Semi-Amortized Variational Autoencoders

Yoon Kim Sam Wiseman Andrew Miller David Sontag Alexander Rush

Code: https://github.com/harvardnlp/sa-vae

Generative model:

 $\bullet~$ Draw ${\bf z}$ from a simple prior: ${\bf z} \sim p({\bf z}) = \mathcal{N}({\bf 0}, {\bf I})$

• Likelihood parameterized with a deep model θ , i.e. $\mathbf{x} \sim p_{\theta}(\mathbf{x} | \mathbf{z})$ raining:

- Introduce variational family $q_{\lambda}(\mathbf{z})$ with parameters λ
- Maximize the evidence lower bound (ELBO)

$$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\lambda}(\mathbf{z})} \right]$$

• VAE: λ output from an inference network ϕ

$$\lambda = \operatorname{enc}_{\phi}(\mathbf{x})$$

Generative model:

 $\bullet~$ Draw ${\bf z}$ from a simple prior: ${\bf z} \sim p({\bf z}) = \mathcal{N}({\bf 0}, {\bf I})$

• Likelihood parameterized with a deep model θ , i.e. $\mathbf{x} \sim p_{\theta}(\mathbf{x} \,|\, \mathbf{z})$ Training:

- Introduce variational family $q_{\lambda}(\mathbf{z})$ with parameters λ
- Maximize the evidence lower bound (ELBO)

$$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{q_{\lambda}(\mathbf{z})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\lambda}(\mathbf{z})} \right]$$

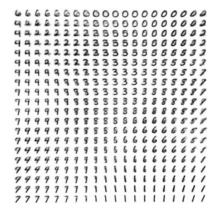
• VAE: λ output from an inference network ϕ

$$\lambda = \mathsf{enc}_\phi(\mathbf{x})$$

- Amortized Inference: *local* per-instance variational parameters
 λ⁽ⁱ⁾ = enc_φ(**x**⁽ⁱ⁾) predicted from a *global* inference network (cf.
 per-instance optimization for traditional VI)
- End-to-end: generative model θ and inference network φ trained together (cf. coordinate ascent-style training for traditional VI)

- Amortized Inference: *local* per-instance variational parameters
 λ⁽ⁱ⁾ = enc_φ(**x**⁽ⁱ⁾) predicted from a *global* inference network (cf.
 per-instance optimization for traditional VI)
- End-to-end: generative model θ and inference network φ trained together (cf. coordinate ascent-style training for traditional VI)

- Generative model: $\int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$ gives good likelihoods/samples
- Representation learning: z captures high-level features



VAE Issues: Posterior Collapse (Bowman al. 2016)

(1) Posterior collapse

- If generative model $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ is too flexible (e.g. PixelCNN, LSTM), model learns to ignore latent representation, i.e. $\mathrm{KL}(q(\mathbf{z}) \mid\mid p(\mathbf{z})) \approx 0.$
- Want to use powerful $p_{\theta}(\mathbf{x} | \mathbf{z})$ to model the underlying data well, but also want to learn interesting representations \mathbf{z} .

VAE Issues: Posterior Collapse (Bowman al. 2016)

(1) Posterior collapse

- If generative model $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ is too flexible (e.g. PixelCNN, LSTM), model learns to ignore latent representation, i.e. $\mathrm{KL}(q(\mathbf{z}) \mid\mid p(\mathbf{z})) \approx 0.$
- Want to use powerful $p_{\theta}(\mathbf{x} | \mathbf{z})$ to model the underlying data well, but also want to learn interesting representations \mathbf{z} .

VAE Issues: Posterior Collapse (Bowman al. 2016)

(1) Posterior collapse

- If generative model $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ is too flexible (e.g. PixelCNN, LSTM), model learns to ignore latent representation, i.e. $\mathrm{KL}(q(\mathbf{z}) \mid\mid p(\mathbf{z})) \approx 0.$
- Want to use powerful $p_{\theta}(\mathbf{x} | \mathbf{z})$ to model the underlying data well, but also want to learn interesting representations \mathbf{z} .

Example: Text Modeling on Yahoo corpus (Yang et al. 2017)

Inference Network: LSTM + MLP

Generative Model: LSTM, z fed at each time step

Model	KL	PPL
Language Model	_	61.6
VAE	0.01	≤ 62.5
VAE + Word-Drop 25%	1.44	≤ 65.6
VAE + Word-Drop 50%	5.29	≤ 75.2
ConvNetVAE (Yang et al. 2017)	10.0	≤ 63.9

Example: Text Modeling on Yahoo corpus (Yang et al. 2017)

Inference Network: LSTM + MLP

Generative Model: LSTM, \mathbf{z} fed at each time step

Model	KL	PPL
Language Model	_	61.6
VAE	0.01	≤ 62.5
VAE + Word-Drop 25%	1.44	≤ 65.6
VAE + Word-Drop 50%	5.29	≤ 75.2
ConvNetVAE (Yang et al. 2017)	10.0	≤ 63.9

VAE Issues: Inference Gap (Cremer et al. 2018)

(2) Inference Gap

Ideally, $q_{\mathsf{enc}_\phi(\mathbf{x})}(\mathbf{z}) \approx p_\theta(\mathbf{z} \,|\, \mathbf{x})$

$$\underbrace{\operatorname{KL}(q_{\operatorname{enc}_{\phi}(\mathbf{x})}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x}))}_{\operatorname{Inference gap}} = \underbrace{\operatorname{KL}(q_{\lambda^{\star}}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x}))}_{\operatorname{Approximation gap}} + \underbrace{\operatorname{KL}(q_{\operatorname{enc}_{\phi}(\mathbf{x})}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x})) - \operatorname{KL}(q_{\lambda^{\star}}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x}))}_{\operatorname{Amortization gap}}$$

- Approximation gap: Gap between true posterior and the best possible variational posterior λ* cwithin Q
- Amortization gap: Gap between the inference network posterior and best possible posterior

VAE Issues: Inference Gap (Cremer et al. 2018)

(2) Inference Gap

Ideally, $q_{\mathsf{enc}_\phi(\mathbf{x})}(\mathbf{z}) \approx p_\theta(\mathbf{z} \,|\, \mathbf{x})$

$$\underbrace{\operatorname{KL}(q_{\mathsf{enc}_{\phi}(\mathbf{x})}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x}))}_{\mathsf{Inference gap}} = \underbrace{\operatorname{KL}(q_{\lambda^{\star}}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x}))}_{\mathsf{Approximation gap}} + \underbrace{\operatorname{KL}(q_{\mathsf{enc}_{\phi}(\mathbf{x})}(\mathbf{z}) || p_{\theta}(\mathbf{z} | \mathbf{x}))}_{\mathsf{Amortization gap}}$$

- Approximation gap: Gap between true posterior and the best possible variational posterior λ* cwithin Q
- Amortization gap: Gap between the inference network posterior and best possible posterior

- These gaps affect the learned generative model.
- Approximation gap: use more flexible variational families, e.g. Normalizing/IA Flows (Rezende et al. 2015, Kingma et al. 2016)
 Has not been show to fix posterior collapse on text.
- Amortization gap: better optimize λ for each data point, e.g. with iterative inference (Hjelm et al. 2016, Krishnan et al. 2018)
 ⇒ Focus of this work.
- Does reducing the amortization gap allow us to employ powerful likelihood models while avoiding posterior collapse?

- These gaps affect the learned generative model.
- Approximation gap: use more flexible variational families, e.g. Normalizing/IA Flows (Rezende et al. 2015, Kingma et al. 2016)
 Has not been show to fix posterior collapse on text.
- Amortization gap: better optimize λ for each data point, e.g. with iterative inference (Hjelm et al. 2016, Krishnan et al. 2018)
 ⇒ Focus of this work.
- Does reducing the amortization gap allow us to employ powerful likelihood models while avoiding posterior collapse?

- These gaps affect the learned generative model.
- Approximation gap: use more flexible variational families, e.g. Normalizing/IA Flows (Rezende et al. 2015, Kingma et al. 2016)
 Has not been show to fix posterior collapse on text.
- Amortization gap: better optimize λ for each data point, e.g. with iterative inference (Hjelm et al. 2016, Krishnan et al. 2018)
 ⇒ Focus of this work.
- Does reducing the amortization gap allow us to employ powerful likelihood models while avoiding posterior collapse?

- These gaps affect the learned generative model.
- Approximation gap: use more flexible variational families, e.g. Normalizing/IA Flows (Rezende et al. 2015, Kingma et al. 2016)
 Has not been show to fix posterior collapse on text.
- Amortization gap: better optimize λ for each data point, e.g. with iterative inference (Hjelm et al. 2016, Krishnan et al. 2018)
 ⇒ Focus of this work.
- Does reducing the amortization gap allow us to employ powerful likelihood models while avoiding posterior collapse?

Amortization gap is mostly specific to VAE

• Stochastic Variational Inference (SVI):

- (1) Randomly initialize $\lambda_0^{(i)}$ for each data point
- ② Perform iterative inference, e.g. for $k=1,\ldots,K$

$$\lambda_k^{(i)} \leftarrow \lambda_{k-1}^{(i)} - \alpha \nabla_\lambda \mathcal{L}(\lambda_k^{(i)}, \theta, \mathbf{x}^{(i)})$$

where $\mathcal{L}(\lambda, \theta, \mathbf{x}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[-\log p_{\theta}(\mathbf{x} | \mathbf{z})] + \mathrm{KL}(q_{\lambda}(\mathbf{z}) || p(\mathbf{z})]$ 3 Update θ based on final $\lambda_{K}^{(i)}$, i.e.

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\lambda_K^{(i)}, \theta, \mathbf{x}^{(i)})$$

- Amortization gap is mostly specific to VAE
- Stochastic Variational Inference (SVI):
 - **(**) Randomly initialize $\lambda_0^{(i)}$ for each data point
 - 2) Perform iterative inference, e.g. for $k=1,\ldots,K$

$$\lambda_k^{(i)} \leftarrow \lambda_{k-1}^{(i)} - \alpha \nabla_\lambda \mathcal{L}(\lambda_k^{(i)}, \theta, \mathbf{x}^{(i)})$$

where $\mathcal{L}(\lambda, \theta, \mathbf{x}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[-\log p_{\theta}(\mathbf{x} | \mathbf{z})] + \mathrm{KL}(q_{\lambda}(\mathbf{z}) || p(\mathbf{z})]$ 3 Update θ based on final $\lambda_{K}^{(i)}$, i.e.

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\lambda_K^{(i)}, \theta, \mathbf{x}^{(i)})$$

- Amortization gap is mostly specific to VAE
- Stochastic Variational Inference (SVI):
 - () Randomly initialize $\lambda_0^{(i)}$ for each data point
 - 2 Perform iterative inference, e.g. for $k = 1, \ldots, K$

$$\lambda_k^{(i)} \leftarrow \lambda_{k-1}^{(i)} - \alpha \nabla_\lambda \mathcal{L}(\lambda_k^{(i)}, \theta, \mathbf{x}^{(i)})$$

where $\mathcal{L}(\lambda, \theta, \mathbf{x}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[-\log p_{\theta}(\mathbf{x} | \mathbf{z})] + \mathrm{KL}(q_{\lambda}(\mathbf{z}) || p(\mathbf{z})]$ **③** Update θ based on final $\lambda_{K}^{(i)}$, i.e.

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\lambda_K^{(i)}, \theta, \mathbf{x}^{(i)})$$

- Amortization gap is mostly specific to VAE
- Stochastic Variational Inference (SVI):
 - **(**) Randomly initialize $\lambda_0^{(i)}$ for each data point
 - 2 Perform iterative inference, e.g. for $k = 1, \ldots, K$

$$\lambda_k^{(i)} \leftarrow \lambda_{k-1}^{(i)} - \alpha \nabla_\lambda \mathcal{L}(\lambda_k^{(i)}, \theta, \mathbf{x}^{(i)})$$

where $\mathcal{L}(\lambda, \theta, \mathbf{x}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[-\log p_{\theta}(\mathbf{x} | \mathbf{z})] + \mathrm{KL}(q_{\lambda}(\mathbf{z}) || p(\mathbf{z})]$ **3** Update θ based on final $\lambda_{K}^{(i)}$, i.e.

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\lambda_K^{(i)}, \theta, \mathbf{x}^{(i)})$$

Example: Text Modeling on Yahoo corpus (Yang et al. 2017)

Inference Network: LSTM + MLP Generative Model: LSTM, z fed at each time step

Model	KL	PPL
Language Model	_	61.6
VAE	0.01	≤ 62.5
SVI $(K = 20)$	0.41	≤ 62.9
SVI $(K = 40)$	1.01	≤ 62.2

Comparing the Amortized/Stochastic Variational Inference

	AVI	SVI
Approximation Gap	Yes	Yes
Amortization Gap	Yes	Minimal
Training/Inference	Fast	Slow
End-to-End Training	Yes	No

SVI: Trade-off between amortization gap vs speed

This Work: Semi-Amortized Variational Autoencoders

- Reduce amortization gap in VAEs by combining AVI/SVI
- Use inference network to initialize variational parameters, run SVI to refine them
- Maintain end-to-end training of VAEs by backpropagating through SVI to train the inference network/generative model

This Work: Semi-Amortized Variational Autoencoders

- Reduce amortization gap in VAEs by combining AVI/SVI
- Use inference network to initialize variational parameters, run SVI to refine them
- Maintain end-to-end training of VAEs by backpropagating through SVI to train the inference network/generative model

This Work: Semi-Amortized Variational Autoencoders

- Reduce amortization gap in VAEs by combining AVI/SVI
- Use inference network to initialize variational parameters, run SVI to refine them
- Maintain end-to-end training of VAEs by backpropagating through SVI to train the inference network/generative model

Forward step

- $\mathbf{0} \ \lambda_0 = \mathsf{enc}_{\phi}(\mathbf{x})$
- $\ \, \hbox{O For } k=1,\ldots,K$

$$\lambda_k \leftarrow \lambda_{k-1} - \alpha \nabla_\lambda \mathcal{L}(\lambda_k, \theta, \mathbf{x})$$

where $\mathcal{L}(\lambda, \theta, \mathbf{x}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[-\log p_{\theta}(\mathbf{x} | \mathbf{z})] + \mathrm{KL}(q_{\lambda}(\mathbf{z}) || p(\mathbf{z}))$

In Final loss given by

$$L_K = \mathcal{L}(\lambda_K, \theta, \mathbf{x})$$

Forward step

- $\bullet \ \lambda_0 = \mathsf{enc}_\phi(\mathbf{x})$
- $\textcircled{2} \ \, {\rm For} \ \, k=1,\ldots,K$

$$\lambda_k \leftarrow \lambda_{k-1} - \alpha \nabla_\lambda \mathcal{L}(\lambda_k, \theta, \mathbf{x})$$

where $\mathcal{L}(\lambda, \theta, \mathbf{x}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[-\log p_{\theta}(\mathbf{x} | \mathbf{z})] + \mathrm{KL}(q_{\lambda}(\mathbf{z}) || p(\mathbf{z}))$ Final loss given by

 $L_K = \mathcal{L}(\lambda_K, \theta, \mathbf{x})$

Forward step

- $\bullet \ \lambda_0 = \mathsf{enc}_\phi(\mathbf{x})$
- $\textcircled{2} \ \, {\rm For} \ \, k=1,\ldots,K$

$$\lambda_k \leftarrow \lambda_{k-1} - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_k, \theta, \mathbf{x})$$

where $\mathcal{L}(\lambda, \theta, \mathbf{x}) = \mathbb{E}_{q_{\lambda}(\mathbf{z})}[-\log p_{\theta}(\mathbf{x} \mid \mathbf{z})] + \mathrm{KL}(q_{\lambda}(\mathbf{z}) \mid\mid p(\mathbf{z}))$

Final loss given by

$$L_K = \mathcal{L}(\lambda_K, \theta, \mathbf{x})$$

Backward step

• Need to calculate derivative of L_K with respect to $heta, \phi$

• But $\lambda_1, \ldots \lambda_K$ are all functions of θ, ϕ

$$\lambda_{K} = \lambda_{K-1} - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-1}, \theta, x)$$

= $\lambda_{K-2} - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-2}, \theta, x)$
- $\alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-2} - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-2}, \theta, x), \theta, x)$
= $\lambda_{K-3} - \dots$

 Calculating the total derivative requires "unrolling optimization" and backpropagating through gradient descent (Domke 2012, Maclaurin et al. 2015, Belanger et al. 2017).

Backward step

- Need to calculate derivative of L_K with respect to $heta, \phi$
- But $\lambda_1, \ldots \lambda_K$ are all functions of θ, ϕ

$$\lambda_{K} = \lambda_{K-1} - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-1}, \theta, x)$$

= $\lambda_{K-2} - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-2}, \theta, x)$
- $\alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-2} - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_{K-2}, \theta, x), \theta, x)$
= $\lambda_{K-3} - \dots$

 Calculating the total derivative requires "unrolling optimization" and backpropagating through gradient descent (Domke 2012, Maclaurin et al. 2015, Belanger et al. 2017).

Simple example: consider just one step of SVI

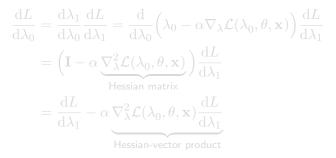
•
$$\lambda_0 = \operatorname{enc}_{\phi}(\mathbf{x})$$

• $\lambda_1 = \lambda_0 - \alpha \nabla_{\lambda} \mathcal{L}(\lambda_0, \theta, \mathbf{x})$
• $L = \mathcal{L}(\lambda_1, \theta, \mathbf{x})$

Backward step

• Calculate $\frac{dL}{d\lambda_1}$

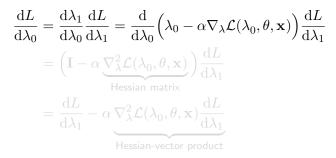
Ochain rule:



Backward step

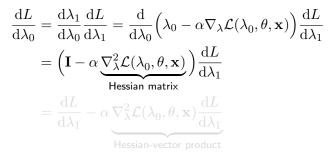
• Calculate $\frac{dL}{d\lambda_1}$

Ochain rule:



Backward step

- Calculate $\frac{dL}{d\lambda_1}$
- 2 Chain rule:



Backward step

- Calculate $\frac{dL}{d\lambda_1}$
- 2 Chain rule:

$$\begin{split} \frac{\mathrm{d}L}{\mathrm{d}\lambda_0} &= \frac{\mathrm{d}\lambda_1}{\mathrm{d}\lambda_0} \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} = \frac{\mathrm{d}}{\mathrm{d}\lambda_0} \Big(\lambda_0 - \alpha \nabla_\lambda \mathcal{L}(\lambda_0, \theta, \mathbf{x})\Big) \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} \\ &= \Big(\mathbf{I} - \alpha \underbrace{\nabla_\lambda^2 \mathcal{L}(\lambda_0, \theta, \mathbf{x})}_{\text{Hessian matrix}} \Big) \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} \\ &= \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} - \alpha \underbrace{\nabla_\lambda^2 \mathcal{L}(\lambda_0, \theta, \mathbf{x})}_{\text{Hessian-vector product}} \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} \end{split}$$

Backpropagating through SVI

Backward step

- Calculate $\frac{dL}{d\lambda_1}$
- Ochain rule:

$$\begin{split} \frac{\mathrm{d}L}{\mathrm{d}\lambda_0} &= \frac{\mathrm{d}\lambda_1}{\mathrm{d}\lambda_0} \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} = \frac{\mathrm{d}}{\mathrm{d}\lambda_0} \Big(\lambda_0 - \alpha \nabla_\lambda \mathcal{L}(\lambda_0, \theta, \mathbf{x})\Big) \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} \\ &= \Big(\mathbf{I} - \alpha \underbrace{\nabla_\lambda^2 \mathcal{L}(\lambda_0, \theta, \mathbf{x})}_{\text{Hessian matrix}} \Big) \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} \\ &= \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} - \alpha \underbrace{\nabla_\lambda^2 \mathcal{L}(\lambda_0, \theta, \mathbf{x})}_{\text{Hessian-vector product}} \frac{\mathrm{d}L}{\mathrm{d}\lambda_1} \end{split}$$

3 Backprop $\frac{dL}{d\lambda_0}$ to obtain $\frac{dL}{d\phi} = \frac{d\lambda_0}{d\phi} \frac{dL}{d\lambda_0}$ (Similar rules for $\frac{dL}{d\theta}$)

Backpropagating through SVI

In practice:

- Estimate Hessian-vector products with finite differences (LeCun et al. 1993), which was more memory efficient.
- Clip gradients at various points (see paper).

Summary

	AVI	SVI	SA-VAE
Approximation Gap	Yes	Yes	Yes
Amortization Gap	Yes	Minimal	Minimal
Training/Inference	Fast	Slow	Medium
End-to-End Training	Yes	No	Yes

Experiments: Synthetic data

Generate sequential data from a randomly initialized LSTM oracle

- **1** $z_1, z_2 \sim \mathcal{N}(0, 1)$
- 2 $h_t = \text{LSTM}([x_t, z_1, z_2], h_{t-1})$

Inference network

- $q(z_1), q(z_2)$ are Gaussians with learned means $\mu_1, \mu_2 = \mathsf{enc}_\phi(\mathbf{x})$
- $\operatorname{enc}_{\phi}(\cdot)$: LSTM with MLP on final hidden state

Experiments: Synthetic data

Generate sequential data from a randomly initialized LSTM oracle

1 $z_1, z_2 \sim \mathcal{N}(0, 1)$

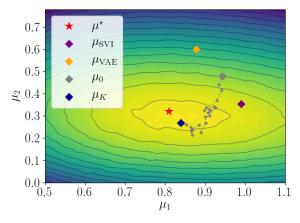
2
$$h_t = \text{LSTM}([x_t, z_1, z_2], h_{t-1})$$

Inference network

- $q(z_1), q(z_2)$ are Gaussians with learned means $\mu_1, \mu_2 = \mathsf{enc}_{\phi}(\mathbf{x})$
- $\operatorname{enc}_{\phi}(\cdot)$: LSTM with MLP on final hidden state

Experiments: Synthetic data

Oracle generative model (randomly-initialized LSTM)



(ELBO landscape for a random test point)

Results: Synthetic Data

Model	Oracle Gen	Learned Gen
VAE	≤ 21.77	≤ 27.06
SVI $(K=20)$	≤ 22.33	≤ 25.82
SA-VAE (K=20)	≤ 20.13	≤ 25.21
TRUE NLL (EST)	19.63	_

Generative model:

 $\textbf{0} \ \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$h_t = \mathrm{LSTM}([x_t, \mathbf{z}], h_{t-1})$$

$$x_{t+1} \sim p(x_{t+1} \mid x_{\leq t}, \mathbf{x}) \propto \exp(\mathbf{W}h_t)$$

Inference network:

- $q(\mathbf{z})$ diagonal Gaussian with parameters $oldsymbol{\mu}, \sigma^{\mathbf{2}}$
- $\mu, \sigma^2 = \mathsf{enc}_\phi(\mathbf{x})$
- $\operatorname{enc}_{\phi}(\cdot)$: LSTM followed by MLP

Two other baselines that combine AVI/SVI (but not end-to-end):

- VAE+SVI 1 (Krishnan et a al. 2018):
 - lacksquare Update generative model based on λ_K
 - ② Update inference network based on λ_0
- VAE+SVI 2 (Hjelm et al. 2016):
 - () Update generative model based on λ_K
 - ② Update inference network to minimize $KL(q_{\lambda_0}(\mathbf{z}) || q_{\lambda_K}(\mathbf{z}))$, treating λ_K as a fixed constant.

(Forward pass is the same for both models)

Two other baselines that combine AVI/SVI (but not end-to-end):

- VAE+SVI 1 (Krishnan et a al. 2018):
 - () Update generative model based on λ_K
 - 2 Update inference network based on λ_0
- VAE+SVI 2 (Hjelm et al. 2016):
 - () Update generative model based on λ_K
 - ② Update inference network to minimize $KL(q_{\lambda_0}(\mathbf{z}) || q_{\lambda_K}(\mathbf{z}))$, treating λ_K as a fixed constant.

(Forward pass is the same for both models)

Two other baselines that combine AVI/SVI (but not end-to-end):

- VAE+SVI 1 (Krishnan et a al. 2018):
 - **1** Update generative model based on λ_K
 - 2 Update inference network based on λ_0
- VAE+SVI 2 (Hjelm et al. 2016):
 - **1** Update generative model based on λ_K
 - Opdate inference network to minimize KL(q_{λ0}(z) || q_{λK}(z)), treating λ_K as a fixed constant.

(Forward pass is the same for both models)

Results: Text (Yahoo corpus from Yang et al. 2017)

Model	KL	PPL
Language Model	_	61.6
VAE	0.01	≤ 62.5
VAE + Word-Drop 25%	1.44	≤ 65.6
VAE + Word-Drop 50%	5.29	≤ 75.2
ConvNetVAE (Yang et al. 2017)	10.0	≤ 63.9
SVI $(K=20)$	0.41	≤ 62.9
SVI $(K = 40)$	1.01	≤ 62.2
$VAE + SVI 1 \ (K = 20)$	7.80	≤ 62.7
VAE + SVI 2 (K = 20)	7.81	≤ 62.3
SA-VAE $(K = 20)$	7.19	≤ 60.4

Results: Text (Yahoo corpus from Yang et al. 2017)

Model	KL	PPL
Language Model	_	61.6
VAE	0.01	≤ 62.5
VAE + Word-Drop 25%	1.44	≤ 65.6
VAE + Word-Drop 50%	5.29	≤ 75.2
ConvNetVAE (Yang et al. 2017)	10.0	≤ 63.9
SVI $(K=20)$	0.41	≤ 62.9
SVI $(K = 40)$	1.01	≤ 62.2
$VAE + SVI 1 \ (K = 20)$	7.80	≤ 62.7
VAE + SVI 2 (K = 20)	7.81	≤ 62.3
SA-VAE $(K = 20)$	7.19	≤ 60.4

Results: Text (Yahoo corpus from Yang et al. 2017)

Model	KL	PPL
Language Model	_	61.6
VAE	0.01	≤ 62.5
VAE + Word-Drop 25%	1.44	≤ 65.6
VAE + Word-Drop 50%	5.29	≤ 75.2
ConvNetVAE (Yang et al. 2017)	10.0	≤ 63.9
SVI $(K = 20)$	0.41	≤ 62.9
SVI $(K = 40)$	1.01	≤ 62.2
$VAE + SVI 1 \ (K = 20)$	7.80	≤ 62.7
VAE + SVI 2 (K = 20)	7.81	≤ 62.3
SA-VAE $(K = 20)$	7.19	≤ 60.4

Application to Image Modeling (OMNIGLOT)

 $q_{\phi}(\mathbf{z} \mid \mathbf{x})$: 3-layer ResNet (He et al. 2016) $p_{\theta}(\mathbf{x} \mid \mathbf{z})$: 12-layer Gated PixelCNN (van den Oord et al. 2016)

Model	NLL (KL)
GATED PIXELCNN	90.59
VAE	$\leq 90.43 \ (0.98)$
SVI $(K=20)$	$\leq 90.51 \ (0.06)$
SVI $(K = 40)$	$\leq 90.44 \ (0.27)$
SVI $(K = 80)$	$\leq 90.27 \ (1.65)$
$VAE + SVI \ 1(K = 20)$	≤ 90.19 (2.40)
VAE + SVI 2 $(K = 20)$	$\leq 90.21 \ (2.83)$
SA-VAE $(K = 20)$	$\leq 90.05 \ (2.78)$

(Amortization gap exists even with powerful inference networks)

Application to Image Modeling (OMNIGLOT)

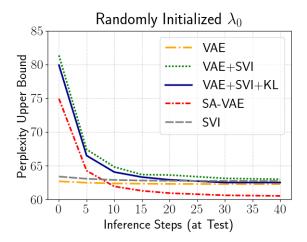
 $q_{\phi}(\mathbf{z} \mid \mathbf{x})$: 3-layer ResNet (He et al. 2016) $p_{\theta}(\mathbf{x} \mid \mathbf{z})$: 12-layer Gated PixelCNN (van den Oord et al. 2016)

Model	NLL (KL)
GATED PIXELCNN	90.59
VAE	$\leq 90.43 \ (0.98)$
SVI $(K = 20)$	$\leq 90.51 \ (0.06)$
SVI $(K = 40)$	$\leq 90.44 \ (0.27)$
SVI $(K = 80)$	$\leq 90.27 \ (1.65)$
$VAE + SVI \ 1(K = 20)$	$\leq 90.19 \ (2.40)$
VAE + SVI 2 ($K = 20$)	$\leq 90.21 \ (2.83)$
SA-VAE $(K = 20)$	$\leq 90.05 \ (2.78)$

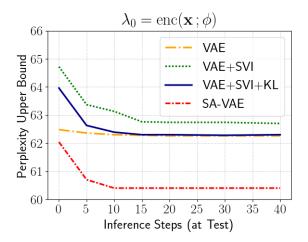
(Amortization gap exists even with powerful inference networks)

Limitations

- Requires O(K) backpropagation steps of the generative model for each training setup: possible to reduce K via
 - Learning to learn approaches
 - Dynamic scheduling
 - Importance sampling
- Still needs optimization hacks
 - Gradient clipping during iterative refinement



Train vs Test Analysis



Lessons Learned

- Reducing amortization gap helps learn generative models of text that give good likelihoods and maintains interesting latent representations.
- But certainly not the full story... still very much an open issue.
- So what are the latent variables capturing?

Lessons Learned

- Reducing amortization gap helps learn generative models of text that give good likelihoods and maintains interesting latent representations.
- But certainly not the full story... still very much an open issue.
- So what are the latent variables capturing?

Lessons Learned

- Reducing amortization gap helps learn generative models of text that give good likelihoods and maintains interesting latent representations.
- But certainly not the full story... still very much an open issue.
- So what are the latent variables capturing?

Test sentence in blue, two generations from $q(\mathbf{z} \,|\, \mathbf{x})$ in red

<s></s>	wher	e c	an i	bu	y an	affo	rdable	statio	onary	bil	ke 7	ť	ry	this	place	, t	they	have	every
type	imagi	nable	with	n p	rices	to r	natch	. ht	tp	: L	INK	</th <th>'s></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	's>						

Test sentence in blue, two generations from $q(\mathbf{z} \,|\, \mathbf{x})$ in red

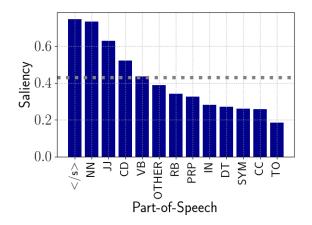
<s $>$	wher	e c	an i	bu	iy ar	affo	rdable	statio	onary	bike	?	try	this	place	, t	hey	have	every
type	imagii	nable	with	n p	rices	to n	natch	. ht	tp :	UN	к							
												_					_	
where	can	i	find	а	good	UNK	bool	k for	my	dau	ghte	r ?	i a	im loo	king	for	a w	ebsite
that	sells	chri	stmas	gif	ts fo	r the	UNF	ς.	thank	s !	UN	IK L	INK					
where	can	i	find	а	good	place	to	rent	a l	JNK	?	i ha	ive	a few	UNK	in	the	area
, but	i	'n	not	sure	e hov	v to	find	them		http	:	UNK	</td <td>5></td> <td></td> <td></td> <td></td> <td></td>	5>				

New sentence in blue, two generations from $q(\mathbf{z} \,|\, \mathbf{x})$ in red

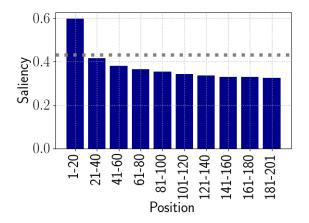
<s></s>	whi	ch	cou	ntry	is	the	best	at	soccer	?	orazil	or	germany	·			

New sentence in blue, two generations from $q(\mathbf{z} \mid \mathbf{x})$ in red

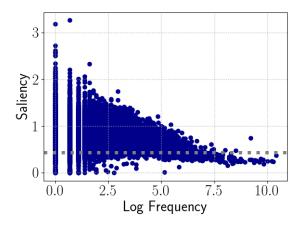
Saliency analysis by Part-of-Speech Tag



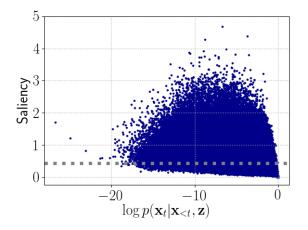
Saliency analysis by Position



Saliency analysis by Frequency



Saliency analysis by PPL



Conclusion

- Reducing amortization gap helps learn generative models that better utilize the latent space.
- Can be combined with methods that reduce the approximation gap.