

learning problem with log likelihood as the reward (Xu et al., 2015; Ba et al., 2015a;

Mnih et al., 2015; Gulcehre et al., 2016; Deng et al., 2017). Two notable exceptions

are Ba et al. (2015b) and Lawson et al. (2018): both utilize amortized variational in-

ference to learn a sampling distribution which is used to obtain importance-sampled

estimates of the log marginal likelihood (Burda et al., 2015) via multiple samples.

Our method uses uses different estimators and targets the single sample approach for

efficiency.

There has also been significant work in using variational autoencoders for language

modeling and machine translation. Of particular interest are those that augment an

RNN with latent variables (typically Gaussian) at each time step (Chung et al., 2015;

Fraccaro et al., 2016; Serban et al., 2017; Goyal et al., 2017a; Krishnan et al., 2017)
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and those that incorporate latent variables into sequence-to-sequence models (Zhang

et al., 2016; Bahuleyan et al., 2017; Su et al., 2018; Schulz et al., 2018). Our work dif-

fers by modeling an explicit model component (alignment) as a latent variable instead

of auxiliary latent variables (e.g. topics). The term “variational attention” has also

been used to refer to a different component of the output from attention (commonly

called the context vector) as a latent variable (Bahuleyan et al., 2017), or to model

both the memory and the alignment as a latent variable (Bornschein et al., 2017).

Finally, contemporaneous work by Wu et al. (2018) and Shankar et al. (2018) also

perform exact/approximate marginalization over latent alignments for sequence-to-

sequence learning.

4.7 Conclusion

While attention networks are ubiquitous in natural language processing, they are dif-

ficult to use as latent variable models. In this chapter we explored alternative ap-

proaches to modeling alignment as a latent variable, and showed variational attention

as a promising technique. In particular we saw that both the score function gradient

estimator with a control variate derived from a soft attention model, and the path-

wise gradient estimator derived from a Gumbel-Softmax relaxation of the discrete

attention distribution, were viable methods for efficiently learning performant hard

attention models. An important future direction will be to scale the method on more

complex models such as multi-hop attention models, and to utilize these latent vari-

ables for interpretability and as a way to incorporate prior knowledge.
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5
Latent Variable Model of Trees &

Posterior Regularization

5.1 Introduction

This chapter considers a deep latent variable model of sentences where the latent vari-

able corresponds to an unlabeled, binary parse tree of the sentence. Unlike the la-

The material in this chapter is adapted from Kim et al. (2019b).
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tent variable models that we have seen in previous chapters, the latent variables in

this chapter are structured, in that there is interdependence among the different la-

tent components. In particular, we study unsupervised learning of recurrent neural

network grammars (RNNG) (Dyer et al., 2016). RNNGs are generative models of lan-

guage which jointly model syntax and surface structure by incrementally generating a

syntax tree and sentence in a top-down, left-to-right order. Supervised RNNGs have

been shown to outperform standard sequential language models, achieve excellent

results on parsing (Dyer et al., 2016; Kuncoro et al., 2017), better encode syntactic

properties of language (Kuncoro et al., 2018), and correlate with electrophysiological

responses in the human brain (Hale et al., 2018). However, these all require annotated

syntactic trees for training. In this chapter, we explore unsupervised learning of recur-

rent neural network grammars for language modeling and unsupervised parsing.

Past work on incorporating syntax into statistical models of language has focused

on cases where either (i) the underlying structure is itself the goal (Klein & Manning,

2002), or (ii) the structure is useful in obtaining better language models (Emami &

Jelinek, 2005). The goal of this chapter is to develop a model which obtains good lan-

guage modeling performance and at the same time learns meaningful latent structure.

We propose to achieve this by regularizing the posterior of a flexible generative model

(which is crucial for good language modeling performance) through a form of poste-

rior regularization (Ganchev et al., 2010) within a variational framework. In partic-

ular, we utilize a conditional random field (CRF) constituency parser (Finkel et al.,

2008; Durrett & Klein, 2015) as an inference network, and find that it acts as a guide

on the generative model through regularizing the posterior. We experiment with un-

supervised RNNGs on English and Chinese and observe that they perform well as

language models compared to their supervised counterparts and standard neural lan-
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guage models. They also learn meaningful tree structures and outperform various

baselines on unsupervised parsing.

5.2 Background

We first give a high-level overview of recurrent neural network grammars as well as

the problems they pose for unsupervised learning (5.2.1), deferring the exact param-

eterization of the RNNG to a later section (5.3.1). We then briefly review posterior

regularization (5.2.2) and conditional random fields (5.2.3), both of which are crucial

components of our approach.

5.2.1 Recurrent Neural Network Grammars

Recurrent neural network grammars (RNNGs) model sentences by first generating a

nested, hierarchical syntactic structure which is used to construct a context represen-

tation to be conditioned upon for upcoming words. Like neural language models, RN-

NGs make no independence assumptions. Instead they encode structural bias through

operations that compose linguistic constituents through neural network-based com-

position functions. The lack of independence assumptions combined with syntactic

constraints contribute to the strong language modeling performance. However they

make unsupervised learning challenging.

First, marginalization is intractable. In our RNNG, the binary latent variable

zt ∈ {0, 1} at each time step represents an action; whether to reduce and compose

a constituent via merging the last two elements on the stack, or to generate the next

word and shift it onto the stack. Crucially, zt fully depends on the previously gener-
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ated actions z<t = [z1, . . . , zt−1], which makes exact marginalization intractable.1 Sec-

ond, the biases imposed by the RNNG are relatively weak compared to those imposed

by models like probabilistic context-free grammars (PCFGs). Even if exact marginal-

ization were tractable, there is little pressure for non-trivial tree structure to emerge

during unsupervised RNNG (URNNG) learning.

In this chapter we explore a technique for handling intractable marginalization

while also injecting inductive bias for meaningful structure. Specifically we employ

amortized variational inference (Kingma & Welling, 2014) with a structured inference

network that does make significant independence assumptions, which encourages non-

trivial structure through a form of posterior regularization.

5.2.2 Posterior Regularization

Posterior regularization (Ganchev et al., 2010) describes a framework for injecting

prior knowledge into probabilistic models via constraints on expectations of a model’s

posterior. Letting x ∈ X be the observed data and z ∈ Z be the unobserved latent

variable, one formulation of posterior regularization optimizes the following objective

max
θ

N∑
n=1

log p(x(n); θ)− min
q(z)∈Q

x(n)

KL[q(z) ∥ p(z |x(n); θ)].

1In contrast, in chapter 4 the attention at each time step (i.e. the categorical latent vari-
able zt) does not depend on any attention from previous time steps, which allowed us to
directly calculate the log marginal likelihood via enumeration at a multiplicative (but not
exponential) increase in cost.
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Here Qx is the family of distributions over z (which depend on x) that satisfy the

following

Qx = {q(z) : Eq(z)[Φ(x, z)] ≤ b},

where Φ : X × Z → Rd is a feature function which encodes the desired constraints

when combined with b. Following the example in Ganchev et al. (2010), if

Φ(x, z) = “negative number of verbs in z”,

then

Qx(n) = {q(z) : Eq(z)[Φ(x
(n), z)] ≤ −1}

expresses the constraint that each sentence should have at least one verb, in expecta-

tion. The generative model parameters θ are optimized against this posterior-regularized

likelihood with EM-style coordinate ascent updates, which encourages the learned

model to have posteriors that respect this constraint.2 In many cases, prior knowledge

can be more naturally expressed via constraints on data-dependent posteriors, and

thus posterior regularization provides an attractive alternative to Bayesian priors for

injecting prior knowledge into latent variable models.
2We give a greatly simplified exposition here for brevity. See the original formulation in

Ganchev et al. (2010) for full details and extensions, e.g. adding slack variables to allow for
constraint violations.
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5.2.3 Conditional Random Fields

A conditional random field (CRF) (Lafferty et al., 2001) specifies a distribution over

discrete structure z given observed variable x via a globally normalized Gibbs distri-

bution,

p(z |x; θ) = 1

Z(x; θ)

∏
zc∈C(x,z)

exp (ψc(x, zc; θ)) ,

where C(x, z) is the set of cliques in a graphical model over x and z, ψc(x, zc; θ) is the

score (i.e. log potential) for the substructure (x, zc), and

Z(x; θ) =
∑
z′∈Z

∏
zc∈C(x,z′)

exp (ψc(x, zc; θ)) ,

is the partition function which guaranteeds that p(z |x; θ) is a valid probability distri-

bution over Z.

The score function ψc(x, zc; θ) can itself be parameterized as a neural network.

CRFs and their neural extensions have been widely utilized for structured predic-

tion tasks in NLP, from part-of-speech tagging to named entity recognition to pars-

ing (Lafferty et al., 2001; Finkel et al., 2008; Collobert et al., 2011; Durrett & Klein,

2015; Lample et al., 2016; Ma & Hovy, 2016). For our purposes we are interested in a

CRF that gives rise to a distribution over unlabeled binary trees,

p(z |x; θ) ∝ 1{z is a valid binary tree}
∏
i≤j

exp (ψ(x, zi, zj ; θ)) ,

where ψ(x, zi, zj ; θ) is a score for span [xi, xi+1, . . . , xj ]’s being a constituent. Under

this model we can calculate the partition function in O(T 3) time (where T is the sen-
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tence length) with the standard inside algorithm (Baker, 1979).

5.3 Unsupervised Recurrent Neural Network Grammars

We now describe our generative model (an RNNG) and the structured inference net-

work in more detail. We use x = [x1, . . . , xT ] to denote a sentence of length T , and

z ∈ ZT to denote an unlabeled binary parse tree over a sequence of length T , repre-

sented as a binary vector [z1, . . . , z2T−1] of length 2T − 1.3 Here 0 and 1 correspond to

shift and reduce actions, explained below.

5.3.1 Generative Model

An RNNG defines a joint probability distribution p(x, z; θ) over sentences x and parse

trees z. We consider a simplified version of the original RNNG (Dyer et al., 2016) by

ignoring constituent labels and only considering binary trees. The RNNG utilizes an

RNN to parameterize a stack data structure (Dyer et al., 2015) of partially-completed

constituents to incrementally build the parse tree while generating terminals. Using

the current stack representation, the model samples an action (shift or reduce)

at each time step: shift generates a terminal symbol (word) and shifts it onto the

stack,4 reduce pops the last two elements off the stack, composes them, and shifts

the composed representation onto the stack.

Formally, let S = [(0,0)] be the initial stack. Each item of the stack will be a
3The cardinality of ZT ⊂ {0, 1}2T−1 is given by the (T − 1)-th Catalan number, i.e.

|ZT | =
(2T − 2)!

T !(T − 1)!
.

4A better name for shift would be generate (as in Dyer et al. (2016)), but we use shift
to emphasize similarity with the shift-reduce parsing.
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pair, where the first element is the hidden state of the stack LSTM, and the sec-

ond element is an input vector, described below. We use top(S) to refer to the top

pair in the stack. The push and pop operations are defined imperatively in the usual

way. At each time step, the next action zt (shift or reduce) is sampled from a

Bernoulli distribution parameterized in terms of the current stack representation. Let-

ting (hprev,gprev) = top(S), we have

zt ∼ Bernoulli(pt),

pt = σ(w⊤hprev + b).

Subsequent generation depend on zt:

• If zt = 0 (shift), the model first generates a terminal symbol via sampling from

a categorical distribution whose parameters come from an affine transformation

and a softmax,

y ∼ softmax(Whprev + b).

Then the generated terminal is shifted onto the stack using a stack LSTM,

hnext = LSTM(ey,hprev),

push(S, (hnext, ey)),

where ey is the word embedding for the word y.

• If zt = 1 (reduce), we pop the last two elements off the stack,

(hr,gr) = pop(S), (hl,gl) = pop(S),
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and obtain a new representation that combines the left/right constituent repre-

sentations using a tree LSTM (Tai et al., 2015; Zhu et al., 2015),

gnew = TreeLSTM(gl,gr).

Note that we use gl and gr to obtain the new representation instead of hl and

hr.5 We then update the stack using gnew,

(hprev,gprev) = top(S),

hnew = LSTM(gnew,hprev),

push(S, (hnew,gnew)).

The generation process continues until an end-of-sentence symbol is generated. For

a sentence x = [x1, . . . , xT ] of length T , the binary parse tree is given by the binary

vector z = [z1, . . . , z2T−1].6

In this model, the joint log likelihood decomposes as a sum of terminal/action log

likelihoods,

log p(x, z; θ) =
T∑

j=1

log p(xj |x<j , z<n(j); θ)︸ ︷︷ ︸
log p(x | z;θ)

+
2T−1∑
t=1

log p(zt |x<m(t), z<t; θ)︸ ︷︷ ︸
log p(z |x<z;θ)

,

5The update equations for the tree LSTM (and the stack LSTM) also involve cell states in
addition to the hidden states. To reduce notational clutter we do not explicitly show the cell
states and instead subsume them into g. If one (or both) of the inputs to the tree LSTM is
a word embedding, the associated cell state is taken to be zero. See Tai et al. (2015) for the
exact parameterization.

6As it stands, the support of z is {0, 1}2T−1, all binary vectors of length 2T − 1. To restrict
our distribution to ZT (binary vectors which describe valid trees), we constrain zt to be valid
at each time step, which amounts to deterministically choosing zt = 0 (shift) if there are
fewer than two elements (not counting the initial zero tuple) on the stack.
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where z<n(j) refers to all actions before generating the j-th word, and similarly x<m(t)

refers to all words generated before taking the t-th action. For brevity, from here

on we will use log p(x | z; θ) to refer to the first term (terminal log likelihood) and

log p(z |x<z; θ) to refer to the second term (action log likelihood) in the above de-

composition.

In the supervised case where ground-truth z is available, we can straightforwardly

perform gradient-based optimization to maximize the joint log likelihood log p(x, z; θ).

In the unsupervised case, the standard approach is to maximize the log marginal like-

lihood,

log p(x; θ) = log
∑

z′∈ZT

p(x, z′; θ).

However this summation is intractable because zt fully depends on all previous ac-

tions [z1, . . . , zt−1]. Even if this summation were tractable, it is not clear that mean-

ingful latent structures would emerge given the lack of explicit independence assump-

tions in the RNNG (e.g. it is clearly not context-free). Indeed, in early experiments

we tried training the model via marginalizing over the trees via enumeration on short

sentences of up to length 10, but did not observe any meaningful structures to emerge.7

We handle these issues with amortized variational inference with a form of posterior

regularization from a structured inference network parameterized as a CRF parser.

5.3.2 Posterior Regularization with Conditional Random Fields

Consider an inference network ϕ that parameterizes q(z |x;ϕ), a variational poste-

rior distribution over parse trees z given the sentence x. As in previous chapters, this

distribution is used to form an evidence lower bound (ELBO) on the log marginal
7We found the model to collapse to fully left or right branching trees depending on hyper-

parameters.
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likelihood,

ELBO(θ, ϕ;x) = Eq(z |x;ϕ)

[
log

p(x, z; θ)

q(z |x;ϕ)

]
.

We maximize the ELBO with respect to both model parameters θ and inference net-

work parameters ϕ. We saw in 2.5.3 that rearranging the ELBO gives the following

optimization problem for the entire dataset,

max
θ,ϕ

N∑
n=1

log p(x(n); θ)−KL[q(z |x(n);ϕ) ∥ p(z |x(n); θ)].

From this formulation of the ELBO, we notice its similarity to the posterior regu-

larization objective from 5.2.2. In particular, ϕ is trained to match the variational

posterior q(z |x;ϕ) to the true posterior p(z |x; θ), but θ is also trained to match the

true posterior to the variational posterior. Indeed, there is some evidence to suggest

that generative models trained with amortized variational inference (i.e. variational

autoencoders) learn posterior distributions that are close to the variational family

(Burda et al., 2015; Cremer et al., 2018).

We can use this to our advantage with an inference network that injects inductive

bias through conditional independence properties (conditioned on x). We propose to

do this by using a context-free model for the inference network, in particular, a neu-

ral CRF parser (Durrett & Klein, 2015; Liu et al., 2018). This choice can seen as a

form of posterior regularization that limits posterior flexibility of the overly powerful

RNNG generative model. Concretely, observe that if we optimize the posterior regu-
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larization objective from 5.2.2

max
θ

N∑
n=1

logp(x(n); θ)− min
q(z)∈Q

x(n)

KL[q(z) ∥ p(z |x(n); θ)],

Qx = {q(z) : Eq(z)[Φ(x, z)] ≤ b},

with coordinate ascent style updates (i.e. update q, then update θ), then it is equiv-

alent to variational EM where we take the variational family to be the distributions

over z that respect the linearity constraints Eq(z)[Φ(x, z)] ≤ b. Conversely, the ELBO

objective with a CRF inference network is then roughly equivalent to the posterior

regularization objective where we take Qx to be distributions over z such that (1)

context-free assumptions hold conditioned on x and (2) log potentials (i.e. the span

scores) are from a global neural network. Note, however, that the conditional inde-

pendence assumptions in the CRF cannot be characterized through linear constraints

over posterior expectations. Hence our use of the term “posterior regularization” is in

a slightly different sense than in the original work of Ganchev et al. (2010). In pre-

liminary experiments, we also attempted to learn latent trees with a transition-based

parser (which does not make explicit conditional independence assumptions) that con-

ditions on the entire sentence. However we found that under this setup, the inference

network degenerated into a local minimum whereby it always generated trivial trees

despite various optimization strategies.8

8Williams et al. (2018) observe a similar phenomenon in the context of learning latent trees
for classification tasks. However Li et al. (2019a) find that it is possible use a transition-based
parser as the inference network for dependency grammar induction, if the inference network
is constrained via posterior regularization based on universal syntactic rules (Naseem et al.,
2010).
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Algorithm 1 Inside algorithm for calculating ZT (x)

1: procedure Inside(s) ▷ scores sij for i ≤ j
2: for i := 1 to T do ▷ length-1 spans
3: β[i, i] = exp(sii)
4: end for
5: for ℓ := 1 to T − 1 do ▷ span length
6: for i := 1 to T − ℓ do ▷ span start
7: j = i+ ℓ ▷ span end
8: β[i, j] =

∑j−1
k=i exp(sij) · β[i, k] · β[k + 1, j]

9: end for
10: end for
11: return β[1, T ] ▷ return partition function ZT (x)
12: end procedure

Neural CRF Parameterization The parameterization of span scores in the in-

ference network is similar to recent works (Wang & Chang, 2016; Stern et al., 2017;

Kitaev & Klein, 2018): we add position embeddings to word embeddings and run a

bidirectional LSTM over the input representations to obtain the forward [
−→
h 1, . . . ,

−→
h T ]

and backward [
←−
h 1, . . . ,

←−
h T ] hidden states. The score sij ∈ R for a constituent span-

ning xi to xj is given by,

sij = MLP([
−→
h j+1 −

−→
h i;
←−
h i−1 −

←−
h j ]).

Then, letting B be the binary matrix representation of a tree (Bij = 1 means there is

a constituent spanning xi and xj), the CRF parser defines a distribution over binary

trees via the Gibbs distribution,

q(B |x;ϕ) = 1

ZT (x)
exp

∑
i≤j

Bijsij

 ,
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where ZT (x) is the partition function,

ZT (x) =
∑

B′∈BT

exp

∑
i≤j

B′
ijsij

 ,

and ϕ denotes the parameters of the inference network (i.e. the bidirectional LSTM

and the MLP). Calculating ZT (x) requires a summation over an exponentially-sized

set BT ⊂ {0, 1}T×T , the set of all binary matrices that represent valid binary trees

over a length T sequence. We can perform the summation in O(T 3) using the inside

algorithm (Baker, 1979), shown in Algorithm 1. This computation is itself differen-

tiable and amenable to gradient-based optimization. Finally, letting f : BT → ZT

be the bijection between the binary tree matrix representation and a sequence of

shift/reduce actions, the CRF inference network defines a distribution over ZT via

q(z |x;ϕ) ≜ q(f−1(z) |x;ϕ). Figure 5.1 gives an overview of our approach.

5.3.3 Learning and Inference

For training, we use the following variant of the ELBO,

ELBO(θ, ϕ;x) = Eq(z |x;ϕ)[log p(x, z; θ)] +H[q(z |x;ϕ)],

where

H[q(z |x;ϕ)] = Eq(z |x;ϕ)[− log q(z |x;ϕ)],

is the entropy of the variational posterior. A Monte Carlo estimate for the gradient
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Figure 5.1: Overview of our approach. The inference network q(z |x;ϕ) (left) is a CRF parser
which produces a distribution over binary trees (shown in dotted box). Bij are random variables
for existence of a constituent spanning i-th and j-th words, whose potentials are the output from a
bidirectional LSTM (the global factor ensures that the distribution is only over valid binary trees).
The generative model p(x, z; θ) (right) is an RNNG which consists of a stack LSTM (from which
actions/words are predicted) and a tree LSTM (to obtain constituent representations upon re-
duce). Training involves sampling a binary tree from q(z |x;ϕ), converting it to a sequence of
shift/reduce actions (z = [shift, shift, shift, reduce, reduce, shift, reduce] in the above
example), and optimizing the log joint likelihood log p(x, z; θ).

with respect to θ is

∇θ ELBO(θ, ϕ;x) ≈ 1

K

K∑
k=1

∇θ log p(x, z
(k); θ),

with samples z(1), . . . , z(K) from q(z |x;ϕ). Sampling uses the intermediate values

calculated during the inside algorithm to sample split points recursively (Goodman,

1998; Finkel et al., 2006), as shown in Algorithm 2. The gradient with respect to ϕ

involves two parts. The entropy term H[q(z |x;ϕ)] can be calculated exactly in O(T 3),

again using the intermediate values from the inside algorithm (see Algorithm 3),
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Algorithm 2 Top-down sampling a tree from q(z |x;ϕ)
1: procedure Sample(β) ▷ β from running Inside(s)
2: B = 0 ▷ binary matrix representation of tree
3: Q = [(1, T )] ▷ queue of constituents
4: while Q is not empty do
5: (i, j) = pop(Q)
6: τ =

∑j−1
k=i β[i, k] · β[k + 1, j]

7: for k := i to j − 1 do ▷ get distribution over splits
8: wk = (β[i, k] · β[k + 1, j])/τ
9: end for
10: k ∼ Cat([wi, . . . , wj−1]) ▷ sample a split point
11: Bi,k = 1, Bk+1,j = 1 ▷ update B
12: if k > i then ▷ if left child has width > 1
13: push(Q, (i, k)) ▷ add to queue
14: end if
15: if k + 1 < j then ▷ if right child has width > 1
16: push(Q, (k + 1, j)) ▷ add to queue
17: end if
18: end while
19: z = f(B) ▷ f : BT → ZT maps matrix representation of tree to se-

quence of actions.
20: return z
21: end procedure

where we adapt the algorithm for calculating tree entropy in PCFGs from Hwa (2000)

to the CRF case. Since each step of this dynamic program is differentiable, we can

obtain the gradient ∇ϕH[q(z |x;ϕ)] using automatic differentation.9 An estimator for

the gradient with respect to Eq(z |x;ϕ)[log p(x, z; θ)] is obtained via the score function

9Note that ∇ϕH[q(z |x;ϕ)] can also be computed using the inside-outside algorithm and
a second-order expectation semiring (Li & Eisner, 2009), which has the same asymptotic
runtime complexity but generally better constants.
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gradient estimator (Glynn, 1987; Williams, 1992),

∇ϕEq(z |x;ϕ)[log p(x, z; θ)] = Eq(z |x;ϕ)[log p(x, z; θ)∇ϕ log q(z |x;ϕ)]

≈ 1

K

K∑
k=1

log p(x, z(k); θ)∇ϕ log q(z
(k) |x;ϕ).

As mentioned in 2.5.5, the above estimator is unbiased but typically suffers from high

variance. To reduce variance, we use a control variate derived from an average of the

other samples’ joint likelihoods (Mnih & Rezende, 2016), yielding the following esti-

mator,
1

K

K∑
k=1

(log p(x, z(k); θ)− r(k))∇ϕ log q(z
(k) |x;ϕ),

where

r(k) =
1

K − 1

∑
j ̸=k

log p(x, z(j); θ).

This control variate worked better than control variates from an auxiliary network

(Mnih & Gregor, 2014; Deng et al., 2018) or a language model (Yin et al., 2018).

5.4 Empirical Study

5.4.1 Experimental Setup

Data For English we use the Penn Treebank (Marcus et al., 1993, PTB) with splits

and preprocessing from Dyer et al. (2016) which retains punctuation and replaces sin-

gleton words with Berkeley parser’s mapping rules, resulting in a vocabulary of 23,815

word types. Notably this vocabulary size is much larger than the standard PTB LM

setup from Mikolov et al. (2010) which uses 10K types. Also different from the LM

setup, we model each sentence separately instead of carrying information across sen-
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Algorithm 3 Calculating the tree entropy H[q(z |x;ϕ)]
1: procedure Entropy(β) ▷ β from running Inside(s)
2: for i := 1 to T do ▷ initialize entropy table
3: H[i, i] = 0
4: end for
5: for l := 1 to T − 1 do ▷ span length
6: for i := 1 to T − l do ▷ span start
7: j = i+ l ▷ span end
8: τ =

∑j−1
u=i β[i, u] · β[u+ 1, j]

9: for u := i to j − 1 do
10: wu = (β[i, u] · β[u+ 1, j])/τ
11: end for
12: H[i, j] =

∑j−1
u=i(H[i, u] +H[u+ 1, j]− logwu) · wu

13: end for
14: end for
15: return H[1, T ] ▷ return tree entropy H[q(z |x;ϕ)]
16: end procedure

tence boundaries, as the RNNG is a generative model of sentences. Hence our per-

plexity numbers are not comparable to the standard PTB LM results (Melis et al.,

2018b; Merity et al., 2018; Yang et al., 2018).

Since the PTB is rather small, and since the URNNG does not require annotation,

we also test our approach on a subset of the one billion word corpus (Chelba et al.,

2013). We randomly sample 1M sentences for training and 2K sentences for valida-

tion/test, and limit the vocabulary to 30K word types. While still a subset of the

full corpus (which has 30M sentences), this dataset is two orders of magnitude larger

than PTB. Experiments on Chinese utilize version 5.1 of the Chinese Penn Treebank

(CTB) (Xue et al., 2005), with the same splits as in Chen & Manning (2014). Single-

ton words are replaced with a single ⟨unk⟩ token, resulting in a vocabulary of 17,489

word types.
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Hyperparameters The stack LSTM has two layers with input/hidden size equal

to 650 and dropout of 0.5. The tree LSTM also has 650 units. The inference network

uses a one-layer bidirectional LSTM with 256 hidden units, and the MLP (to produce

span scores sij for i ≤ j) has a single hidden layer with a ReLU nonlinearity followed

by layer normalization (Ba et al., 2016) and dropout of 0.5. We share word embed-

dings between the generative model and the inference network, and also tie weights

between the input/output word embeddings (Press & Wolf, 2016).

Optimization of the model itself required standard techniques for avoiding posterior

collapse in VAEs, where posterior collapse in our context means that q(z |x;ϕ) always

produced trivial (always left or right branching) trees. We warm-up the ELBO objec-

tive by linearly annealing (per batch) the weight on the conditional prior log p(z |x<z; θ)

and the entropy H[q(z |x;ϕ)] from 0 to 1 over the first two epochs. This is analogous

to KL-annealing in VAEs with continuous latent variables in chapter 3 (Bowman

et al., 2016; Sønderby et al., 2016). We train for 18 epochs (enough for convergence

for all models) with a batch size of 16 and K = 8 samples for the Monte Carlo gradi-

ent estimators. The generative model is optimized with SGD with learning rate equal

to 1, except for the affine layer that produces a distribution over the actions, which

has learning rate 0.1. Gradients of the generative model are clipped at 5. The infer-

ence network is optimized with Adam with learning rate 0.0001, β1 = 0.9, β2 = 0.999,

and gradient clipping at 1. As Adam converges significantly faster than SGD (even

with a much lower learning rate), we stop training the inference network after the first

two epochs. We found it important to utilize separate optimizers for the inference

network/generative model.

Initial model parameters are sampled uniformly from U(−0.1, 0.1). The learning

rate starts decaying by a factor of 2 each epoch after the first epoch at which valida-
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tion performance does not improve, but this learning rate decay is not triggered for

the first eight epochs to ensure adequate training. We use the same hyperparame-

ters/training setup for both PTB and CTB. For experiments on (the subset of) the

one billion word corpus, we use a smaller dropout rate of 0.1. The corresponding

baseline language model also uses the smaller dropout rate.

All models are trained with an end-of-sentence token, but for perplexity calculation

these tokens are not counted to be comparable to prior work (Dyer et al., 2016; Kun-

coro et al., 2017; Buys & Blunsom, 2018). To be more precise, the inference network

does not make use of the end-of-sentence token to produce parse trees, but the gen-

erative model is trained to generate the end-of-sentence token after the final reduce

operation.

Baselines We compare the unsupervised RNNG (URNNG) against several base-

lines: (1) RNNLM, a standard LSTM language model whose size is the same as URNNG’s

stack LSTM; (2) Parsing Reading Predict Network (PRPN) (Shen et al., 2018b), a

neural language model that uses gated attention layers to embed soft tree-like struc-

tures into a neural network; (3) RNNG with trivial trees (left branching, right branch-

ing, random); (4) supervised RNNG trained on unlabeled, binarized gold trees.10

Note that the supervised RNNG also trains a discriminative parser q(z |x;ϕ) (along-

side the generative model p(x, z; θ)) in order to sample parse forests for perplexity

evaluation (i.e. importance sampling). This discriminative parser has the same ar-

chitecture as URNNG’s inference network. For all models, we perform early stopping
10We use right branching binarization—Matsuzaki et al. (2005) find that differences be-

tween various binarization schemes have marginal impact. Our supervised RNNG therefore
differs from the original RNNG, which trains on non-binarized trees and does not ignore con-
stituent labels.
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PTB CTB
Model PPL F1 PPL F1

RNNLM 93.2 – 201.3 –
PRPN (default) 126.2 32.9 290.9 32.9
PRPN (tuned) 96.7 41.2 216.0 36.1
Left Branching Trees 100.9 10.3 223.6 12.4
Right Branching Trees 93.3 34.8 203.5 20.6
Random Trees 113.2 17.0 209.1 17.4
URNNG 90.6 40.7 195.7 29.1

RNNG 88.7 68.1 193.1 52.3
RNNG → URNNG 85.9 67.7 181.1 51.9

Oracle Binary Trees – 82.5 – 88.6

Table 5.1: Language modeling perplexity (PPL) and grammar induction F1 scores on English
(PTB) and Chinese (CTB) for the different models. We separate results for those that make do
not make use of annotated data (top) versus those that do (mid). Note that our PTB setup from
Dyer et al. (2016) differs considerably from the usual language modeling setup (Mikolov et al.,
2010) since we model each sentence independently and use a much larger vocabulary.

based on validation perplexity.

Code Our code is available at https://github.com/harvardnlp/urnng.

5.4.2 Results

Language Modeling Table 5.1 shows perplexity for the different models on PTB/CTB.

As a language model URNNG outperforms an RNNLM and is competitive with the

supervised RNNG, where for RNNG and URNNG we estimate the log marginal likeli-

hood (and hence, perplexity) with K = 1000 importance-weighted samples,

log p(x; θ) ≈ log
( 1

K

K∑
k=1

log p(x, z(k); θ)

q(z(k) |x;ϕ)

)
.
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Figure 5.2: Perplexity of the different models grouped by sentence length on PTB.

During evaluation only, we also flatten q(z |x;ϕ) by dividing span scores sij by a tem-

perature term 2.0 before feeding it to the CRF. The left branching baseline performs

poorly, implying that the strong performance of URNNG/RNNG is not simply due to

the additional depth afforded by the tree LSTM composition function (a left branch-

ing tree, which always performs reduce when possible, is the “deepest” model). Un-

der our RNNG parameterization, the right branching baseline is equivalent to the

standard RNNLM and hence performs the same (we show the perplexity numbers as

a sanity check). We found PRPN with default hyperparameters (which obtains a per-

plexity of 62.0 in the PTB setup from Mikolov et al. (2010)) to not perform well, but

tuning hyperparameters improves performance.11

The supervised RNNG performs well as a language model, despite being trained

on the joint (rather than marginal) likelihood objective; the supervised RNNG is

trained to maximize log p(x, z; θ) while the unsupervised RNNG is trained to maxi-

mize (a lower bound on) the language modeling objective log p(x; θ). This indicates

that explicit modeling of syntax helps generalization even with richly-parameterized
11Using the code from https://github.com/yikangshen/PRPN, we tuned model size, ini-

tialization, dropout, learning rate, and use of batch normalization.
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PTB PPL

KN 5-gram (Dyer et al., 2016) 169.3
RNNLM (Dyer et al., 2016) 113.4
Original RNNG (Dyer et al., 2016) 102.4
Gated-Attention RNNG (Kuncoro et al., 2017) 100.9
Generative Dependency Parser (Buys & Blunsom, 2015) 138.6
Supervised Syntactic NLM (Buys & Blunsom, 2018) 107.6
Unsupervised Syntactic NLM (Buys & Blunsom, 2018) 125.2
PRPN† (Shen et al., 2018b) 96.7
Our work:
RNNLM 93.2
URNNG 90.6
RNNG 88.7
RNNG → URNNG 85.9

1M Sentences PPL

PRPN† (Shen et al., 2018b) 77.7
RNNLM 77.4
URNNG 71.8
RNNG‡ 72.9
RNNG‡ → URNNG 72.0

Table 5.2: (Top) Comparison of our work as a language model against prior works on sentence-
level PTB with preprocessing from Dyer et al. (2016). Note that previous versions of RNNG differ
from ours in terms of parameterization and model size. (Bottom) Results on a subset (1M sen-
tences) of the one billion word corpus. PRPN† is the model from Shen et al. (2018b), whose hy-
perparameters were tuned by us. RNNG‡ is trained on predicted parse trees from the self-attentive
parser from Kitaev & Klein (2018).

neural models. Encouraged by these observations, we also experiment with a hybrid

approach where we train a supervised RNNG first and continue fine-tuning the model

(including the inference network) on the URNNG objective (RNNG → URNNG in

Table 5.1). Concretely, after training the supervised RNNG we fine-tune for 10 epochs

with the unsupervised objective and use a smaller learning rate of 0.1 for the genera-

tive model. This approach results in nontrivial perplexity improvements, and suggests

that it is possible to further improve language models with supervision on parsed
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data, on top of the benefits afforded by the usual supervised RNNG training.

In Figure 5.2 we show perplexity by sentence length. We find that a standard lan-

guage model (RNNLM) is better at modeling short sentences, but underperforms

models that explicitly take into account structure (RNNG/URNNG) when the sen-

tence length is greater than 10. Table 5.2 (top) compares our results against prior

work on this version of the PTB, and Table 5.2 (bottom) shows the results on a 1M

sentence subset of the one billion word corpus, which is two orders of magnitude

larger than PTB. On this larger dataset URNNG still improves upon the RNNLM.

We also trained an RNNG (and RNNG → URNNG) on this dataset by parsing the

training set with the self-attentive parser from Kitaev & Klein (2018), which obtains

an F1 score of 95.17 on the PTB test set.12 These models improve upon the RNNLM

but not the URNNG, potentially highlighting the limitations of using predicted trees

for supervising RNNGs.

Unsupervised Parsing Table 5.1 also shows the F1 scores for unspervised parsing,

where we induce latent trees directly from words on the full dataset.13 For RNNG

and URNNG we obtain the highest scoring tree from q(z |x;ϕ) through the Viterbi

version of the inside algorithm (i.e. CKY algorithm). Note that we could alternatively

estimate

argmax
z

p(z |x; θ)

12We use the benepar_en2 model from https://github.com/nikitakit/
self-attentive-parser.

13Past work on grammar induction generally train/evaluate on short sentences and also
assume access to gold POS tags (Klein & Manning, 2002; Smith & Eisner, 2004; Bod, 2006).
However more recent works train directly on words (Jin et al., 2018b; Shen et al., 2018b;
Drozdov et al., 2019).
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Tree PTB CTB

Gold 40.7 29.1
Left 9.2 8.4
Right 68.3 51.2
Self 92.3 87.3
RNNG 55.4 47.1
PRPN 41.0 47.2

Label URNNG PRPN

SBAR 74.8% 28.9%
NP 39.5% 63.9%
VP 76.6% 27.3%
PP 55.8% 55.1%
ADJP 33.9% 42.5%
ADVP 50.4% 45.1%

Table 5.3: (Left) F1 scores of URNNG against other trees. “Self” refers to another URNNG
trained with a different random seed. (Right) Recall of constituents by label for URNNG and
PRPN. Recall for a particular label is the fraction of ground truth constituents of that label that
were identified by the model (as in Htut et al. (2018)).

by sampling parse trees from q(z |x;ϕ) and using p(x, z; θ) to rerank the output,

as in Dyer et al. (2016); however we found this variational approximation to work

well in practice. We calculate unlabeled F1 using evalb, which ignores punctua-

tion and discards trivial spans (width-one and sentence spans).14 Since we compare

F1 against the original, non-binarized trees per convention in unsupervised parsing,

F1 scores of models using oracle binarized trees constitute the upper bounds. We

confirm the replication study of Htut et al. (2018) and find that PRPN is a strong

model for grammar induction. URNNG performs on par with PRPN on English but

PRPN does better on Chinese; both outperform right branching baselines. Table 5.3

further analyzes the learned trees and shows the F1 score of URNNG trees against

other trees (left), and the recall of URNNG/PRPN trees against ground truth con-

stituents (right). We find that trees induced by URNNG and PRPN are quite differ-

ent; URNNG is more sensitive to SBAR and VP, while PRPN is better at identifying

NP. While left as future work, this naturally suggests a hybrid approach wherein the

intersection of constituents from URNNG and PRPN is used to create a corpus of
14Available at https://nlp.cs.nyu.edu/evalb/. We evaluate with COLLINS.prm parame-

ter file and LABELED option equal to 0.
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partially annotated trees, which can be used to guide another model, e.g. via semi-

supervision (Hwa, 1999).

5.4.3 Analysis

Distributional Metrics Table 5.4 shows some standard metrics related to the

learned generative model/inference network, similar to those explored in chapter 3.

The “reconstruction” perplexity based on

Eq(z |x;ϕ)[log p(x | z; θ)],

is much lower than actual perplexity, and further, the Kullback-Leibler divergence

between the conditional prior and the variational posterior, given by

Eq(z |x;ϕ)

[
log

q(z |x;ϕ)
p(z |x<z; θ)

]
,

is highly nonzero. This indicates that the latent space is being used in a meaningful

way and that there is no posterior collapse (Bowman et al., 2016). As expected, the

entropy of the variational posterior is much lower than the entropy of the conditional

prior, but there is still some uncertainty in the posterior.

Syntactic Evaluation We perform a syntactic evaluation of the different models

based on the setup from Marvin & Linzen (2018): the model is given two minimally

different sentences, one grammatical and one ungrammatical, and must identify the
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PTB CTB
RNNG URNNG RNNG URNNG

PPL 88.7 90.6 193.1 195.7
Recon. PPL 74.6 73.4 183.4 151.9
KL 7.10 6.13 11.11 8.91
Prior Entropy 7.65 9.61 9.48 15.13
Post. Entropy 1.56 2.28 6.23 5.75
Unif. Entropy 26.07 26.07 30.17 30.17

Table 5.4: Metrics related to the generative model/inference network for RNNG/URNNG.
For the supervised RNNG we take the “inference network” to be the discriminative parser
trained alongside the generative model. Recon. PPL is the reconstruction perplexity based on
Eq(z | x;ϕ)[log p(x | z; θ)], and KL is the Kullback-Leibler divergence. Prior entropy is the entropy of
the conditional prior p(z |x<z; θ), and uniform entropy is the entropy of the uniform distribution
over all binary trees. The KL/entropy metrics are averaged across sentences.

grammatical sentence by assigning it higher probability, e.g.

the senators near the assistant are old

*the senators near the assistant is old

We modify the publicly available dataset from https://github.com/BeckyMarvin/

LM_syneval to only keep sentence pairs that did not have any unknown words with

respect to our vocabulary, resulting in 80K sentence pairs for evaluation.15 Table 5.5

shows the accuracy results. Overall the supervised RNNG significantly outperforms

the other models, indicating opportunities for further work in unsupervised modeling.

While the URNNG does slightly outperform an RNNLM, the distribution of errors

made from both models are similar, and thus it is not clear whether the outperfor-

mance is simply due to better perplexity or learning different structural biases.
15Further, we train on a much smaller corpus, and hence our results are not directly compa-

rable to the numbers reported in Marvin & Linzen (2018)
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RNNLM PRPN RNNG URNNG

PPL 93.2 96.7 88.7 90.6

Overall 62.5% 61.9% 69.3% 64.6%
Subj. 63.5% 63.7% 89.4% 67.2%
Obj. Rel. 62.6% 61.0% 67.6% 65.7%
Refl. 60.7% 68.8% 57.3% 60.5%
NPI 58.7% 39.5% 46.8% 55.0%

Table 5.5: Syntactic evaluation based on the setup from Marvin & Linzen (2018). Subj. is
subject-verb agreement in sentential complement, across prepositional phrase/subjective relative
clause, and VP coordination; Obj. Rel. refers to subject-verb agreement in/across an objective rel-
ative clause; Refl. refers to reflexive pronoun agreement with antecedent; NPI is negative polarity
items.

5.5 Discussion

5.5.1 Limitations

There are several limitations to our approach. For one, the URNNG takes consider-

ably more time/memory to train than a standard language model due to the O(T 3)

dynamic program in the inference network, multiple samples to obtain control vari-

ates for variance reducing gradient estimators, and dynamic computation graphs that

make efficient batching nontrivial.16 We also found the inference network to be sen-

sitive to the parameterization of span scores (i.e. it was important to use the “sub-

traction” parameterization from Wang & Chang (2016)), which indicates that the

context-freeness of the variational family is by itself not enough to provide the right

inductive bias. The framework is also sensitive to other hyperparameters and required

various optimization strategies (e.g. separate optimizers for the inference network and
16The main time bottleneck is the dynamic compution graph, since the dynamic program-

ming algorithm can be batched (however the latter is a significant memory bottleneck). We
manually batch the shift and reduce operation as much as possible, though recent work on
auto-batching (Neubig et al., 2017) could potentially make this easier/faster.
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the generative model, annealing the multiplier on the KL portion of the objective) to

avoid posterior collapse.

In our experiments we adopt the experimental setup and preprocessed dataset from

the original RNNG work (Dyer et al., 2016) (which is itself from the standard super-

vised parsing setup), which does not discard punctuation. However, in subsequent

experiment we were unable to improve upon a right-branching baseline when train-

ing the URNNG on a version of PTB where punctuation is removed.17 Syntax and

punctuation are related (Nunberg, 1990), and its inclusion in learning unsupervised

parsing systems can be justified by the fact that punctuation can be partially seen as

an analog to prosody in speech. However, an unsupervised parser should ideally still

work well even when trained on corpora without punctuation. In the next chapter

we revisit unsupervised parsing and propose an alternative approach which is able to

learn nontrivial trees from unpunctuated data.

5.5.2 Rich Generative Models for Learning Latent Structures

Despite the fact that rich generative models—such as autoregressive models that fully

condition on their history such as RNNs or RNNGs—can model the underlying data

well in terms of perplexity, in chapter 3 we questioned the prudence of utilizing them

for learning meaningful latent variables, given the fact that if the generative model is

powerful enough it can model p⋆(x) without utilizing the latent variable. We saw in

chapter 3 that one way to encourage meaningful use of the latent space is to reduce

the amortization gap by better optimizing the variational posterior distribution.
17Many prior works that induce trees directly from words often employ additional heuris-

tics based on punctuation (Seginer, 2007; Ponvert et al., 2011; Spitkovsky et al., 2013; Parikh
et al., 2014), as punctuation (e.g. comma) is usually a reliable signal for start/end of con-
stituent spans. We also reiterate that punctuation is used during training but ignored during
evaluation.
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In this chapter, we explored an alternative method to encourage meaningful latent

space via posterior regularization (Ganchev et al., 2010), where we employ a discrim-

inative, context-free parser to imbue the generative model with the appropriate in-

ductive bias. In particular we exploit the ELBO objective to encourage the learning

of generative models whose true posterior is close to the variational family of context-

free distributions over trees. We found the use of this structured inference network to

be crucial in learning linguistically meaningful parse trees.

Note that our use of posterior regularization via independence assumptions on

the variational family is quite a weak form of constraint. An interesting future di-

rection would involve richer inductive biases from posterior regularization by further

constraining the inference network, for example based on universal syntactic rules

(Naseem et al., 2010). Alternatively, we could add auxiliary objectives such as the

contrastive loss proposed by Smith & Eisner (2005) to better train the inference net-

work. Or further still, we could utilize a PCFG as an inference network which not

only encodes context-free assumptions but also allows for tractable training of the in-

ference network itself on the corpus log marginal likelihood. We explore some of these

extensions further in the next chapter, where we pretrain the inference network on

parse trees obtained from an induced probabilistic grammar.

5.6 Related Work

There has been much work on incorporating tree structures into statistical mod-

els for syntax-aware language modeling, both for unconditional (Emami & Jelinek,

2005; Buys & Blunsom, 2015; Dyer et al., 2016) and conditional (Yin & Neubig, 2017;

Alvarez-Melis & Jaakkola, 2017b; Rabinovich et al., 2017; Aharoni & Goldberg, 2017;

117



Eriguchi et al., 2017; Wang et al., 2018b; Gu et al., 2018) cases. These approaches

generally rely on annotated parse trees during training and maximize the joint likeli-

hood of sentence-tree pairs. Neural approaches to combining language modeling and

unsupervised tree learning typically embed soft, tree-like structures as hidden layers

of a deep network (Cho et al., 2014a; Chung et al., 2017; Shen et al., 2018b, 2019).

In contrast, Buys & Blunsom (2018) make Markov assumptions and perform exact

marginalization over latent dependency trees. Our work is also related to the recent

line of work on learning latent trees as part of a deep model through supervision on

other tasks, typically via differentiable structured hidden layers (Kim et al., 2017;

Bradbury & Socher, 2017; Liu & Lapata, 2017; Tran & Bisk, 2018; Peng et al., 2018;

Niculae et al., 2018b; Liu et al., 2018), policy gradient-based approaches (Yogatama

et al., 2017; Williams et al., 2018; Havrylov et al., 2019), or differentiable relaxations

(Choi et al., 2018; Maillard & Clark, 2018).

The variational approximation uses amortized inference (Kingma & Welling, 2014;

Mnih & Gregor, 2014; Rezende et al., 2014), in which an inference network is used

to obtain the variational posterior for each observed x. Since our inference network

is structured (i.e., a CRF), it is also related to CRF autoencoders (Ammar et al.,

2014) and structured VAEs (Johnson et al., 2016; Krishnan et al., 2018), which have

been used previously for unsupervised (Cai et al., 2017; Drozdov et al., 2019; Li et al.,

2019a) and semi-supervised (Yin et al., 2018; Corro & Titov, 2018) parsing.

5.7 Conclusion

It is an open question as to whether explicit modeling of syntax significantly helps

neural models. Strubell et al. (2018) find that supervising intermediate attention lay-
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ers with syntactic heads improves semantic role labeling, while Shi et al. (2018) ob-

serve that for text classification, syntactic trees only have marginal impact. In this

chapter, we show that at least for language modeling, incorporating syntax either via

explicit supervision or as latent variables does provide useful inductive biases and im-

proves performance. Our results, along with other recent work on joint language mod-

eling/structure learning with deep networks (Shen et al., 2018b, 2019; Wiseman et al.,

2018; Kawakami et al., 2018), suggest that it is possible to learn generative models of

language that model the underlying data well (i.e. assign high likelihood to held-out

data) and at the same time induce meaningful linguistic structures.

119



6
Latent Variable Model of Grammars &

Collapsed Variational Inference

6.1 Introduction

In this chapter we consider the problem of grammar induction with deep latent vari-

able models. Unlike in chapter 5 where we were interested in learning a generative

The material in this chapter is adapted from Kim et al. (2019a).
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model that has low perplexity and performs well as an unsupervised parser, in this

chapter we mainly focus on the case where the underlying structure is itself the goal.

This will, as we will shortly see, allow us to work with generative models that have

better inductive bias towards meaningful structure and at the same time admit tractable

inference algorithms through partial conditioning.

Learning generative grammars (i.e., recursive rewrite rules that generate language)

from observed yields is a classical problem in natural language processing and compu-

tational linguistics, with historical roots going all the way back to Chomsky (1957):

One may arrive at a grammar by intuition, guess-work, all sorts of par-
tial methodological hints, reliance on past experience, etc. It is no doubt
possible to give an organized account of many useful procedures of anal-
ysis, but it is questionable whether these can be formulated rigorously,
exhaustively and simply enough to qualify as a practical and mechanical
discovery algorithm.

Initial theoretical results on grammar induction was largely negative. Gold’s Theorem

showed that it is not possible to learn even regular grammars from positive examples

alone (Gold, 1967). However, the notion of learnability in the aforementioned work

is rather strict and roughly requires that the learner is able to correctly identify the

language after a finite number of mistakes (identification in the limit). Employing a

different notion of learnability (measure-one learnability), Horning (1969) showed that

it is possible to learn probabilistic grammars from positive examples alone, though

the algorithm given in Horning (1969) is enumerative and thus not computationally

practical.

Probabilistic approaches to grammar induction generally require specifying a prob-

abilistic grammar (e.g. formalism, number and shape of rules), and fitting its parame-

ters through optimization. Early work found that it was difficult to induce probabilis-
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tic context-free grammars (PCFG) from natural language data through direct meth-

ods, such as optimizing the log likelihood with the EM algorithm (Carroll & Char-

niak, 1992; Charniak, 1993). While the reasons for the failure are manifold and not

completely understood, two major potential causes are the ill-behaved optimization

landscape and the overly strict independence assumptions of PCFGs. More successful

approaches to grammar induction have thus resorted to carefully-crafted auxiliary ob-

jectives (Klein & Manning, 2002), priors or non-parametric models (Kurihara & Sato,

2006; Johnson et al., 2007; Liang et al., 2007; Wang & Blunsom, 2013), and manually-

engineered features (Huang et al., 2012; Golland et al., 2012) to encourage the desired

structures to emerge.

In this chapter, we revisit these aforementioned issues in light of advances in deep

parameterization and inference. Contrary to common wisdom, we find that parame-

terizing a PCFG’s rule probabilities with neural networks over distributed representa-

tions makes it possible to induce linguistically meaningful grammars by simple maxi-

mum likelihood learning. While the optimization problem remains non-convex, recent

work suggests that there are optimization benefits afforded by over-parameterized

models (Arora et al., 2018; Xu et al., 2018; Du et al., 2019), and we indeed find that

this neural PCFG is significantly easier to optimize than the traditional PCFG. This

factored parameterization makes it straightforward to incorporate side information

into rule probabilities through a sentence-level continuous latent vector, which ef-

fectively allows different contexts in a derivation to coordinate. In this compound

PCFG—continuous mixture of PCFGs—the context-free assumptions hold condi-

tioned on the latent vector but not unconditionally, thereby obtaining longer-range

dependencies within a tree-based generative process. While compound PCFGs break

efficient exact inference, if the latent vector is known the distribution over trees re-

122



duces to a standard PCFG. This property allows us to perform learning and inference

with collapsed variational inference where the latent trees are marginalized out ex-

actly with dynamic programming, and standard amortized inference is used to handle

the latent vector.

Evaluating generative grammars is itself a difficult problem, and a standard ap-

proach is to use the grammar to parse a set of sentences and compare the predicted

trees against the linguistically annotated trees. That is, we evaluate the learned gram-

mar as an unsupervised parsing system. On unsupervised parsing benchmarks for En-

glish and Chinese, the proposed approach is found to perform favorably against recent

neural network-based approaches to unsupervised parsing, including the unsupervised

recurrent neural network grammar studied in the previous section. Finally, we show

that the induced trees can be used to supervise a recurrent neural network grammar

that performs well as a language model and and at the same time learns meaningful

linguistic structure.

6.2 Background

6.2.1 Probabilistic Context-Free Grammars

We consider context-free grammars (CFG) consisting of a 5-tuple G = (S,N ,P,Σ,R)

where S is the distinguished start symbol, N is a finite set of nonterminals, P is a

finite set of preterminals, Σ is a finite set of terminal symbols, and R is a finite set of
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rules of the form,

S → A, A ∈ N ,

A→ B C, A ∈ N , B, C ∈ N ∪ P,

T → w, T ∈ P, w ∈ Σ.

A probabilistic context-free grammar (PCFG) consists of a grammar G and rule prob-

abilities π = {πr}r∈R such that πr is the probability of the rule r. Since we will be

inducing a grammar directly from words, P will roughly correspond to part-of-speech

tags and N will correspond to constituent labels.

Letting TG be the set of all parse trees of G, a PCFG defines a probability distribu-

tion over trees t ∈ TG via

p(t;π) =
∏
r∈tR

πr,

where tR is the set of rules used in the derivation of t. It also defines a distribution

over string of terminals x ∈ Σ∗ via

p(x) =
∑

t∈TG(x)

p(t;π),

where TG(x) = {t | yield(t) = x}, i.e. the set of trees t such that t’s leaves are x. We

will slightly abuse notation and use

p(t |x;π) ≜ 1[yield(t) = x]p(t;π)

p(x;π)

to denote the posterior distribution over the unobserved latent trees given the ob-
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served sentence x, where 1[·] is the indicator function.1 For a given sentence x, we

can efficiently perform posterior inference and marginalization over the exponentially-

sized set TG(x) using dynamic programming (Baker, 1979).

6.2.2 Grammar Induction vs. Unsupervised Parsing

In this chapter we focus on learning a formal grammar, i.e., a set of recursive rewrite

rules and their associated probabilities which give a stochastic account of how sen-

tences in natural language are generated. Once learned, we will evaluate the induced

grammar on unsupervised parsing. That is, we will use the induced grammar to parse

a set of unseen test sentences and compare the predicted parse trees against linguistically-

annotated parse trees. It is worth noting that grammar induction and unsupervised

parsing are not synonymous. Indeed, there is much prior work focusing on learning

an unsupervised parser without learning an underlying grammar (Klein & Manning,

2002; Smith & Eisner, 2005; Bod, 2006; Seginer, 2007; Shen et al., 2018b, 2019). How-

ever, for the purposes of this chapter we will not dwell on the distinction too much

since we will still evaluate the induced grammar as an unsupervised parser.

6.3 Compound Probabilistic Context-Free Grammars

In this section we first describe a neural PCFG that makes use of neural networks

over symbol embeddings to obtain rule probabilities. We then show that this embed-

ding parameterization admits a natural extension to a richer grammar that makes

use of a compound generative process. This compound PCFG models long-range de-

pendencies through a sentence-level latent vector. Finally, we describe a collapsed
1Therefore when used in the context of posterior distributions p(t |x), t does not include

the leaves x and only refers to the unobserved latent nonterminal/preterminal symbols.
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amortized variational inference approach for performing inference in the compound

PCFG.

6.3.1 A Neural Parameterization

The standard way to parameterize a PCFG is to simply associate a scalar to each rule

πr with the constraint that they form valid probability distributions, i.e. each nonter-

minal is associated with a fully-parameterized categorical distribution over its possible

rules. This direct parameterization is algorithmically convenient since the M-step in

the EM algorithm (Dempster et al., 1977) has a closed form. However, there is a long

history of work showing that it is difficult to learn meaningful grammars from natu-

ral language data with this parameterization (Carroll & Charniak, 1992). Successful

approaches to unsupervised parsing have therefore modified the model/learning objec-

tive by guiding potentially unrelated rules to behave similarly, through, for example,

prior distributions over the categorical distributions.

Recognizing that sharing among rule types is beneficial, in this chapter we consider

a neural parameterization where rule probabilities are based on distributed represen-

tations of symbols within the grammar. We associate embeddings with each symbol,

introducing input embeddings wN for each symbol N on the left side of a rule i.e.

N ∈ {S} ∪ N ∪ P.
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For each rule type r, πr is parameterized as follows,

πS→A =
exp(u⊤

A MLP1(wS ; θ)) + bA∑
A′∈N exp(u⊤

A′ MLP1(wS ; θ) + bA′)
,

πA→BC =
exp(u⊤

BC wA + bBC)∑
B′C′∈M exp(u⊤

B′C′ wA + bB′C′)
,

πT→w =
exp(u⊤

w MLP2(wT ; θ) + bw)∑
w′∈Σ exp(u⊤

w′ MLP2(wT ; θ) + bw′)
,

where in the second equation the softmax normalizes over the product space

M = (N ∪ P)× (N ∪ P).

The MLPs have two residual layers,

MLP(x) = ResidualLayer1(ResidualLayer2(Wx+ b)),

ResidualLayer(y) = ReLU(VReLU(Uy + p) + q) + y.

We have separate MLPs for πS→A and πT→w, and do not employ an MLP for πA→BC

as we found the model to perform better without an MLP for rules of this form. We

will use

EG = {wN |N ∈ {S} ∪ N ∪ P} ∪ {uM |M ∈ N ∪M∪ Σ}

to denote the set of input/output symbol embeddings for a grammar G, and λ to

refer to the parameters of the neural network used to obtain the rule probabilities

(i.e. the parameters of the MLPs). A graphical model-like illustration of the neural

PCFG is shown in Figure 6.1 (left). It is clear that the neural parameterization does

not change the underlying context-free assumptions. The difference between the two
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is analogous to the difference between count-based vs. feed-forward neural language

models, where feed-forward neural language models make the same Markov assump-

tions as the count-based models but are able to take advantage of shared, distributed

representations that promote parameter sharing.

6.3.2 A Compound Extension

A compound probability distribution (Robbins, 1951) is a distribution whose param-

eters are themselves random variables. These distributions generalize mixture models

to the continuous case, for example in factor analysis which assumes the following

generative process,

z ∼ N (z;0, I), x ∼ N (x;Wz,Σ).

Compound distributions provide the ability to model rich generative processes, but

marginalizing over the latent parameter can be computationally intractable unless

conjugacy can be exploited.

In this chapter we study compound probabilistic context-free grammars whose dis-

tribution over trees arises from the following generative process: we first obtain rule

probabilities via

z ∼ p(z; γ) = N (z;0, I), πz = NeuralNet(z,EG ;λ),

where p(z; γ) is a prior with parameters γ (spherical Gaussian in this chapter), and

NeuralNet(z,EG ;λ) is a neural network that concatenates the input symbol embed-

128



A1

A2 T3

T1 T2

w1 w2 w3

πS

πN

πP

EG

N

A1

A2 T3

T1 T2

w1 w2 w3

z γc

πz,S

πz,N

πz,P

EG

N

Figure 6.1: A graphical model-like diagram for the neural PCFG (left) and the compound PCFG
(right) for an example tree structure. In the above, A1, A2 ∈ N are nonterminals, T1, T2, T3 ∈ P
are preterminals, w1, w2, w3 ∈ Σ are terminals. In the neural PCFG, the global rule probabilities
π = πS ∪ πN ∪ πP are the output from a neural net run over the symbol embeddings EG , where
πN are the set of rules with a nonterminal on the left hand side (πS and πP are similarly defined).
In the compound PCFG, we have per-sentence rule probabilities πz = πz,S ∪ πz,N ∪ πz,P obtained
from running a neural net over a random vector z (which varies across sentences) and global sym-
bol embeddings EG . In this case, the context-free assumptions hold conditioned on z, but they do
not hold unconditionally: e.g. when conditioned on z and A2, the variables A1 and T1 are inde-
pendent; however when conditioned on just A2, they are not independent due to the dependence
path through z. Note that the rule probabilities are random variables in the compound PCFG but
deterministic variables in the neural PCFG.

dings with z and outputs the sentence-level rule probabilities πz,

πz,S→A =
exp(u⊤

A MLP1([wS ; z]; θ)) + bA∑
A′∈N exp(u⊤

A′ MLP1([wS ; z]; θ) + bA′)
,

πz,A→BC =
exp(u⊤

BC [wA; z] + bBC)∑
B′C′∈M exp(u⊤

B′C′ [wA; z] + bB′C′)
,

πz,T→w =
exp(u⊤

w MLP2([wT ; z]; θ) + bw)∑
w′∈Σ exp(u⊤

w′ MLP2([wT ; z]; θ) + bw′)
,

The MLPs are as in the neural PCFG where the first layer’s input dimensions are

appropriately changed to account for concatenation with z. Then a tree/sentence is

sampled from a PCFG with rule probabilities given by πz,

t ∼ PCFG(πz), x = yield(t).
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This can be viewed as a continuous mixture of PCFGs, or alternatively, a Bayesian

PCFG with a prior on sentence-level rule probabilities parameterized by z, λ,EG .2

Importantly, under this generative model the context-free assumptions hold condi-

tioned on z, but they do not hold unconditionally. This is shown in Figure 6.1 (right)

where there is a dependence path through z if it is not conditioned upon. Compound

PCFGs give rise to a marginal distribution over parse trees t via

p(t; θ) =

∫
p(t | z; θ)p(z; γ) dz,

where p(t | z; θ) =
∏

r∈tR πz,r. The subscript in πz,r denotes the fact that the rule

probabilities depend on z. Compound PCFGs are clearly more expressive than PCFGs

as each sentence has its own set of rule probabilities. However, it still assumes a tree-

based generative process, making it possible to learn latent tree structures.

One motivation for the compound PCFG is the fact that the simple, unlexicalized

context-free grammars such as the one that we have been working with are unlikely

to be adequate statistical models of natural language, even though their simplicity

facilitates efficient training.3 We can in principle model richer dependencies through

vertical/horizontal Markovization (Johnson, 1998; Klein & Manning, 2003) and lex-

icalization (Collins, 1997). However such dependencies complicate training due to

the rapid increase in the number of rules. Under this view, we can interpret the com-
2Under the Bayesian PCFG view, p(z; γ) is a distribution over z (a subset of the prior),

and is thus a hyperprior.
3A piece of evidence for the misspecification of first-order, unlexicalized PCFGs as a statis-

tical model of natural language is that if one pretrains them on supervised data and continues
training with the unsupervised objective (i.e. log marginal likelihood), the resulting grammar
deviates significantly from the supervised initial grammar while the log marginal likelihood
improves (Johnson et al., 2007). Similar observations have been made for part-of-speech in-
duction with Hidden Markov Models (Merialdo, 1994).
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pound PCFG as a restricted version of some lexicalized, higher-order PCFG where a

child can depend on structural and lexical context through a shared latent vector.4

We hypothesize that this dependence among siblings is especially useful in grammar

induction from words, where (for example) if we know that watched is used as a verb

then the noun phrase is likely to be a movie.

In contrast to the usual Bayesian treatment of PCFGs which places priors on global

rule probabilities (Kurihara & Sato, 2006; Johnson et al., 2007; Wang & Blunsom,

2013), the compound PCFG assumes a prior on local, sentence-level rule probabili-

ties. It is therefore closely related to the Bayesian grammars studied by Cohen et al.

(2009) and Cohen & Smith (2009), who also sample local rule probabilities from a

logistic normal prior for training dependency models with valence (DMV) (Klein &

Manning, 2004).

6.3.3 Training and Inference

The expressivity of compound PCFGs comes at a significant challenge in learning

and inference. Letting θ be the parameters of the generative model, we would like

to maximize the log marginal likelihood of the observed sentence log p(x; θ). In the

neural PCFG the log marginal likelihood

log p(x; θ) = log
∑

t∈TG(x)

p(t; θ),

4Another interpretation of the compound PCFG is to view it as a vectorized version of
indexed grammars (Aho, 1968), which extend CFGs by augmenting nonterminals with addi-
tional index strings that may be inherited or modified during derivation. Compound PCFGs
instead equip nonterminals with a continuous vector that is always inherited.
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can be obtained by summing out the latent tree structure using the inside algorithm

(Baker, 1979), which is differentiable and thus amenable to gradient-based optimiza-

tion. In the compound PCFG, the log marginal likelihood is given by,

log p(x; θ) = log

(∫
p(x | z; θ)p(z; γ) dz

)

= log

∫ ∑
t∈TG(x)

p(t | z; θ)p(z; γ) dz

 .

Notice that while the integral over z makes this quantity intractable, when we con-

dition on z, we can tractably perform the inner summation to obtain p(x | z; θ) using

the inside algorithm. We therefore resort to collapsed amortized variational inference,

where we first obtain a sample z from a variational posterior distribution (given by an

amortized inference network with parameters ϕ), then perform the inner marginaliza-

tion conditioned on this sample. As usual, the evidence lower bound is given by,

ELBO(θ, ϕ;x) = Eq(z |x;ϕ)[log p(x | z; θ)]−KL[q(z |x;ϕ) ∥ p(z; γ)],

and we can calculate p(x | z; θ) given a sample z from a variational posterior q(z |x;ϕ).

For the variational family we use a diagonal Gaussian where the mean/log-variance

vectors are given by an affine layer over max-pooled hidden states from an LSTM over

x. We can then obtain low-variance estimators for ∇θ,ϕELBO(θ, ϕ;x) by using the

reparameterization trick for the expected reconstruction likelihood and the analyt-

ical expression for the KL term, as we saw in chapter 3. We remark that under the

Bayesian PCFG view, since the parameters of the prior (i.e. θ) are estimated from the

data, our approach can be seen as an instance of empirical Bayes (Robbins, 1956).
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Maximum A Posteriori Inference After training, we are interested in compar-

ing the learned trees against an annotated treebank. This requires inferring the most

likely tree given a sentence, i.e.

argmax
t

p(t |x; θ).

For the neural PCFG we can obtain the most likely tree by using the Viterbi version

of the inside algorithm (CKY algorithm). For the compound PCFG, the argmax is

intractable to obtain exactly, and hence we estimate it with the following approxima-

tion,

argmax
t

∫
p(t |x, z; θ)p(z |x; θ) dz ≈ argmax

t
p
(
t |x,µϕ(x); θ

)
,

where µϕ(x) is the mean vector from the inference network. The above approximates

the true posterior p(z |x; θ) with δ(z − µϕ(x)), the Dirac delta function at the mode

of the variational posterior.5 This quantity is tractable as in the PCFG case. Other

approximations are possible: for example we could use q(z |x;ϕ) as an importance

sampling distribution to estimate the first integral. However we found the above ap-

proximation to be efficient and effective in practice.
5Since p(t |x, z; θ) is continuous with respect to z, we have

∫
p(t |x, z; θ)δ(z − µϕ(x)) dz =

p
(
t |x,µϕ(x); θ

)
.
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6.4 Empirical Study

6.4.1 Experimental Setup

Data We test our approach on the English Penn Treebank (PTB) (Marcus et al.,

1993) with the standard splits (2-21 for training, 22 for validation, 23 for test) and

the same preprocessing as in Shen et al. (2018b) and Shen et al. (2019), where we

discard punctuation, lowercase all tokens, and take the top 10K most frequent words

as the vocabulary. This setup is differs from the setup from chapter 5 since we discard

punctuation and use a smaller vocabulary. We further experiment on Chinese with

version 5.1 of the Chinese Penn Treebank (CTB) (Xue et al., 2005), with the same

splits as in Chen & Manning (2014). On CTB we also remove punctuation and keep

the top 10K word types.

Hyperparameters Our PCFG uses 30 nonterminals and 60 preterminals, with

256-dimensional symbol embeddings. The compound PCFG uses 64-dimensional la-

tent vectors. The bidirectional LSTM inference network has a single layer with 512

dimensions, and the mean and the log variance vector for q(z |x;ϕ) are given by max-

pooling the hidden states of the LSTM and passing it through an affine layer. Model

parameters are initialized with Xavier uniform initialization. For training we use

Adam with β1 = 0.75, β2 = 0.999 and learning rate of 0.001, with a maximum gra-

dient norm limit of 3. We train for 10 epochs with batch size equal to 4. We employ

a curriculum learning strategy (Bengio et al., 2009) where we train only on sentences

of length up to 30 in the first epoch, and increase this length limit by 1 each epoch.

Similar curriculum-based strategies have used in the past for grammar induction

(Spitkovsky et al., 2012). During training we perform early stopping based on vali-

134



dation perplexity.6 Finally, to mitigate against overfitting to PTB, experiments on

CTB utilize the same hyperparameters from PTB.

Baselines We observe that even on PTB there is enough variation in setups across

prior work on grammar induction to render a meaningful comparison difficult. Some

important dimensions along which prior works vary include, (1) input data: earlier

work on grammar induction generally assumed gold (or induced) part-of-speech tags

(Klein & Manning, 2004; Smith & Eisner, 2004; Bod, 2006; Snyder et al., 2009), while

more recent works induce grammar directly from words (Spitkovsky et al., 2013; Shen

et al., 2018b); (2) use of punctuation: even within papers that induce a grammar di-

rectly from words, some papers employ heuristics based on punctuation as punctu-

ation is usually a strong signal for start/end of constituents (Seginer, 2007; Ponvert

et al., 2011; Spitkovsky et al., 2013), some train with punctuation (Jin et al., 2018b;

Drozdov et al., 2019; Kim et al., 2019b), while others discard punctuation altogether

for training (Shen et al., 2018b, 2019); (3) train/test data: some works do not explic-

itly separate out train/test sets (Reichart & Rappoport, 2010; Golland et al., 2012)

while some do (Huang et al., 2012; Parikh et al., 2014; Htut et al., 2018). Maintain-

ing train/test splits is less of an issue for unsupervised structure learning, however in

this work we follow the latter and separate train/test data. (4) evaluation: for unla-

beled F1, almost all works ignore punctuation (even approaches that use punctuation

during training typically ignore them during evaluation), but there is some variance

in discarding trivial spans (width-one and sentence-level spans) and using corpus-
6However, we used F1 against validation trees on PTB to select some hyperparameters

(e.g. grammar size), as is sometimes done in grammar induction. Hence our PTB results are
arguably not fully unsupervised in the strictest sense of the term. The hyperparameters of the
PRPN/ON baselines are also tuned using validation F1 for fair comparison.
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level versus sentence-level F1.7 In this paper we discard trivial spans and evaluate on

sentence-level F1 per recent work (Shen et al., 2018b, 2019). Notably the sentence-

level F1 differs from the corpus-level F1 calculated by evalb from the previous chapter.

Given the above, we mainly compare our approach against two recent, strong base-

lines with open source code: Parsing Predict Reading Network (PRPN)8 (Shen et al.,

2018b) and Ordered Neurons (ON)9 (Shen et al., 2019). These approaches train a

neural language model with gated attention-like mechanisms to induce binary trees,

and achieve strong unsupervised parsing performance even when trained on corpora

where punctuation is removed. Since the original results were on both language mod-

eling and grammar induction, their hyperparameters were presumably tuned to do

well on both and thus may not be optimal for just unsupervised parsing. We there-

fore tune the hyperparameters of these baselines for unsupervised parsing only (i.e. on

validation F1).

Code Our code is available at https://github.com/harvardnlp/compound-pcfg.

6.4.2 Results

Table 6.1 shows the unlabeled F1 scores for our models and various baselines. All

models soundly outperform right branching baselines, and we find that the neural/compound

PCFGs are strong models for grammar induction. In particular the compound PCFG

outperforms other models by an appreciable margin on both English and Chinese. We

again note that we were unable to induce meaningful grammars through a traditional
7Corpus-level F1 calculates precision/recall at the corpus level to obtain F1, while sentence-

level F1 calculates F1 for each sentence and averages across the corpus.
8https://github.com/yikangshen/PRPN
9https://github.com/yikangshen/Ordered-Neurons
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PTB CTB
Model Mean Max Mean Max

PRPN (Shen et al., 2018b) 37.4 38.1 − −
ON (Shen et al., 2019) 47.7 49.4 − −
URNNG† (Kim et al., 2019b) − 45.4 − −
DIORA† (Drozdov et al., 2019) − 58.9 − −

Left Branching 8.7 9.7
Right Branching 39.5 20.0
Random Trees 19.2 19.5 15.7 16.0
PRPN (tuned) 47.3 47.9 30.4 31.5
ON (tuned) 48.1 50.0 25.4 25.7
Scalar PCFG < 35.0 < 15.0
Neural PCFG 50.8 52.6 25.7 29.5
Compound PCFG 55.2 60.1 36.0 39.8

Oracle Trees 84.3 81.1

Table 6.1: Unlabeled sentence-level F1 scores on English (PTB) and Chinese (CTB) test sets.
Top shows results from previous work while the rest of the results are from this paper. Mean/Max
scores are obtained from 4 runs of each model with different random seeds. Oracle is the maxi-
mum score obtainable with binarized trees, since we compare against the non-binarized gold trees
per convention. Results with † are trained on a version of PTB with punctuation, and hence not
strictly comparable to the present work. For URNNG/DIORA, we take the parsed test set pro-
vided by the authors from their best runs and evaluate F1 with our evaluation setup, which ignores
punctuation.

PCFG with the scalar parameterization despite a thorough hyperparameter search.10

Table 6.2 analyzes the learned tree structures. We compare similarity as measured

by F1 against gold, left, right, and “self” trees (top), where self F1 score is calculated

by averaging over all 6 pairs obtained from 4 different runs. We find that PRPN is

particularly consistent across multiple runs. We also observe that different models

are better at identifying different constituent labels, as measured by label recall (Ta-

ble 6.2, bottom). While left as future work, this naturally suggests an ensemble ap-
10Training perplexity was much higher than in the neural case, indicating significant opti-

mization issues.

137



PRPN ON Neural Compound
PCFG PCFG

Gold 47.3 48.1 50.8 55.2
Left 1.5 14.1 11.8 13.0
Right 39.9 31.0 27.7 28.4
Self 82.3 71.3 65.2 66.8

SBAR 50.0% 51.2% 52.5% 56.1%
NP 59.2% 64.5% 71.2% 74.7%
VP 46.7% 41.0% 33.8% 41.7%
PP 57.2% 54.4% 58.8% 68.8%
ADJP 44.3% 38.1% 32.5% 40.4%
ADVP 32.8% 31.6% 45.5% 52.5%

Table 6.2: (Top) Mean F1 similarity against Gold, Left, Right, and Self trees on the English PTB.
Self F1 score is calculated by averaging over all 6 pairs obtained from 4 different runs. (Bottom)
Fraction of ground truth constituents that were predicted as a constituent by the models broken
down by label (i.e. label recall).

proach wherein the empirical probabilities of constituents (obtained by averaging the

predicted binary constituent labels from the different models) are used either to su-

pervise another model or directly as potentials in a CRF constituency parser. Finally,

all models seemed to have some difficulty in identifying SBAR/VP constituents which

typically span more words than NP constituents, indicating opportunities for further

improvements in unsupervised parsing.

6.4.3 Analysis

Nonterminal Alignment Since we induce a full set of nonterminals in our gram-

mar, we can analyze the learned nonterminals to see if they can be aligned with lin-

guistic constituent labels. Table 6.3 shows the alignment between induced and gold

labels in the neural PCFG, where for each nonterminal we show the empirical prob-

ability that a predicted constituent of this type will correspond to a particular lin-
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Label S SBAR NP VP PP ADJP ADVP OTHER Freq. Acc.

NT-01 0.0% 0.0% 81.8% 1.1% 0.0% 5.9% 0.0% 11.2% 2.9% 13.8%
NT-02 2.2% 0.9% 90.8% 1.7% 0.9% 0.0% 1.3% 2.2% 1.1% 44.0%
NT-03 1.0% 0.0% 2.3% 96.8% 0.0% 0.0% 0.0% 0.0% 1.8% 37.1%
NT-04 0.3% 2.2% 0.5% 2.0% 93.9% 0.2% 0.6% 0.3% 11.0% 64.9%
NT-05 0.2% 0.0% 36.4% 56.9% 0.0% 0.0% 0.2% 6.2% 3.1% 57.1%
NT-06 0.0% 0.0% 99.1% 0.0% 0.1% 0.0% 0.2% 0.6% 5.2% 89.0%
NT-07 0.0% 0.0% 99.7% 0.0% 0.3% 0.0% 0.0% 0.0% 1.3% 59.3%
NT-08 0.5% 2.2% 23.3% 35.6% 11.3% 23.6% 1.7% 1.7% 2.0% 44.3%
NT-09 6.3% 5.6% 40.2% 4.3% 32.6% 1.2% 7.0% 2.8% 2.6% 52.1%
NT-10 0.1% 0.1% 1.4% 58.8% 38.6% 0.0% 0.8% 0.1% 3.0% 50.5%
NT-11 0.9% 0.0% 96.5% 0.9% 0.9% 0.0% 0.0% 0.9% 1.1% 42.9%
NT-12 0.5% 0.2% 94.4% 2.4% 0.2% 0.1% 0.2% 2.0% 8.9% 74.9%
NT-13 1.6% 0.1% 0.2% 97.7% 0.2% 0.1% 0.1% 0.1% 6.2% 46.0%
NT-14 0.0% 0.0% 0.0% 98.6% 0.0% 0.0% 0.0% 1.4% 0.9% 54.1%
NT-15 0.0% 0.0% 99.7% 0.0% 0.3% 0.0% 0.0% 0.0% 2.0% 76.9%
NT-16 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.3% 29.9%
NT-17 96.4% 2.9% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 1.2% 24.4%
NT-18 0.3% 0.0% 88.7% 2.8% 0.3% 0.0% 0.0% 7.9% 3.0% 28.3%
NT-19 3.9% 1.0% 86.6% 2.4% 2.6% 0.4% 1.3% 1.8% 4.5% 53.4%
NT-20 0.0% 0.0% 99.0% 0.0% 0.0% 0.3% 0.2% 0.5% 7.4% 17.5%
NT-21 94.4% 1.7% 2.0% 1.4% 0.3% 0.1% 0.0% 0.1% 6.2% 34.7%
NT-22 0.1% 0.0% 98.4% 1.1% 0.1% 0.0% 0.2% 0.2% 3.5% 77.6%
NT-23 0.4% 0.9% 14.0% 53.1% 8.2% 18.5% 4.3% 0.7% 2.4% 49.1%
NT-24 0.0% 0.2% 1.5% 98.3% 0.0% 0.0% 0.0% 0.0% 2.3% 47.3%
NT-25 0.3% 0.0% 1.4% 98.3% 0.0% 0.0% 0.0% 0.0% 2.2% 34.6%
NT-26 0.4% 60.7% 18.4% 3.0% 15.4% 0.4% 0.4% 1.3% 2.1% 23.4%
NT-27 0.0% 0.0% 48.7% 0.5% 0.7% 13.1% 3.2% 33.8% 2.0% 59.7%
NT-28 88.2% 0.3% 3.8% 0.9% 0.1% 0.0% 0.0% 6.9% 6.7% 76.5%
NT-29 0.0% 1.7% 95.8% 1.0% 0.7% 0.0% 0.0% 0.7% 1.0% 62.8%
NT-30 1.6% 94.5% 0.6% 1.2% 1.2% 0.0% 0.4% 0.4% 2.1% 49.4%

Gold 15.0% 4.8% 38.5% 21.7% 14.6% 1.7% 0.8% 2.9%

Table 6.3: Analysis of label alignment for nonterminals in the neural PCFG. Label alignment is
the proportion of correctly-predicted constistuents that correspond to a particular gold label. We
also show the predicted constituent frequency and accuracy (i.e. precision) on the rightmost two
columns. Bottom line shows the empirical frequency of the constituent labels in gold trees.

guistic constituent in the test set, conditioned on its being a correct constituent (for

reference we also show the precision). Table 6.4 has a similar alignment table for the

compound PCFG. We observe that some of the induced nonterminals clearly align to

linguistic nonterminals. We also observed the preterminals to align to part-of-speech

tags (not shown).11

11As a POS induction system, the many-to-one performance of the compound PCFG using
the preterminals is 68.0. A similarly-parameterized compound HMM with 60 hidden states
(an HMM is a particularly type of PCFG) obtains 63.2. This is still quite a bit lower than the
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Label S SBAR NP VP PP ADJP ADVP OTHER Freq. Acc.

NT-01 0.0% 0.0% 0.0% 99.2% 0.0% 0.0% 0.0% 0.8% 2.6% 41.1%
NT-02 0.0% 0.3% 0.3% 99.2% 0.0% 0.0% 0.0% 0.3% 5.3% 15.4%
NT-03 88.2% 0.3% 3.6% 1.0% 0.1% 0.0% 0.0% 6.9% 7.2% 71.4%
NT-04 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 2.4%
NT-05 0.0% 0.0% 0.0% 96.6% 0.0% 0.0% 0.0% 3.4% 5.0% 1.2%
NT-06 0.0% 0.4% 0.4% 98.8% 0.0% 0.0% 0.0% 0.4% 1.2% 43.7%
NT-07 0.2% 0.0% 95.3% 0.9% 0.0% 1.6% 0.1% 1.9% 2.8% 60.6%
NT-08 1.0% 0.4% 95.3% 2.3% 0.4% 0.2% 0.3% 0.2% 9.4% 63.0%
NT-09 0.6% 0.0% 87.4% 1.9% 0.0% 0.0% 0.0% 10.1% 1.0% 33.8%
NT-10 78.3% 17.9% 3.0% 0.5% 0.0% 0.0% 0.0% 0.3% 1.9% 42.0%
NT-11 0.3% 0.0% 99.0% 0.3% 0.0% 0.3% 0.0% 0.0% 0.9% 70.3%
NT-12 0.0% 8.8% 76.5% 2.9% 5.9% 0.0% 0.0% 5.9% 2.0% 3.6%
NT-13 0.5% 2.0% 1.0% 96.6% 0.0% 0.0% 0.0% 0.0% 1.7% 50.7%
NT-14 0.0% 0.0% 99.1% 0.0% 0.0% 0.6% 0.0% 0.4% 7.7% 14.8%
NT-15 2.9% 0.5% 0.4% 95.5% 0.4% 0.0% 0.0% 0.2% 4.4% 45.2%
NT-16 0.4% 0.4% 17.9% 5.6% 64.1% 0.4% 6.8% 4.4% 1.4% 38.1%
NT-17 0.1% 0.0% 98.2% 0.5% 0.1% 0.1% 0.1% 0.9% 9.6% 85.4%
NT-18 0.1% 0.0% 95.7% 1.6% 0.0% 0.1% 0.2% 2.3% 4.7% 56.2%
NT-19 0.0% 0.0% 98.9% 0.0% 0.4% 0.0% 0.0% 0.7% 1.3% 72.6%
NT-20 2.0% 22.7% 3.0% 4.8% 63.9% 0.6% 2.3% 0.6% 6.8% 59.0%
NT-21 0.0% 0.0% 14.3% 42.9% 0.0% 0.0% 42.9% 0.0% 2.2% 0.7%
NT-22 1.4% 0.0% 11.0% 86.3% 0.0% 0.0% 0.0% 1.4% 1.0% 15.2%
NT-23 0.1% 0.0% 58.3% 0.8% 0.4% 5.0% 1.7% 33.7% 2.8% 62.7%
NT-24 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 70.2%
NT-25 2.2% 0.0% 76.1% 4.3% 0.0% 2.2% 0.0% 15.2% 0.4% 23.5%
NT-26 0.0% 0.0% 2.3% 94.2% 3.5% 0.0% 0.0% 0.0% 0.8% 24.0%
NT-27 96.6% 0.2% 1.5% 1.1% 0.3% 0.2% 0.0% 0.2% 4.3% 32.2%
NT-28 1.2% 3.7% 1.5% 5.8% 85.7% 0.9% 0.9% 0.3% 7.6% 64.9%
NT-29 3.0% 82.0% 1.5% 13.5% 0.0% 0.0% 0.0% 0.0% 0.6% 45.4%
NT-30 0.0% 0.0% 1.0% 60.2% 19.4% 1.9% 4.9% 12.6% 2.1% 10.4%

Gold 15.0% 4.8% 38.5% 21.7% 14.6% 1.7% 0.8% 2.9%

Table 6.4: Analysis of label alignment for nonterminals in the compound PCFG. Label alignment
is the proportion of correctly-predicted constistuents that correspond to a particular gold label. We
also show the predicted constituent frequency and accuracy (i.e. precision) on the rightmost two
columns. Bottom line shows the empirical frequency of the constituent labels in gold trees.

Continuous Latent Space We next investigate what is being encoded in the

continuous latent space in the compound PCFG. Table 6.5 shows nearest neighbors

of some sentences using the mean of the variational posterior as the continuous rep-

resentation of each sentence. We qualitatively observe that the latent space seems

to capture topical information. We are also interested in the variation in the leaves

state-of-the-art (He et al., 2018; Stratos, 2019), though comparison is confounded by various
factors such as preprocessing (e.g. we drop punctuation). A neural PCFG/HMM obtains 68.2
and 63.4 respectively.
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he retired as senior vice president finance and administration and chief financial officer of the company oct. N
kenneth j. ⟨unk⟩ who was named president of this thrift holding company in august resigned citing personal reasons
the former president and chief executive eric w. ⟨unk⟩ resigned in june
⟨unk⟩ ’s president and chief executive officer john ⟨unk⟩ said the loss stems from several factors
mr. ⟨unk⟩ is executive vice president and chief financial officer of ⟨unk⟩ and will continue in those roles
charles j. lawson jr. N who had been acting chief executive since june N will continue as chairman

⟨unk⟩ corp. received an N million army contract for helicopter engines
boeing co. received a N million air force contract for developing cable systems for the ⟨unk⟩ missile
general dynamics corp. received a N million air force contract for ⟨unk⟩ training sets
grumman corp. received an N million navy contract to upgrade aircraft electronics
thomson missile products with about half british aerospace ’s annual revenue include the ⟨unk⟩ ⟨unk⟩ missile family
already british aerospace and french ⟨unk⟩ ⟨unk⟩ ⟨unk⟩ on a british missile contract and on an air-traffic control radar system

meanwhile during the the s&p trading halt s&p futures sell orders began ⟨unk⟩ up while stocks in new york kept falling sharply
but the ⟨unk⟩ of s&p futures sell orders weighed on the market and the link with stocks began to fray again
on friday some market makers were selling again traders said
futures traders say the s&p was ⟨unk⟩ that the dow could fall as much as N points
meanwhile two initial public offerings ⟨unk⟩ the ⟨unk⟩ market in their ⟨unk⟩ day of national over-the-counter trading friday
traders said most of their major institutional investors on the other hand sat tight

Table 6.5: For each query sentence (bold), we show the 5 nearest neighbors based on cosine sim-
ilarity, where we take the representation for each sentence to be the mean of the variational poste-
rior.

due to z when the variation due to the tree structure is held constant. To investigate

this, we use the parsed dataset to obtain pairs of the form (µϕ(x
(n)), t

(n)
j ), where t

(n)
j

is the j-th subtree of the (approximate) MAP tree t(n) for the n-th sentence. There-

fore each mean vector µϕ(x
(n)) is associated with |x(n)| − 1 subtrees, where |x(n)| is

the sentence length. Our definition of subtree here ignores terminals, and thus each

subtree is associated with many mean vectors. For a frequently occurring subtree, we

perform PCA on the set of mean vectors that are associated with the subtree to ob-

tain the top principal component. We then show the constituents that had the 5 most

positive/negative values for this top principal component in Table 6.6. For example, a

particularly common subtree—associated with 180 unique constituents—is given by

(NT-04 (T-13 w1) (NT-12 (NT-20 (NT-20 (NT-07 (T-05 w2)

(T-45 w3)) (T-35 w4)) (T-40 w5)) (T-22 w6))).

The top 5 constituents with the most negative/positive values are shown at the top of

Table 6.6. We find that the leaves [w1, . . . , w6], which form a 6-word constituent, vary
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in a regular manner as z is varied. We also observe that root of this subtree (NT-04)

aligns to prepositional phrases (PP) in Table 6.4, and the leaves in Table 6.6 (top left)

are indeed mostly prepositional phrases. However, the model fails to identify ((T-40

w5) (T-22 w6)) as a constituent in this case. It is possible that the model is utilizing

the subtrees to capture broad template-like structures and then using z to fill them

in, similar to recent works that also train models to separate “what to say” from “how

to say it” (Wiseman et al., 2018; Peng et al., 2019; Chen et al., 2019a,b).

6.4.4 Recurrent Neural Network Grammars on Induced Trees

While the compound PCFG has fewer independence assumptions than the neural

PCFG, it is still a more constrained model of language than recurrent neural net-

work grammars from the previous chapter (or standard neural language models for

that matter), and thus not competitive in terms of perplexity: the compound PCFG

obtains a perplexity of 196.3 while an LSTM language model (LM) obtains 86.2 (Ta-

ble 6.7).12 In contrast, both PRPN and ON perform as well as an LSTM LM while

maintaining good unsupervised parsing performance.

We thus experiment to see if it is possible to use the induced trees to supervise

a more flexible generative model that can make use of tree structures, in particular

recurrent neural network grammars (RNNG) from chapter 5. We take the best run

from each model and parse the training set,13 and use the induced trees to supervise
12It was possible to almost match the perplexity of an NLM by additionally conditioning

the terminal probabilities on previous history,

πz,T→wt ∝ exp(u⊤
w MLP2([wT ; z;ht; θ]) + bw),

where ht is the hidden state from an LSTM over x<t. However the unsupervised parsing
performance was far worse (≈ 25 F1 on the PTB).

13The train/test F1 was similar for all models.
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NT-04

NT-12

T-22

w6

NT-20

T-40

w5

NT-20

T-35

w4

NT-07

T-45

w3

T-05

w2

T-13

w1

PC -
of the company ’s capital structure
in the company ’s divestiture program
by the company ’s new board
in the company ’s core businesses
on the company ’s strategic plan

PC +
above the treasury ’s N-year note
above the treasury ’s seven-year note
above the treasury ’s comparable note
above the treasury ’s five-year note
measured the earth ’s ozone layer

NT-23

NT-04

NT-12

NT-04

NT-12

T-21

w7

T-60

w6

T-13

w5

NT-06

T-41

w4

T-05

w3

T-13

w2

T-58

w1

PC -
purchased through the exercise of stock options
circulated by a handful of major brokers
higher as a percentage of total loans
common with a lot of large companies
surprised by the storm of sell orders

PC +
brought to the u.s. against her will
laid for the arrest of opposition activists
uncertain about the magnitude of structural damage
held after the assassination of his mother
hurt as a result of the violations

NT-10

NT-05

NT-19

NT-04

T-43

w6

T-13

w5

NT-06

T-41

w4

T-05

w3

T-02

w2

T-55

w1

PC -
to terminate their contract with warner
to support a coup in panama
to suit the bureaucrats in brussels
to thwart his bid for amr
to prevent the pound from rising

PC +
to change our strategy of investing
to offset the growth of minimills
to be a lot of art
to change our way of life
to increase the impact of advertising

Table 6.6: For each subtree, we perform PCA on the variational posterior mean vectors that are
associated with that particular subtree and take the top principal component. We then list the top
5 constituents that had the lowest (PC -) and highest (PC +) principal component values.
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PPL Syntactic Eval. F1

LSTM LM 86.2 60.9% −
PRPN 87.1 62.2% 47.9

RNNG 95.3 60.1% 47.8
RNNG → URNNG 90.1 61.8% 51.6

ON 87.2 61.6% 50.0
RNNG 95.2 61.7% 50.6
RNNG → URNNG 89.9 61.9% 55.1

Neural PCFG 252.6 49.2% 52.6
RNNG 95.8 68.1% 51.4
RNNG → URNNG 86.0 69.1% 58.7

Compound PCFG 196.3 50.7% 60.1
RNNG 89.8 70.0% 58.1
RNNG → URNNG 83.7 76.1% 66.9

Oracle Trees
RNNG 80.6 70.4% 71.9
RNNG → URNNG 78.3 76.1% 72.8

Table 6.7: Results from training RNNGs on induced trees from various models on the PTB.
RNNG → URNNG indicates fine-tuning with the URNNG objective. We show perplexity (PPL),
grammaticality judgment performance (Syntactic Eval.), and unlabeled F1. PPL/F1 are calcu-
lated on the PTB test set and Syntactic Eval. is from Marvin & Linzen (2018)’s dataset. Results
on top do not make any use of annotated trees, while the bottom two results are trained on bina-
rized gold trees. All the RNN-based models above (i.e. LSTM/PRPN/ON/RNNG/URNNG) have
roughly the same model capacity. Note that the results here are not comparable to Table 5.1 and
Table 5.5 from chapter 5 due to differences in vocabulary and preprocessing.

an RNNG for each model, using the same parameterization and training setup from

the previous chapter. We test the induced RNNGs on syntactic evaluation, again uti-

lizing the framework and dataset from Marvin & Linzen (2018). As in chapter 5 we

also train a version of the model where we fine-tune the RNNG with the unsupervised

RNNG objective (RNNG → URNNG). See chapter 5 for the exact details.

The results are shown in Table 6.7. For perplexity, RNNGs trained on induced

trees (Induced RNNG in Table 6.7) are unable to improve upon an LSTM LM, in

contrast to the supervised RNNG which does outperform the LSTM language model
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(Table 6.7, bottom).14 For grammaticality judgment however, the RNNG trained

with compound PCFG trees outperforms the LSTM LM despite obtaining worse

perplexity,15 and performs on par with the RNNG trained on binarized gold trees.

Fine-tuning with the URNNG results in improvements in perplexity and grammati-

cality judgment across the board (RNNG → URNNG in Table 6.7). We also obtain

large improvements on unsupervised parsing as measured by F1, with the fine-tuned

URNNGs outperforming the respective original models.16 This is potentially due to

an ensembling effect between the original model and the URNNG’s structured infer-

ence network, which is parameterized as a neural CRF constituency parser (Durrett &

Klein, 2015; Liu et al., 2018). While left as future work, it is possible to use the com-

pound PCFG itself as an inference network. Finally, as noted in the previous chapter,

an unsupervised RNNG trained from scratch fails to outperform a right-branching

baseline on this version of PTB where punctuation is removed (not shown).

6.5 Discussion

6.5.1 Limitations

We report on some negative results as well as important limitations of our approach

in this section. While distributed representations promote parameter sharing, we were

unable to obtain improvements through more factorized parameterizations that pro-

mote even greater parameter sharing. In particular, for rules of the type A → BC,
14We again note that these results are not comparable to the perplexity results from Ta-

ble 5.1 since the vocabulary size and preprocessing is different.
15Kuncoro et al. (2018, 2019) also observe that models that achieve lower perplexity do not

necessarily perform better on syntactic evaluation tasks.
16Li et al. (2019c) similarly obtain improvements by refining a model trained on induced

trees on classification tasks.
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we tried having the output embeddings be a function of the input embeddings (e.g.

uBC = MLP([wB;wC ; θ])), but obtained worse results. For rules of the type T → w,

we tried using a character-level CNN (dos Santos & Zadrozny, 2014; Kim et al., 2016)

to obtain the output word embeddings uw, but found the performance to be similar

to the word-level case.17 We were also unable to obtain improvements through nor-

malizing flows (Rezende & Mohamed, 2015b; Kingma et al., 2016). However, given

that we did not exhaustively explore the full space of possible parameterizations, the

above modifications could eventually lead to improvements with the right setup.

Relatedly, the models were quite sensitive to parameterization (e.g. it was impor-

tant to use residual layers for the MLPs), grammar size, and optimization method.

We also noticed some variance in results across random seeds, as shown in Table 6.2.

Finally, despite vectorized GPU implementations, training was significantly more ex-

pensive (both in terms of time and memory) than NLM-based grammar induction

systems due to the O(|R||x|3) dynamic program, which makes our approach poten-

tially difficult to scale.

6.5.2 Richer Grammars for Modeling Natural Language

We initially motivated the compound PCFG as an approximation to richer PCFG

formalisms such as higher-order (Klein & Manning, 2003) and lexicalized (Collins,

1997) PCFGs. While neural parameterization and inference made it computation-

ally straightforward to approximately model richer interactions in a “soft” way with a

sentence-level latent vector, in some sense these vector-based representations are less
17It is also possible to take advantage of pretrained word embeddings by using them to

initialize output word embeddings or directly working with continuous emission distributions
(Lin et al., 2015; He et al., 2018)
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interpretable compared to the discrete nonterminal symbols.18 It is well known that

some natural language phenomena cannot be modeled with context-free grammars

(Shieber, 1985). A possible future direction would therefore involve directly modeling

richer grammars that still admit polynomial-time inference algorithms. For example,

it would be interesting to explore neural parameterizations of mildly context-sensitive

formalisms such as tree adjoining grammars (Joshi et al., 1975), combinatory catego-

rial grammars (Steedman, 1987), or head grammars (Pollard, 1984).19

6.6 Related Work

Grammar induction and unsupervised parsing have a long and rich history in natural

language processing. Early work on grammar induction with pure unsupervised learn-

ing was mostly negative (Lari & Young, 1990; Carroll & Charniak, 1992; Charniak,

1993), though Pereira & Schabes (1992) reported some success on partially brack-

eted data. Clark (2001) and Klein & Manning (2002) were some of the first successful

statistical approaches to unsupervised parsing. In particular, the constituent-context

model (CCM) of Klein & Manning (2002), which explicitly models both constituents

and distituents, was the basis for much subsequent work (Klein & Manning, 2004;

Huang et al., 2012; Golland et al., 2012). Other works have explored imposing induc-

tive biases through Bayesian priors (Johnson et al., 2007; Liang et al., 2007; Wang

& Blunsom, 2013), modified objectives (Smith & Eisner, 2004), and additional con-

straints on recursion depth (Noji et al., 2016; Jin et al., 2018b,a).

While the framework of specifying the structure of a grammar and learning the pa-
18An interesting theoretical question would be to investigate the formal class of languages

generated by compound PCFGs.
19These formalisms are all weakly equivalent in that they generate the same languages (sets

of strings) (Vijay-Shanker & Weir, 1994).
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rameters is common, other methods exist. Bod (2006) consider a nonparametric-style

approach to unsupervised parsing by using random subsets of training subtrees to

parse new sentences. Seginer (2007) utilize an incremental algorithm to unsupervised

parsing which makes local decisions to create constituents based on a complex set of

heuristics. Ponvert et al. (2011) induce parse trees through cascaded applications of

finite state models. More recently, neural network-based approaches to unsupervised

parsing have shown promising results on inducing parse trees directly from words.

Shen et al. (2018b, 2019) learn tree structures through soft gating layers within neu-

ral language models, while Drozdov et al. (2019) combine recursive autoencoders with

the inside-outside algorithm. Shi et al. (2019) utilize image captions to identify and

ground constituents.

The compound PCFG outlined in this chapter is also related to latent variable

PCFGs (Matsuzaki et al., 2005; Petrov et al., 2006; Cohen et al., 2012), which extend

PCFGs to the latent variable setting by splitting nonterminal symbols into latent sub-

symbols. In particular, latent vector grammars (Zhao et al., 2018) and compositional

vector grammars (Socher et al., 2013a) also employ continuous vectors within their

grammars. However these approaches have been employed for learning supervised

parsers on annotated treebanks, unlike the unsupervised setting of the current work.

6.7 Conclusion

This chapter explores grammar induction with compound PCFGs, which modulate

rule probabilities with per-sentence continuous latent vectors. The latent vector in-

duces marginal dependencies beyond the traditional first-order context-free assump-

tions within a tree-based generative process, leading to improved performance. The
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collapsed amortized variational inference approach is general and can be used for gen-

erative models which admit tractable inference through partial conditioning. Learning

deep generative models which exhibit such conditional Markov properties is an inter-

esting direction for future work.
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7
Conclusion

This thesis has explored deep latent variable models of natural language. We have

shown that these models can be used to model a wide range of language phenomena,

from attention in neural machine translation to parse trees and even full grammars.

Amortized variational inference, in which a global inference network is trained to out-

put the parameters of an approximate variational posterior distribution, was a key

tool in enabling efficient learning of deep latent variable models. However, a straight-

forward application of amortized variational inference often proved insufficient for
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many language applications of interest, and in each chapter we studied an extension

of the standard approach : (1) semi-amortized variational inference in chapter 3, (2)

continuous relaxations of discrete distributions in chapter 4, (3) posterior regulariza-

tion with a structured inference network in chapter 5, and (4) collapsed amortized

variational inference in chapter 6. From an applications standpoint, we showed how

these models can be applied to a range of core NLP tasks including language model-

ing, machine translation, and unsupervised parsing.

Deep latent variable models, which combine the composability and interpretability

of latent variable models with the flexible modeling capabilities of deep networks, are

an exciting area of research. It is nonetheless worth discussing again why we would

want to use latent variable models in the first place, especially given that from a pure

performance standpoint, models that do not formally make use of latent variables

are incredibly effective. Even from the perspective of learning interesting/meaningful

structures (e.g. topics, alignments, phrases), one may argue that these structures can

be captured implicitly within the hidden layers of a deep network through end-to-end

learning. Indeed, the recent, astonishing success of deep, non-latent variable models

pretrained with self-supervised objectives (Peters et al., 2018; Radford et al., 2018;

Devlin et al., 2018) suggests that deep networks can capture a significant amount of

linguistic knowledge without the explicit use of latent variables.

We conclude this thesis by offering a spirited defense of latent variable models in

contemporary NLP. For one, latent variable models can surpass the performance of

deterministic deep networks if properly optimized. For example, deterministic (soft)

attention (Bahdanau et al., 2015) was generally thought to outperform latent variable

(hard) attention (Xu et al., 2015), until recent work showed that when properly opti-

mized (albeit with a more expensive training procedure), latent variable attention can
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outperform deterministic attention (Deng et al., 2018; Shankar et al., 2018; Wu et al.,

2018). Framing certain problems as essentially approximating a latent variable ob-

jective often yields valuable insights and new avenues for further work. Notably, the

interpretation of dropout (Hinton et al., 2012; Srivastava et al., 2014) as optimizing a

latent variable objective has led to rich extensions and improvements (Kingma et al.,

2015; Gal & Ghahramani, 2016a,b; Ma et al., 2017; Melis et al., 2018a). Finally, while

there is much evidence that non-latent variable models pretrained with self-supervised

objectives are able to implicitly capture a significant amount of linguistic knowledge

within their hidden layers (Liu et al., 2019; Hewitt & Manning, 2019; Tenney et al.,

2019), it would be ideal to have more direct, explicit access to such structures through

latent variables, especially from the perspective of interpretability, transparency, con-

trollability, and transfer learning.

More generally, latent variable modeling gives us a modular, probabilistic frame-

work with which to explicitly inject both inductive bias and domain-specific con-

straints into models. Inductive bias, or the inherent “preferences” of a model (or

learning algorithm), is crucial for learning and generalization. It can help mitigate

against model misspecification, allow for data-efficient learning, and through a care-

fully crafted generative model, enable interesting structures to emerge. Furthermore,

if we have constraints on the representations learned by a model, such as that they

represent a valid parse tree, or be interpretable, or allow for controlling the model’s

predictions, we can enforce these constraints in a principled way through latent vari-

ables. The intersection of latent variable models and deep learning remains an excit-

ing avenue for much future work.
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