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Background: Variational Autoencoders (VAE) (Kingma et al. 2013)

Generative model:

Draw z from a simple prior: z ∼ p(z) = N (0, I)

Likelihood parameterized with a deep model θ, i.e. x ∼ pθ(x | z)

Training:

Introduce variational family qλ(z) with parameters λ

Maximize the evidence lower bound (ELBO)

log pθ(x) ≥ Eqλ(z)
[
log

pθ(x, z)

qλ(z)

]
VAE: λ output from an inference network φ

λ = encφ(x)
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Amortized Inference: local per-instance variational parameters

λ(i) = encφ(x
(i)) predicted from a global inference network (cf.

per-instance optimization for traditional VI)

End-to-end: generative model θ and inference network φ trained

together (cf. coordinate ascent-style training for traditional VI)
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Background: Variational Autoencoders (VAE) (Kingma et al. 2013)

Generative model:
∫
pθ(x|z)p(z)dz gives good likelihoods/samples

Representation learning: z captures high-level features



VAE Issues: Posterior Collapse (Bowman al. 2016)

(1) Posterior collapse

If generative model pθ(x | z) is too flexible (e.g. PixelCNN,

LSTM), model learns to ignore latent representation, i.e.

KL(q(z) || p(z)) ≈ 0.

Want to use powerful pθ(x | z) to model the underlying data well,

but also want to learn interesting representations z.
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Example: Text Modeling on Yahoo corpus (Yang et al. 2017)

Inference Network: LSTM + MLP

Generative Model: LSTM, z fed at each time step

Model KL PPL

Language Model − 61.6

VAE 0.01 ≤ 62.5

VAE + Word-Drop 25% 1.44 ≤ 65.6

VAE + Word-Drop 50% 5.29 ≤ 75.2

ConvNetVAE (Yang et al. 2017) 10.0 ≤ 63.9
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VAE Issues: Inference Gap (Cremer et al. 2018)

(2) Inference Gap

Ideally, qencφ(x)(z) ≈ pθ(z |x)

KL(qencφ(x)(z) || pθ(z |x))︸ ︷︷ ︸
Inference gap

= KL(qλ?(z) || pθ(z |x))︸ ︷︷ ︸
Approximation gap

+

KL(qencφ(x)(z) || pθ(z |x))−KL(qλ?(z) || pθ(z |x)︸ ︷︷ ︸
Amortization gap

)

Approximation gap: Gap between true posterior and the best

possible variational posterior λ? cwithin Q

Amortization gap: Gap between the inference network posterior

and best possible posterior
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VAE Issues (Cremer et al. 2018)

These gaps affect the learned generative model.

Approximation gap: use more flexible variational families, e.g.

Normalizing/IA Flows (Rezende et al. 2015, Kingma et al. 2016)

=⇒ Has not been show to fix posterior collapse on text.

Amortization gap: better optimize λ for each data point, e.g.

with iterative inference (Hjelm et al. 2016, Krishnan et al. 2018)

=⇒ Focus of this work.

Does reducing the amortization gap allow us to employ powerful

likelihood models while avoiding posterior collapse?
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Stochastic Variational Inference (SVI) (Hoffman et al. 2013)

Amortization gap is mostly specific to VAE

Stochastic Variational Inference (SVI):

1 Randomly initialize λ
(i)
0 for each data point

2 Perform iterative inference, e.g. for k = 1, . . . ,K

λ
(i)
k ← λ

(i)
k−1 − α∇λL(λ

(i)
k , θ,x(i))

where L(λ, θ,x) = Eqλ(z)[− log pθ(x | z)] + KL(qλ(z) || p(z)]
3 Update θ based on final λ

(i)
K , i.e.

θ ← θ − η∇θL(λ(i)K , θ,x(i))

(Can reduce amortization gap by increasing K)
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Example: Text Modeling on Yahoo corpus (Yang et al. 2017)

Inference Network: LSTM + MLP

Generative Model: LSTM, z fed at each time step

Model KL PPL

Language Model − 61.6

VAE 0.01 ≤ 62.5

SVI (K = 20) 0.41 ≤ 62.9

SVI (K = 40) 1.01 ≤ 62.2



Comparing the Amortized/Stochastic Variational Inference

AVI SVI

Approximation Gap Yes Yes

Amortization Gap Yes Minimal

Training/Inference Fast Slow

End-to-End Training Yes No

SVI: Trade-off between amortization gap vs speed



This Work: Semi-Amortized Variational Autoencoders

Reduce amortization gap in VAEs by combining AVI/SVI

Use inference network to initialize variational parameters, run SVI

to refine them

Maintain end-to-end training of VAEs by backpropagating through

SVI to train the inference network/generative model
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Semi-Amortized Variational Autoencoders (SA-VAE)

Forward step

1 λ0 = encφ(x)

2 For k = 1, . . . ,K

λk ← λk−1 − α∇λL(λk, θ,x)

where L(λ, θ,x) = Eqλ(z)[− log pθ(x | z)] + KL(qλ(z) || p(z))
3 Final loss given by

LK = L(λK , θ,x)
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Semi-Amortized Variational Autoencoders (SA-VAE)

Backward step

Need to calculate derivative of LK with respect to θ, φ

But λ1, . . . λK are all functions of θ, φ

λK = λK−1 − α∇λL(λK−1, θ, x)

= λK−2 − α∇λL(λK−2, θ, x)

− α∇λL(λK−2 − α∇λL(λK−2, θ, x), θ, x)

= λK−3 − . . .

Calculating the total derivative requires “unrolling optimization”

and backpropagating through gradient descent (Domke 2012,

Maclaurin et al. 2015, Belanger et al. 2017).
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Backpropagating through SVI

Simple example: consider just one step of SVI

1 λ0 = encφ(x)

2 λ1 = λ0 − α∇λL(λ0, θ,x)
3 L = L(λ1, θ,x)



Backpropagating through SVI

Backward step

1 Calculate dL
dλ1

2 Chain rule:

dL

dλ0
=

dλ1
dλ0

dL

dλ1
=

d

dλ0

(
λ0 − α∇λL(λ0, θ,x)

) dL

dλ1

=
(
I− α∇2

λL(λ0, θ,x)︸ ︷︷ ︸
Hessian matrix

) dL

dλ1

=
dL

dλ1
− α∇2

λL(λ0, θ,x)
dL

dλ1︸ ︷︷ ︸
Hessian-vector product

3 Backprop dL
dλ0

to obtain dL
dφ = dλ0

dφ
dL
dλ0

(Similar rules for dL
dθ )
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Backpropagating through SVI

In practice:

Estimate Hessian-vector products with finite differences (LeCun et

al. 1993), which was more memory efficient.

Clip gradients at various points (see paper).



Summary

AVI SVI SA-VAE

Approximation Gap Yes Yes Yes

Amortization Gap Yes Minimal Minimal

Training/Inference Fast Slow Medium

End-to-End Training Yes No Yes



Experiments: Synthetic data

Generate sequential data from a randomly initialized LSTM oracle

1 z1, z2 ∼ N (0, 1)

2 ht = LSTM([xt, z1, z2], ht−1)

3 p(xt+1 |x≤t, z) ∝ exp(Wht)

Inference network

q(z1), q(z2) are Gaussians with learned means µ1, µ2 = encφ(x)

encφ(·): LSTM with MLP on final hidden state
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Experiments: Synthetic data

Oracle generative model (randomly-initialized LSTM)

(ELBO landscape for a random test point)



Results: Synthetic Data

Model Oracle Gen Learned Gen

VAE ≤ 21.77 ≤ 27.06

SVI (K=20) ≤ 22.33 ≤ 25.82

SA-VAE (K=20) ≤ 20.13 ≤ 25.21

True NLL (Est) 19.63 −



Results: Text

Generative model:

1 z ∼ N (0, I)

2 ht = LSTM([xt, z], ht−1)

3 xt+1 ∼ p(xt+1 |x≤t,x) ∝ exp(Wht)

Inference network:

q(z) diagonal Gaussian with parameters µ,σ2

µ,σ2 = encφ(x)

encφ(·): LSTM followed by MLP



Results: Text

Two other baselines that combine AVI/SVI (but not end-to-end):

VAE+SVI 1 (Krishnan et a al. 2018):

1 Update generative model based on λK
2 Update inference network based on λ0

VAE+SVI 2 (Hjelm et al. 2016):

1 Update generative model based on λK
2 Update inference network to minimize KL(qλ0(z) ‖ qλK (z)), treating

λK as a fixed constant.

(Forward pass is the same for both models)
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Results: Text (Yahoo corpus from Yang et al. 2017)

Model KL PPL

Language Model − 61.6

VAE 0.01 ≤ 62.5

VAE + Word-Drop 25% 1.44 ≤ 65.6

VAE + Word-Drop 50% 5.29 ≤ 75.2

ConvNetVAE (Yang et al. 2017) 10.0 ≤ 63.9

SVI (K = 20) 0.41 ≤ 62.9

SVI (K = 40) 1.01 ≤ 62.2

VAE + SVI 1 (K = 20) 7.80 ≤ 62.7

VAE + SVI 2 (K = 20) 7.81 ≤ 62.3

SA-VAE (K = 20) 7.19 ≤ 60.4
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Application to Image Modeling (OMNIGLOT)

qφ(z |x): 3-layer ResNet (He et al. 2016)

pθ(x | z): 12-layer Gated PixelCNN (van den Oord et al. 2016)

Model NLL (KL)

Gated PixelCNN 90.59

VAE ≤ 90.43 (0.98)

SVI (K = 20) ≤ 90.51 (0.06)

SVI (K = 40) ≤ 90.44 (0.27)

SVI (K = 80) ≤ 90.27 (1.65)

VAE + SVI 1(K = 20) ≤ 90.19 (2.40)

VAE + SVI 2 (K = 20) ≤ 90.21 (2.83)

SA-VAE (K = 20) ≤ 90.05 (2.78)

(Amortization gap exists even with powerful inference networks)
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Limitations

Requires O(K) backpropagation steps of the generative model for

each training setup: possible to reduce K via

Learning to learn approaches

Dynamic scheduling

Importance sampling

Still needs optimization hacks

Gradient clipping during iterative refinement



Train vs Test Analysis
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Lessons Learned

Reducing amortization gap helps learn generative models of text

that give good likelihoods and maintains interesting latent

representations.

But certainly not the full story... still very much an open issue.

So what are the latent variables capturing?
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Saliency Analysis

where can i buy an affordable stationary bike ? try this place , they have every type

imaginable with prices to match . http : UNK </s>



Generations

Test sentence in blue, two generations from q(z |x) in red

<s> where can i buy an affordable stationary bike ? try this place , they have every

type imaginable with prices to match . http : UNK </s>

where can i find a good UNK book for my daughter ? i am looking for a website

that sells christmas gifts for the UNK . thanks ! UNK UNK </s>

where can i find a good place to rent a UNK ? i have a few UNK in the area

, but i ’m not sure how to find them . http : UNK </s>



Generations

Test sentence in blue, two generations from q(z |x) in red

<s> where can i buy an affordable stationary bike ? try this place , they have every

type imaginable with prices to match . http : UNK </s>

where can i find a good UNK book for my daughter ? i am looking for a website

that sells christmas gifts for the UNK . thanks ! UNK UNK </s>

where can i find a good place to rent a UNK ? i have a few UNK in the area

, but i ’m not sure how to find them . http : UNK </s>



Generations

New sentence in blue, two generations from q(z |x) in red

<s> which country is the best at soccer ? brazil or germany . </s>

who is the best soccer player in the world ? i think he is the best player in the

world . ronaldinho is the best player in the world . he is a great player . </s>

will ghana be able to play the next game in 2010 fifa world cup ? yes , they will

win it all . </s>



Generations

New sentence in blue, two generations from q(z |x) in red

<s> which country is the best at soccer ? brazil or germany . </s>

who is the best soccer player in the world ? i think he is the best player in the

world . ronaldinho is the best player in the world . he is a great player . </s>

will ghana be able to play the next game in 2010 fifa world cup ? yes , they will

win it all . </s>



Saliency Analysis

Saliency analysis by Part-of-Speech Tag



Saliency Analysis

Saliency analysis by Position



Saliency Analysis

Saliency analysis by Frequency



Saliency Analysis

Saliency analysis by PPL



Conclusion

Reducing amortization gap helps learn generative models that

better utilize the latent space.

Can be combined with methods that reduce the approximation gap.


