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Communication Bottleneck

All input information communicated through fixed-size hidden vector.

Encoder(input)

Training: All gradients have to flow through single bottleneck.

Test: All input encoded in single vector.
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Other Applications of Attention Networks

Machine Translation (Bahdanau et al., 2015; Luong et al., 2015)

Question Answering (Hermann et al., 2015; Sukhbaatar et al., 2015)

Natural Language Inference (Rocktäschel et al., 2016; Parikh et al., 2016)

Algorithm Learning (Graves et al., 2014, 2016; Vinyals et al., 2015a)

Parsing (Vinyals et al., 2015b)

Speech Recognition (Chorowski et al., 2015; Chan et al., 2015)

Summarization (Rush et al., 2015)

Caption Generation (Xu et al., 2015)

and more...



Other Applications: Image Captioning (Xu et al., 2015)
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Applications From HarvardNLP: Summarization (Rush et al., 2015)



Applications From HarvardNLP: Image-to-Latex (Deng et al., 2016)
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Attention Networks: Notation

x1, . . . , xT Memory bank

q Query

z Memory selection (“where”) Source position {1, . . . , T}
p(z = i |x, q; θ) Attention distribution

f(x, z) Annotation function (“what”)

c = Ez[f(x, z)] Context vector (“soft selection”)

End-to-End Requirements:

1 Need to compute attention distribution p(z = i |x, q; θ)
2 Need to backpropagate to learn parameters θ
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Attention Networks: Machine Translation

x1, . . . , xT Memory bank Source RNN hidden states

q Query Decoder hidden state

z Memory selection Source position {1, . . . , T}
p(z = i |x, q; θ) Attention distribution softmax(x>i q)

f(x, z) Annotation function Memory at time z, i.e. xz
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Structured Attention Networks

Replace simple attention with distribution over a combinatorial set

of structures

Attention distribution represented with graphical model over

multiple latent variables

Compute attention using embedded inference

New Model

p(z |x, q; θ) Attention distribution over structures z
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computationally tractable
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Motivation: Structured Output Prediction

Modeling the structured output (i.e. graphical model on top of a

neural net) has improved performance (LeCun et al., 1998; Lafferty et al.,

2001; Collobert et al., 2011)

Given a sequence x = x1, . . . , xT

Factored potentials θi,i+1(zi, zi+1;x)

p(z1 . . . , zT |x; θ) = softmax
( T−1∑
i=1

θi,i+1(zi, zi+1;x)
)

=
1

Z
exp

( T−1∑
i=1

θi,i+1(zi, zi+1;x)
)

Z =
∑
z′∈C

exp
( T−1∑
i=1

θi,i+1(z
′
i, z
′
i+1;x)

)



Example: Part-of-Speech Tagging
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Neural CRF for Sequence Tagging (Collobert et al., 2011)



Neural CRF for Sequence Tagging (Collobert et al., 2011)

Unary potentials θi(c) = w>c xi come from neural network



Inference in Linear-Chain CRF

Pairwise potentials are simple parameters b, so altogether

θi,i+1(c, d) = θi(c) + θi+1(d) + bc,d
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Structured Attention Networks: Notation
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p(zi = 1 |x, q)xi



Challenge: End-to-End Training

Requirements:

1 Compute attention distribution (marginals) p(zi |x, q; θ)
=⇒ Forward-backward algorithm

2 Gradients wrt attention distribution parameters θ

=⇒ Backpropagation through forward-backward algorithm
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Review: Forward-Backward Algorithm

θ: input potentials (e.g. from NN)

α, β: dynamic programming tables

procedure ForwardBackward(θ)

Forward

for i = 1, . . . , n; zi do

α[i, zi]←
∑

zi−1
α[i− 1, zi−1]× exp(θi−1,i(zi−1, zi))

Backward

for i = n, . . . , 1; zi do

β[i, zi]←
∑

zi+1ı β[i+ 1, zi+1]× exp(θi,i+1(zi, zi+1))

Marginals

for i = 1, . . . , n; c ∈ C do

p(zi = c |x)← α[i, c]× β[i, c]/Z



Structured Attention Networks for Neural Machine Translation



Forward-Backward Algorithm in Practice (Log-Space Semiring Trick)

x⊕ y = log(exp(x) + exp(y))

x⊗ y = x+ y

procedure ForwardBackward(θ)

Forward

for i = 1, . . . , n; zi do

α[i, zi]←
⊕

zi−1 α[i− 1, y]⊗ θi−1,i(zi−1, zi)

Backward

for i = n, . . . , 1; zi do

β[i, zi]←
⊕

zi+1 β[i+ 1, zi+1]⊗ θi,i+1(zi, zi+1)

Marginals

for i = 1, . . . , n; c ∈ C do

p(zi = c |x)← exp(α[i, c]⊗β[i, c]⊗− logZ)



Backpropagating through Forward-Backward

∇Lp : Gradient of arbitrary loss L with respect to marginals p

procedure BackpropForwardBackward(θ, p,∇Lp )

Backprop Backward

for i = n, . . . 1; zi do

β̂[i, zi]← ∇Lα[i, zi]⊕
⊕

zi+1
θi,i+1(zi, zi+1)⊗ β̂[i+ 1, zi+1]

Backprop Forward

for i = 1, . . . , n; zi do

α̂[i, zi]← ∇Lβ [i, zi]⊕
⊕

zi−1
θi−1,i(zi−1, zi)⊗ α̂[i− 1, zi−1]

Potential Gradients

for i = 1, . . . , n; zi, zi+1 do

∇Lθi−1,i(zi,zi+1) ← exp(α̂[i, zi]⊗ β[i+ 1, zi+1]⊕ α[i, zi]⊗
β̂[i+ 1, zi+1]⊕ α[i, zi]⊗ β[i+ 1, zi+1]⊗− logZ)



Interesting Issue: Negative Gradients Through Attention

∇Lp : Gradient could be negative, but working in log-space!

Signed Log-space semifield trick (Li and Eisner, 2009)

Use tuples (la, sa) where la = log |a| and sa = sign(a)

⊕
sa sb la+b sa+b

+ + la + log(1 + d) +

+ − la + log(1− d) +

− + la + log(1− d) −
− − la + log(1 + d) −

(Similar rules for ⊗)
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Implementation

http://github.com/harvardnlp/struct-attn

General-purpose structured attention unit

“Plug-and-play” neural network layers

Dynamic programming is GPU-optimized for speed

http://github.com/harvardnlp/struct-attn


NLP Experiments

Replace existing attention layers for

Machine Translation

Segmental Attention: 2-state linear-chain CRF

Question Answering

Sequential Attention: N -state linear-chain CRF

Natural Language Inference

Syntactic Attention: graph-based dependency parser



Segmental Attention for Neural Machine Translation

Use segmentation CRF for attention, i.e. binary vectors of length n

p(z1, . . . , zT |x, q) parameterized with a linear-chain CRF.

Unary potentials (Encoder RNN):

θi(k) =

xiWq, k = 1

0, k = 0

Pairwise potentials (Simple Parameters):

4 additional binary parameters (i.e., b0,0, b0,1, b1,0, b1,1)



Segmental Attention for Neural Machine Translation

Data:

Japanese → English (from WAT 2015)

Traditionally, word segmentation as a preprocessing step

Use structured attention learn an implicit segmentation model

Experiments:

Japanese characters → English words

Japanese words → English words



Segmental Attention for Neural Machine Translation

Simple Sigmoid Structured

Char → Word 12.6 13.1 14.6

Word → Word 14.1 13.8 14.3

BLEU scores on test set (higher is better)

Models:

Simple softmax attention: softmax(θi)

Sigmoid attention: sigmoid(θi)

Structured attention: ForwardBackward(θ)



Attention Visualization: Ground Truth



Attention Visualization: Simple Attention



Attention Visualization: Sigmoid Attention



Attention Visualization: Structured Attention



Sequential Attention over Facts for Question Answering

Simple attention: Greedy soft-selection of K supporting facts



Sequential Attention over Facts for Question Answering

Structured attention: Consider all possible sequences



Sequential Attention over Facts for Question Answering

baBi tasks (Weston et al., 2015): 1k questions per task

Simple Structured

Task K Ans % Fact % Ans % Fact %

Task 02 2 87.3 46.8 84.7 81.8

Task 03 3 52.6 1.4 40.5 0.1

Task 11 2 97.8 38.2 97.7 80.8

Task 13 2 95.6 14.8 97.0 36.4

Task 14 2 99.9 77.6 99.7 98.2

Task 15 2 100.0 59.3 100.0 89.5

Task 16 3 97.1 91.0 97.9 85.6

Task 17 2 61.1 23.9 60.6 49.6

Task 18 2 86.4 3.3 92.2 3.9

Task 19 2 21.3 10.2 24.4 11.5

Average − 81.4 39.6 81.0 53.7



Sequential Attention over Facts for Question Answering



Natural Language Inference

Given a premise (P) and a hypothesis (H), predict the relationship:

Entailment (E), Contradiction (C), Neutral (N)

$ A boy is running outside .

Many existing models run parsing as a preprocessing step and attend

over parse trees.
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Syntactic Attention Network

1 Attention distribution (probability of a parse tree)

=⇒ Inside/outside algorithm

2 Gradients wrt attention distribution parameters: ∂L
∂θ

=⇒ Backpropagation through inside/outside algorithm

Forward/backward pass on inside-outside version of Eisner’s algorithm

(Eisner, 1996) takes O(T 3) time.



Syntactic Attention Network

1 Attention distribution (probability of a parse tree)

=⇒ Inside/outside algorithm

2 Gradients wrt attention distribution parameters: ∂L
∂θ

=⇒ Backpropagation through inside/outside algorithm

Forward/backward pass on inside-outside version of Eisner’s algorithm

(Eisner, 1996) takes O(T 3) time.



Syntactic Attention Network

1 Attention distribution (probability of a parse tree)

=⇒ Inside/outside algorithm

2 Gradients wrt attention distribution parameters: ∂L
∂θ

=⇒ Backpropagation through inside/outside algorithm

Forward/backward pass on inside-outside version of Eisner’s algorithm

(Eisner, 1996) takes O(T 3) time.



Forward/Back-propagation through Inside-Outside Algorithm
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Syntactic Attention for Natural Language Inference

Dataset: Stanford Natural Language Inference (Bowman et al., 2015)

Model Accuracy %

No Attention 85.8

Hard parent 86.1

Simple Attention 86.2

Structured Attention 86.8

No attention: word embeddings only

“Hard” parent from a pipelined dependency parser

Simple attention (simple softmax instead of syntanctic attention)

Structured attention (soft parents from syntactic attention)



Syntactic Attention for Natural Language Inference

Run Viterbi algorithm on the parsing layer to get the MAP parse:

ẑ = argmax
z

p(z |x, q)

$ The men are fighting outside a deli .
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Structured Attention Networks

Generalize attention to incorporate latent structure

Exact inference through dynamic programming

Training remains end-to-end

Future work

Approximate differentiable inference in neural networks

Incorporate other probabilistic models into deep learning

Compare further to methods using EM or hard structures
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