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Background: Seq2seq with Neural Networks

● Goal: model the distribution over output sequence y given 
input sequence x

● Sequence-to-sequence Learning with Neural Networks [Cho 
et al. ’14, Sutskever et al. ’14]: autoregressive factorization.



Background: Seq2seq with Neural Networks

● Any distribution over the output can be factorized 
left-to-right via the chain rule ⇒ given large enough data and 
model, this should work well.

● But this flexibility comes at a cost:
○ weak inductive biases for capturing hierarchical structure 

⇒ over-reliance on surface-form correlations
○ sample inefficiency
○ opaque generation process 



This Work: Seq2seq with Latent Neural Grammars



This Work: Seq2seq with Latent Neural Grammars

● Model                 with a (quasi) synchronous grammar (vs. a 
“flat” autoregressive model)

● Use neural features for efficient parameterizations over 
combinatorial input space of derivation rules.

● Both source and target trees are as fully latent and 
marginalized over.



This Work: Seq2seq with Latent Neural Grammars

● Model                 with a (quasi) synchronous grammar (vs. a 
“flat” autoregressive model)

● Use neural features for efficient parameterizations over 
combinatorial input space of derivation rules.

● Both source and target trees are as fully latent and 
marginalized over.



This Work: Seq2seq with Latent Neural Grammars

● Model                 with a (quasi) synchronous grammar (vs. a 
“flat” autoregressive model)

● Use neural features for efficient parameterizations over 
combinatorial input space of derivation rules.

● Both source and target trees are as fully latent and induced 
during training.



Quasi-Synchronous Context-Free Grammars

● QCFG [Smith and Eisner ’06]: A monolingual grammar over 
the target side conditioned on a source tree, where the 
target-side rules dynamically depend on source tree nodes. 

● Hierarchical generative process where each node in the 
target is tranduced by a node in the source tree ⇒ provides 
provenance for how each output part is generated!

● Unlike classic synchronous context-free grammars, does not 
require source and target trees to be isomorphic.



QCFG

Grammar defines a 
CFG over target 
side given source 
tree s



QCFG

Start symbol
Nonterminals / Preterminals
Target terminals



QCFG

Context-free rules where each 
target derivation is aligned to a 
source tree node

Model parameters



QCFG

Start rule
Binary rules
Unary rules



QCFG

Start rule
Binary rules
Unary rules

Each nonterminal is decorated with a node 
in the source tree.



QCFG Example
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Parameterization

● Prior work: handcrafted features over source tree nodes.

● This work: neural parameterization of derivation rules.
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● Prior work: handcrafted features over source tree nodes.

● This work: neural parameterization of derivation rules.

Nonterminal symbol 
embedding

Source tree node 
embedding (from 
TreeLSTM)



Parameterization

● Prior work: handcrafted features over source tree nodes.

● This work: neural parameterization of derivation rules.

● Rule probabilities given by neural network over embeddings.



Learning

● QCFG defines a distribution over target trees (and strings) 
given a source tree.

(                                          with the usual inside algorithm)

● Past work: source tree given by a pipelined parser.

● This work: learn source parser                  alongside the 
QCFG. Source parser is a neural PCFG from [Kim et al. ’19].



Learning

Source PCFG Target QCFG



Learning

● Log marginal likelihood given by:

● Exact marginalization intractable ⇒ optimize a lower bound:

(Score function estimator with self-critical control variate)

Target QCFG Source PCFG



Inference

● Given the source MAP tree from the PCFG,

finding the MAP QCFG tree is intractable

● Approximate decoding strategy:

○ Sample target trees                      from
○ Rescore and return the yield with lowest perplexity.



Experimental Setup

● Experiments on three seq2seq tasks:

○ SCAN [Lake and Baroni ’18]: synthetic language 
navigation task to test for compositional generalization.

○ StylePTB [Lyu et al. ’21]: style transfer on the Penn 
Treebank.

○ Small-scale machine translation [Lake and Baroni ’18]



Results: SCAN

● SCAN: simple language navigation task

“jump twice after walk” ⇒ WALK JUMP JUMP

● Seq2seq models have a hard time generalizing compositionally 

Model Simple Split Add Primitive Add Template Length

RNN ≈ 100% 1.7% 2.5% 13.8%

CNN ≈ 100% 69.2% 56.7% 0.0%

Transformer ≈ 100% 1.0% 53.3% 0.0%



Results: SCAN

Model Add Primitive Add Template Length

RNN 1.7% 2.5% 13.8%

CNN 69.2% 56.7% 0.0%

Transformer 1.0% 53.3% 0.0%

Neural QCFG 96.8% 98.7% 95.7%

(Many other methods that also solve this dataset)



Results: SCAN



Results: SCAN

Frequently-occurring 
rules obtained  MAP 
QCFG trees from the 
training set.



Results: StylePTB

● Experiments on three “hard” style transfer tasks identified by 
[Lyu et al. ’21]: active-to-passive, adjective emphasis, verb 
emphasis. (500-3000 examples)

● Incorporate a phrase-level copy mechanism via a 
special-purpose nonterminal:



Results: StylePTB

[Lyu et al. ’21]

[This work]



Results: StylePTB

(Linguistically incorrect tree)



Results: Machine Translation

● Small-scale English-French machine translation (6000 
sentences).

● Compositional generalization [Lake and Baroni ’18]:

○ Add 1000 instances of “i am daxy ⇒ je suis daxiste”
○ Must generalize to unseen combinations, e.g.

he is daxy
i am not daxy
i am very daxy
...



Results: Machine Translation

Model BLEU on 
regular test set

Accuracy on daxy 
examples

LSTM 25.1 12.5%

Neural QCFG 23.5 100%

+ BiLSTM Encoder 26.8 75.0%

Transformer 30.4 100%



Results: Machine Translation

Model BLEU on 
regular test set

Accuracy on daxy 
examples

LSTM 25.1 12.5%

Neural QCFG 23.5 100%

+ BiLSTM Encoder 26.8 75.0%

Transformer 30.4 100%

(Mostly negative results on MT)



Results: Machine Translation



Limitations

● Much (much) more expensive than regular seq2seq due to the
                                           dynamic program. 

● Model is brittle: very sensitive to hyperparameters / random 
initialization.

● Thoroughly outperformed by a well-tuned Transformer on more 
real-world seq2seq tasks.



Discussion & Conclusion

● What is the role of grammars / neuro-symbolic approaches in 
the era of large pretrained language models?

● Future work

○ Condition on (embedding representations of) images / 
video / audio for grounded grammar induction. 

○ Richer grammatical formalisms (e.g. synchronous 
tree-adjoning grammars).

○ Combining induced structures with flexible neural models.


