
Yoon Kim
MIT

Sequence-to-Sequence Learning
with Latent Neural Grammars

Background: Seq2seq with Neural Networks

● Goal: model the distribution over output sequence y given
input sequence x

● Sequence-to-sequence Learning with Neural Networks [Cho
et al. ’14, Sutskever et al. ’14]: autoregressive factorization.

Background: Seq2seq with Neural Networks

● Any distribution over the output can be factorized
left-to-right via the chain rule ⇒ given large enough data and
model, this should work well.

● But this flexibility comes at a cost:
○ weak inductive biases for capturing hierarchical structure

⇒ over-reliance on surface-form correlations
○ sample inefficiency
○ opaque generation process

This Work: Seq2seq with Latent Neural Grammars

This Work: Seq2seq with Latent Neural Grammars

● Model with a (quasi) synchronous grammar (vs. a
“flat” autoregressive model)

● Use neural features for efficient parameterizations over
combinatorial input space of derivation rules.

● Both source and target trees are as fully latent and
marginalized over.

This Work: Seq2seq with Latent Neural Grammars

● Model with a (quasi) synchronous grammar (vs. a
“flat” autoregressive model)

● Use neural features for efficient parameterizations over
combinatorial input space of derivation rules.

● Both source and target trees are as fully latent and
marginalized over.

This Work: Seq2seq with Latent Neural Grammars

● Model with a (quasi) synchronous grammar (vs. a
“flat” autoregressive model)

● Use neural features for efficient parameterizations over
combinatorial input space of derivation rules.

● Both source and target trees are as fully latent and induced
during training.

Quasi-Synchronous Context-Free Grammars

● QCFG [Smith and Eisner ’06]: A monolingual grammar over
the target side conditioned on a source tree, where the
target-side rules dynamically depend on source tree nodes.

● Hierarchical generative process where each node in the
target is tranduced by a node in the source tree ⇒ provides
provenance for how each output part is generated!

● Unlike classic synchronous context-free grammars, does not
require source and target trees to be isomorphic.

QCFG

Grammar defines a
CFG over target
side given source
tree s

QCFG

Start symbol
Nonterminals / Preterminals
Target terminals

QCFG

Context-free rules where each
target derivation is aligned to a
source tree node

Model parameters

QCFG

Start rule
Binary rules
Unary rules

QCFG

Start rule
Binary rules
Unary rules

Each nonterminal is decorated with a node
in the source tree.

QCFG Example

QCFG Example

QCFG Example

QCFG Example

QCFG Example

QCFG Example

Parameterization

● Prior work: handcrafted features over source tree nodes.

● This work: neural parameterization of derivation rules.

Parameterization

● Prior work: handcrafted features over source tree nodes.

● This work: neural parameterization of derivation rules.

Nonterminal symbol
embedding

Source tree node
embedding (from
TreeLSTM)

Parameterization

● Prior work: handcrafted features over source tree nodes.

● This work: neural parameterization of derivation rules.

● Rule probabilities given by neural network over embeddings.

Learning

● QCFG defines a distribution over target trees (and strings)
given a source tree.

(with the usual inside algorithm)

● Past work: source tree given by a pipelined parser.

● This work: learn source parser alongside the
QCFG. Source parser is a neural PCFG from [Kim et al. ’19].

Learning

Source PCFG Target QCFG

Learning

● Log marginal likelihood given by:

● Exact marginalization intractable ⇒ optimize a lower bound:

(Score function estimator with self-critical control variate)

Target QCFG Source PCFG

Inference

● Given the source MAP tree from the PCFG,

finding the MAP QCFG tree is intractable

● Approximate decoding strategy:

○ Sample target trees from
○ Rescore and return the yield with lowest perplexity.

Experimental Setup

● Experiments on three seq2seq tasks:

○ SCAN [Lake and Baroni ’18]: synthetic language
navigation task to test for compositional generalization.

○ StylePTB [Lyu et al. ’21]: style transfer on the Penn
Treebank.

○ Small-scale machine translation [Lake and Baroni ’18]

Results: SCAN

● SCAN: simple language navigation task

“jump twice after walk” ⇒ WALK JUMP JUMP

● Seq2seq models have a hard time generalizing compositionally

Model Simple Split Add Primitive Add Template Length

RNN ≈ 100% 1.7% 2.5% 13.8%

CNN ≈ 100% 69.2% 56.7% 0.0%

Transformer ≈ 100% 1.0% 53.3% 0.0%

Results: SCAN

Model Add Primitive Add Template Length

RNN 1.7% 2.5% 13.8%

CNN 69.2% 56.7% 0.0%

Transformer 1.0% 53.3% 0.0%

Neural QCFG 96.8% 98.7% 95.7%

(Many other methods that also solve this dataset)

Results: SCAN

Results: SCAN

Frequently-occurring
rules obtained MAP
QCFG trees from the
training set.

Results: StylePTB

● Experiments on three “hard” style transfer tasks identified by
[Lyu et al. ’21]: active-to-passive, adjective emphasis, verb
emphasis. (500-3000 examples)

● Incorporate a phrase-level copy mechanism via a
special-purpose nonterminal:

Results: StylePTB

[Lyu et al. ’21]

[This work]

Results: StylePTB

(Linguistically incorrect tree)

Results: Machine Translation

● Small-scale English-French machine translation (6000
sentences).

● Compositional generalization [Lake and Baroni ’18]:

○ Add 1000 instances of “i am daxy ⇒ je suis daxiste”
○ Must generalize to unseen combinations, e.g.

he is daxy
i am not daxy
i am very daxy
...

Results: Machine Translation

Model BLEU on
regular test set

Accuracy on daxy
examples

LSTM 25.1 12.5%

Neural QCFG 23.5 100%

+ BiLSTM Encoder 26.8 75.0%

Transformer 30.4 100%

Results: Machine Translation

Model BLEU on
regular test set

Accuracy on daxy
examples

LSTM 25.1 12.5%

Neural QCFG 23.5 100%

+ BiLSTM Encoder 26.8 75.0%

Transformer 30.4 100%

(Mostly negative results on MT)

Results: Machine Translation

Limitations

● Much (much) more expensive than regular seq2seq due to the
 dynamic program.

● Model is brittle: very sensitive to hyperparameters / random
initialization.

● Thoroughly outperformed by a well-tuned Transformer on more
real-world seq2seq tasks.

Discussion & Conclusion

● What is the role of grammars / neuro-symbolic approaches in
the era of large pretrained language models?

● Future work

○ Condition on (embedding representations of) images /
video / audio for grounded grammar induction.

○ Richer grammatical formalisms (e.g. synchronous
tree-adjoning grammars).

○ Combining induced structures with flexible neural models.

