Sequence-to-Sequence Learning
with Latent Neural Grammars

Yoon Kim
MIT

Background: Seqg2seq with Neural Networks

e Goal: model the distribution over output sequence y given
iInput sequence x

T
po(y|z) =] po(ye| 2, y<)
i—1

e Sequence-to-sequence Learning with Neural Networks [Cho
et al. ’14, Sutskever et al. ’14]: autoregressive factorization.

Background: Seqg2seq with Neural Networks

e Any distribution over the output can be factorized

left-to-right via the chain rule = given large enough data and
model, this should work well.

e But this flexibility comes at a cost:

o weak inductive biases for capturing hierarchical structure
= over-reliance on surface-form correlations

o sample inefficiency

o opague generation process

This Work: Seqg2seq with Latent Neural Grammars

This Work: Seqg2seq with Latent Neural Grammars

e Model py(y|x) with a (quasi) synchronous grammar (vs. a
“flat” autoregressive model)

This Work: Seg2seq with Latent Neural Grammars

e Model py(y|x) with a (quasi) synchronous grammar (vs. a
“flat” autoregressive model)

e Use neural features for efficient parameterizations over
combinatorial input space of derivation rules.

This Work: Seg2seq with Latent Neural Grammars

e Model py(y|x) with a (quasi) synchronous grammar (vs. a
“flat” autoregressive model)

e Use neural features for efficient parameterizations over
combinatorial input space of derivation rules.

e Both source and target trees are as fully latent and induced
during training.

Quasi-Synchronous Context-Free Grammars

e QCFG [Smith and Eisner ’06]: A monolingual grammar over
the target side conditioned on a source tree, where the
target-side rules dynamically depend on source tree nodes.

e Hierarchical generative process where each node in the
target is tranduced by a node in the source tree = provides
provenance for how each output part is generated!

e Unlike classic synchronous context-free grammars, does not
require source and target trees to be isomorphic.

QCFG

Gls| = (SN, P,X,Rl|s]|,0)

o

: T Smp
Grammar defines a 2
CFG over target § = oo
side given source a1 a5 T4

tree s T2 T3

QCFG

Gls| = (SN, P, X, Rl|s]|,0)

Start symbol
Nonterminals / Preterminals

QCFG

Model parameters

Gls| = (S, N, P, X, R|s],0)

Context-free rules where each
target derivation is aligned to a
source tree node

QCFG

Gls] = (S,N,P,%X,R][s],0)

Start rule S — Aloy), AeN,
Binary rules Ala;] — Bla;|Clag], Ae N, B,CeNUTP,
Unary rules D|a;] — w, DeP,we

QCFG
Gls] = (S,N,P,%,R][s],0)

Start rule S — Aloy], AeN,
Binary rules Ala;] — Bla|Clag], Ae N, B,CeNUTP,
Unary rules D|a;] — w, DeP,wed

& a i, OLj, O € 8

| e

LR Each nonterminal is decorated with a node

a4 O5 T4

o in the source tree.

ro I3

QCFG Example

a0 S[Oé()]
/\
1 92
| N
I1 A3 a6

N

X4 O5 T4

xr2 I3

QCFG Example

a0 S[Oé()]
/\ |
TR il
I1 A3 a6

N

X4 O5 T4

xr2 I3

QCFG Example

/\
1 (8%

| ™
I1 a3 a6

N

X4 O5 T4

xr2 I3

Slao]
|

Nulaz]

/\

P1 [&6] N2 [Oég]

QCFG Example

QQ Sav]
/\ |
a1 (85 N4 [()42]
| ™
1 a3 6 T e
/N P) Na|as]
Oé|4 Oé|5 L4 ‘ /\
To XT3 Y1 Ps [045] Py [044]

QCFG Example

QQ S
/\ |
a1 (85 N4 [()42]
a:ll ag/\a(; T s
2N | P[] Na|as]
|4 |5 4 ‘ P
o I3 1 Ps [045] P [a‘l]

QCFG Example

QQ S
/\ |
a1 (85 N4 [042]
| A S
&1 a3 a6 /\
2N | P[] Na|as]
Oé|4 Oé|5 L4 ‘ /\
To €T3 Y1 Ps [CM5] P [044]

Parameterization

G[s] = (S,N,P,%,R[s],0)

e Prior work: handcrafted features over source tree nodes.

e This work: neural parameterization of derivation rules.

CAle;] — UA -+ hai

Parameterization

Gls] = (S,N,P,%,R][s],0)

e Prior work: handcrafted features over source tree nodes.

e This work: neural parameterization of derivation rules.

CAle;] — UA - haz-

Nonterminal symbol Source tree node
embedding embedding (from
TreeLSTM)

Parameterization

G[s] = (S,N,P,%,R[s],0)

e Prior work: handcrafted features over source tree nodes.
e This work: neural parameterization of derivation rules.
€Ale;] = UA + hg,

e Rule probabilities given by neural network over embeddings.
po(Ala;| — Bloy|Clok])
o< exp (fi(eafa) ' (f2(eBiay)) + f3(ecian))))

Learning

e QCFG defines a distribution over target trees (and strings)
given a source tree.

ZtGT(y) po(t]s) = po(y|s)
(O(N|(|N] + |P])283T3)with the usual inside algorithm)
e Past work: source tree given by a pipelined parser.

e This work: learn source parser ps(s|x) alongside the
QCFG. Source parser is a neural PCFG from [Kim et al. ’19].

Learning

py(s|x)
Source PCFG

S{avo]
|

Nula]

T
P1 [a6] N2 [043]
| ™
v1 Pslas] Pilod]
| |
Y2 Y3
po(t|s)

Target QCFG

Learning

e Log marginal likelihood given by:

log po.¢(y |) 10g< >, Z po(t|s)py sw))

scT(x) teT (y

Target QCFG Source PCFG

e Exact marginalization intractable = optimize a lower bound:

logpe.s(y|x) > Eswp¢(s |) log pe(y | s)]

(Score function estimator with self-critical control variate)

Inference

Given the source MAP tree from the PCFG,
s = argmax, ps(s|x)
finding the MAP QCFG tree is intractable

argmax,, po(y | s)

Approximate decoding strategy:

o Sample target trees ¢V, .. ¢ from G|s]
o Rescore and return the yield with lowest perplexity.

Experimental Setup

e EXxperiments on three seq2seq tasks:

O

SCAN [Lake and Baroni ’18]: synthetic language
navigation task to test for compositional generalization.

StylePTB [Lyu et al. ’21]: style transfer on the Penn
Treebank.

Small-scale machine translation [Lake and Baroni ’18]

Results: SCAN

e SCAN: simple language navigation task
“lump twice after walk” = WALK JUMP JUMP

e Seg2seq models have a hard time generalizing compositionally

Model Simple Split Add Primitive | Add Template | Length
RNN = 100% 1.7% 2.5% 13.8%
CNN = 100% 69.2% 56.7% 0.0%

Transformer =~ 100% 1.0% 53.3% 0.0%

Results: SCAN

Model Add Primitive Add Template Length
RNN 1.7% 2.5% 13.8%
CNN 69.2% 56.7% 0.0%
Transformer 1.0% 53.3% 0.0%
Neural QCFG 96.8% 98.7% 95.7%

(Many other methods that also solve this dataset)

Results: SCAN

a1z 47 Nylaiz]
/\ FemTRT T g " /\
@10 oy T Nzlaq] Nilaio]
/\ /\ iy /\ /\

as az az i . N4la7l Nylaz] Nylasg] Nylasg]
ap a1 twice after Ot7 > 016 - - =Polas] P()[Ot4J Polas] Polaa] Pola] Pola] Pola] Polai]

o P | | | | | | | |
run left aq4 a5 twice TURN-RIGHT JUMP TURN-RIGHT JUMP TURN-LEFT RUN TURN-LEFT RUN

|
jump right

Results: SCAN

Frequently-occurring
rules obtained MAP
QCFG trees from the

training set.

Pyrun] — RUN

Py[look] — LOOK

Py[walk] — WALK

Py [jump] — JUMP

Py [right] — TURN-RIGHT

Py [left] — TURN-LEFT

Ny[look left] — Py[left] Py[look]

N4 [look right] — Pq[right] P [look]

Ny[walk left] — Py [left] Ppwalk]

Ny4[walk right] — P [right] Pp[walk]

N [look right twice] — N4[look right] N4 [look right]
N, [walk left twice] — Ny[walk left] N4 [walk left]

N1 [look thrice] — Ng[look thrice] Py [look]

N [look right thrice] — Ng[look right thrice] N4[look right]
Ng[look right thrice] — N4 [look right] N4 [look right]
N [walk left thrice] — Ng[walk left thrice] N4[walk left]
Ng(walk left thrice] — N4[walk left] N4[walk left]

— p— — p—

Results: StylePTB

e EXxperiments on three “hard” style transfer tasks identified by
[Lyu et al. '21]: active-to-passive, adjective emphasis, verb
emphasis. (500-3000 examples)

e Incorporate a phrase-level copy mechanism via a
special-purpose nonterminal:

po(Acory [ai] = v) € 1{v = yield(ay)}

veE DT

Results: StylePTB

Transfer Type ~ Approach BLEU-1 BLEU-2 BLEU-3 BLEU-4
GPT2-finetune 0476 0329 0.238 0.189
Seq2Seq 0.373 0.220 0.141 0.103
Retrieve-Edit 0.681 0.598 0503 0.427
: . Human 0.931 0.881 0.835 0.795
Active to Passive
Seq2Seq 0.505 0.349 0.253 0.190
Neural QCFG 0.431 0.637 0.548 0472
Seq2Seq + copy 0.838° 0.735 0.673 0.598
Neural QCFG + copy 0.836 0.771 0.713 0.662

[Lyu et al. '21]

[This work]

Results: StylePTB

192 N5[0112]
/\ /”/\
@10 o7) Y Nylai2] Neorylar]
/\ /\ ™ = /\
Qg Qg o Q5 Q6 ~~ . Nalaiz2] Nilag] unifirst corp.
/\ | 1 = \l e /\{\\ /\
as az 2-for-1 stock split ~~_ Na[aio] “Neopy[a11] N3lasg] Pa[ap]
az Qo a Prlas] Peopylas] stock split Pglaz] FPeopvla2] by
| | | | I
g oy declared a 2-for-1 is declared

unifirst corp.

(Linguistically incorrect tree)

Results: Machine Translation

e Small-scale English-French machine translation (6000
sentences).

e Compositional generalization [Lake and Baroni ’18]:

o Add 1000 instances of “i am daxy = je suis daxiste”
o Must generalize to unseen combinations, e.g.

he is daxy

I am not daxy

i am very daxy

Results: Machine Translation

Model

LSTM
Neural QCFG

+ BiLSTM Encoder

BLEU on
regular test set

25.1
23.5

26.8

Accuracy on daxy
examples

12.5%
100%

75.0%

Results: Machine Translation

Model

LSTM
Neural QCFG
+ BiLSTM Encoder

Transformer

BLEU on
regular test set

25.1
23.5
26.8

30.4

Accuracy on daxy
examples

12.5%
100%
75.0%

100%

(Mostly negative results on MT)

Results: Machine Translation

Nq3[i m as tall as my father .]

_—/-—-\

N2 [im as tall as my father] Ps|.]

/\
Pgli] Ni5[m as tall as my father] ’

_/\
j|e Pg[m] Ni3[as tall as my father]
/\
SuliS Ns|as tall as] N5 [my father]

ST TR S

Niglastalll] Pslas] Pi[my] Pg4[father]

P | | |

Pglas] Pgltalll que mon pere

aussi grand

Limitations

Much (much) more expensive than regular seg2seq due to the
O(N|(JN] + |P])*S>T?) dynamic program.

Model is brittle: very sensitive to hyperparameters / random
initialization.

Thoroughly outperformed by a well-tuned Transformer on more
real-world seg2seq tasks.

Discussion & Conclusion

e What is the role of grammars / neuro-symbolic approaches in
the era of large pretrained language models?

e Future work

o (Condition on (embedding representations of) images /
video / audio for grounded grammar induction.

o Richer grammatical formalisms (e.g. synchronous
tree-adjoning grammars).

o Combining induced structures with flexible neural models.

