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Communication Bottleneck
All input information communicated through fixed-size hidden vector.

Encoder(input)

@ Training: All gradients have to flow through single bottleneck.

@ Test: All input encoded in single vector.
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Question Answering (Sukhbaatar et al., 2015)
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Other Applications of Attention Networks

Machine Translation (Bahdanau et al., 2015; Luong et al., 2015)
Question Answering (Hermann et al., 2015; Sukhbaatar et al., 2015)
Natural Language Inference (Rocktischel et al., 2016; Parikh et al., 2016)
Algorithm Learning (Graves et al., 2014, 2016; Vinyals et al., 2015a)
Parsing (Vinyals et al., 2015b)

Speech Recognition (Chorowski et al., 2015; Chan et al., 2015)
Summarization (Rush et al., 2015)

Caption Generation (Xu et al., 2015)

and more...



Other Applications: Image Captioning (Xu et al., 2015)
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Other Applications: Speech Recognition (Chan et al., 2015)
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Applications From HarvardNLP: Summarization (Rush et al., 2015)
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Applications From HarvardNLP: Image-to-Latex (Deng et al., 2016)
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T1ye.., TT Memory bank Source RNN hidden states
q Query Decoder hidden state
z Memory selection Source position {1,...,T}

p(z =1i|x,q;0) Attention distribution softmax(z; q)
f(z, 2) Annotation function ~ Memory at time z, i.e. z,
c=E,[f(z,z)] Context vector Z;Tilp(z =i|z, q)x;

End-to-End Requirements:

© Need to compute attention p(z =i |x,q; )

= softmax function

© Need to backpropagate to learn parameters 6
= Backprop through softmax function
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Attention Networks: Machine Translation
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Attention Networks: Machine Translation
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Structured Attention Networks

@ Replace simple attention with distribution over a combinatorial set

of structures

@ Attention distribution represented with graphical model over

multiple latent variables

@ Compute attention using embedded inference

New Model

p(z|x,q;0) Attention distribution over structures z
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Structured Attention Networks: Notation

Z = Z1y...4,2T
p(z|z,q;0)
f(z,2)

= ]Ezwp(z | x,q) [f(x7 Z)]

Memory bank

Query

Memory selection over structures

Attention distribution over structures
Annotation function (Neural representation)

Context vector



Structured Attention Networks: Notation

Tlyen.,XT Memory bank
q Query
Z = Zly.e.., 2T Memory selection over structures
p(z|z,q;0) Attention distribution over structures
f(z, z) Annotation function (Neural representation)

c=E, p(:z|aqlf(®,2)] Context vector

Consider family of functions f(z,z) that makes 5, .| 2,q [f (2, 2)]

computationally tractable



Structured Attention Networks for Neural Machine Translation
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Structured Attention Networks for Neural Machine Translation

p(z1 =1[x.q) p(za =1]|x,q)
= sigmoid (x| q) = sigmoid(x; q)
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Structured Attention Networks for Neural Machine Translation
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Structured Attention Networks for Neural Machine Translation

p(z1. 22, 73. 24 | X, q) = softmax{0(z;. 22, z3. z4) }

= % exp(0(z1. 22, z3. 1))
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Structured Attention Networks for Neural Machine Translation
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Structured Attention Networks for Neural Machine Translation
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Structured Attention Networks for Neural Machine Translation

p(z1=0,20=0,23 =1,z =0/ x.q)
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Structured Attention Networks for Neural Machine Translation
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Structured Attention Networks for Neural Machine Translation
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Motivation: Structured Output Prediction

Modeling the structured output (i.e. graphical model on top of a
neural net) has improved performance (LeCun et al., 1998; Lafferty et al.,
2001; Collobert et al., 2011)

e Given a sequence = = x1,...,Z7

e Factored potentials 0; ;+1(%, zit1; )

T-1

p(z1...,2r|z;6) = softmax 0iiv1(2iy zig1; @ ))
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Example: Part-of-Speech Tagging
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Neural CRF for Sequence Tagging (Collobert et al., 2011)
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Neural CRF for Sequence Tagging (Collobert et al., 2011)
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Unary potentials 6;(c) = w
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Inference in Linear-Chain CRF

Pairwise potentials are simple parameters b, so altogether
Oii+1(c,d) = 0i(c) + ix1(d) + bea

Forward /backward: p(z;|x) for alli € [1

NNP: proper noun
NN: noun

1J: adjective

DT: determiner
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Structured Attention Networks: Notation

T1,..., 2T Memory bank
q Query
Z = Zly.e.., 2T Memory selection over structures
p(z|z,q;0) Attention distribution over structures
f(z,2) Annotation function (Neural representation)

c=B, pi|zqlf(x,2)] Context vector

Need to calculate

T
c=Y plzi=1|z,q)
=1



Challenge: End-to-End Training

Requirements:

© Compute attention distribution (marginals) p(z; | z, q; 0)

@ Gradients wrt attention distribution parameters 6
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Challenge: End-to-End Training

Requirements:

© Compute attention distribution (marginals) p(z; | z, q; 0)
—> Forward-backward algorithm

@ Gradients wrt attention distribution parameters 6

=—> Backpropagation through forward-backward algorithm



Review: Forward-Backward Algorithm

0: input potentials (e.g. from NN)

a, B: dynamic programming tables

procedure FORWARDBACKWARD(0)
Forward
fori=1,...,n;z do

ali, z] < Zzlq afi— 1, zi—1] x exp(8i—1,i(zi-1, 2i))
Backward
fori=mn,...,1;z do

Bli, zi] + 32, Bli + 1, zia] X exp(0ii41 (23 2i41))
Marginals
fori=1,...,n;ceC do

p(zi = c|x)  ali, ] x Bli,c]/Z



Structured Attention Networks for Neural Machine Translation
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Forward-Backward Algorithm in Practice (Log-Space Semiring Trick)

r @y = log(exp(x) + exp(y))
TRY=x+Yy

procedure FORWARDBACKWARD(#)

Forward
fori=1,....n;z do

ali,zi] < Pz, afi — Ly @6;-1(zi—1, i)
Backward
fori=mn,...,1;z do

Bli, zi] < D=y Bli + 1, zip1] @ 0ii41(24, zig1)
Marginals

fori=1,...,n;ceC do
p(zs = e|2) — explali,d @ Bli,d © — log2)



Backpropagating through Forward-Backward
fo: Gradient of arbitrary loss £ with respect to marginals p

procedure BACKPROPFORWARDBACKWARD(6, p, V5)
Backprop Backward
fori=mn,...1;z do

Bli, ) + VE[i, 2] @ D.,,, iiv1(2i,2i41) @ Bli + 1, zi41]

Backprop Forward
fori=1,...,n;z do
ali, zi) « Vgl z1 @ @, | Oi1i(zi1,21) @ @fi — 1,21

Potential Gradients
for i = 1,.. NS 24, Zi41 do
Véiu(za’z“l) — exp(afi, z| @ Bli + 1, zi41] @ afi, z]®

Bli+1,2i41] ® ali,z] @ Bli + 1, 2i41] ® —log Z)



Interesting Issue: Negative Gradients Through Attention

° Vg: Gradient could be negative, but working in log-space!
@ Signed Log-space semifield trick (Li and Eisner, 2009)

@ Use tuples (l4,s,) where I, = log |a| and s, = sign(a)

©®
Sa  Sb la+b Sa+b
+ + lg+log(l+d +
o= latlog(l—d)  +

— 4+ lg+log(l—d

)
(1—d)
(1-d)
— = lg+log(l+4d)

(Similar rules for ®)



Structured Attention Networks for Neural Machine Translation
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Implementation

http://github.com/harvardnlp/struct-attn

@ General-purpose structured attention unit
@ “Plug-and-play” neural network layers

@ Dynamic programming is GPU-optimized for speed


http://github.com/harvardnlp/struct-attn

NLP Experiments

Replace existing attention layers for

@ Machine Translation

Segmental Attention: 2-state linear-chain CRF

@ Question Answering

Sequential Attention: N-state linear-chain CRF

@ Natural Language Inference

Syntactic Attention: graph-based dependency parser



Segmental Attention for Neural Machine Translation

@ Use segmentation CRF for attention, i.e. binary vectors of length n

® p(z1,...,2r |z, q) parameterized with a linear-chain CRF.

Unary potentials (Encoder RNN):

ziWq, k=1
0, k=0

0:(k) =

Pairwise potentials (Simple Parameters):

4 additional binary parameters (i.e., by, bo,1,b1,0,b1,1)



Segmental Attention for Neural Machine Translation

Data:
@ Japanese — English (from WAT 2015)
e Traditionally, word segmentation as a preprocessing step

@ Use structured attention learn an implicit segmentation model

Experiments:
@ Japanese characters — English words

@ Japanese words — English words



Segmental Attention for Neural Machine Translation

Simple  Sigmoid  Structured

CHAR — WORD 12.6 13.1 14.6
WORD — WORD 14.1 13.8 14.3

BLEU scores on test set (higher is better)

Models:
@ Simple softmax attention: softmax(6;)
@ Sigmoid attention: sigmoid(6;)

@ Structured attention: ForwardBackward(6)



Attention Visualization: Ground Truth
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Attention Visualization: Simple Attention
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Attention Visualization: Structured Attention
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Sequential Attention over Facts for Question Answering

Simple attention: Greedy soft-selection of K supporting facts

Lily is arhino mmmmp Brianisa rhino =) Brian is white

Gregisafrog ——[ L 1 [ ] O m
Brianis a rhino ——[ [ [ [ {1 o .
liyisarhino —{TTT} W —’
Gregisgreen ——[T T }-{]
Brianis white  ——[T T T ]} O

Johnis a frog _’D:‘:‘:" ______ D
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Sequential Attention over Facts for Question Answering

Structured attention: Consider all possible sequences

Lily is arhino mmmmp Brianisa rhino =) Brian is white

Gregis a frog —'E\:D] ------- D’c
Brianisarhino ——[ [ | |}

Lily is a rhino

Greg is green

Brianis white ——[ T T [ }-—-
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i
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Sequential Attention over Facts for Question Answering

baBi tasks (Weston et al., 2015): 1k questions per task

Simple Structured
Task K Ans% Fact% Ans% Fact%
TASK 02 2 87.3 46.8 84.7 81.8
TAsk 03 3 52.6 1.4 40.5 0.1
TASK 11 2 97.8 38.2 97.7 80.8
TASK 13 2 95.6 14.8 97.0 36.4
Task 14 2 99.9 77.6 99.7 98.2
Task 15 2 100.0 59.3  100.0 89.5
TASK 16 3 97.1 91.0 97.9 85.6
Task 17 2 61.1 23.9 60.6 49.6
TASK 18 2 86.4 3.3 92.2 3.9
TASK 19 2 21.3 10.2 24.4 11.5

AVERAGE — 81.4 39.6 81.0 53.7




Sequential Attention over Facts for Question Answering

0.18

julius is a lion @ @ @
0.16
i 2) O
greg is white @ @
julius is white @ @ /// @
o

bernhard is a rhino @\
~.
brian is a rhino @

lily is a lion @ @ \‘\

~ @
brian is green 0.04
e @) ® ®

Question: what color is bernhard? green

0.14

0.06

0.02

0.00
Correct Facts: 5, 6, 8



Natural Language Inference

Given a premise (P) and a hypothesis (H), predict the relationship:
Entailment (E), Contradiction (C), Neutral (N)

P | The boy is running through a grassy area.
The boy is in his room.

H | A boy is running outside.

The boy is in a park.

Z|m 0




Natural Language Inference

Given a premise (P) and a hypothesis (H), predict the relationship:
Entailment (E), Contradiction (C), Neutral (N)

P | The boy is running through a grassy area.
The boy is in his room. C
H | A boy is running outside. E
The boy is in a park. N

Pl T

$ A boy is running outside

Many existing models run parsing as a preprocessing step and attend

over parse trees.



Neural CRF Parsing (Durrett and Klein, 2015; Kipperwasser and Goldberg, 2016)

i-th word is parent of j-th word
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Neural CRF Parsing (Durrett and Klein, 2015; Kipperwasser and Goldberg, 2016)




Syntactic Attention Network

O Attention distribution (probability of a parse tree)

@ Gradients wrt attention distribution parameters: g—g
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Syntactic Attention Network

O Attention distribution (probability of a parse tree)
= Inside/outside algorithm

@ Gradients wrt attention distribution parameters: g—g

— Backpropagation through inside/outside algorithm

Forward /backward pass on inside-outside version of Eisner's algorithm
(Eisner, 1996) takes O(T3) time.



Forward /Back-propagation through Inside-Outside Algorithm
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Syntactic Attention
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Syntactic Attention

S John hit the ball

S John hit the ball

S John hit the ball

e

John hit the ball




Syntactic Attention
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Syntactic Attention
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Syntactic Attention
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Syntactic Attention
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Syntactic Attention
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Syntactic Attention for Natural Language Inference

Dataset: Stanford Natural Language Inference (Bowman et al., 2015)

Model Accuracy %
No Attention 85.8
Hard parent 86.1
Simple Attention 86.2
Structured Attention 86.8

@ No attention: word embeddings only
e “Hard” parent from a pipelined dependency parser
@ Simple attention (simple softmax instead of syntanctic attention)

@ Structured attention (soft parents from syntactic attention)



Syntactic Attention for Natural Language Inference

Run Viterbi algorithm on the parsing layer to get the MAP parse:

z =argmaxp(z|x,q)
z

$ The men are fighting outside a deli



@ Conclusion and Future Work



Structured Attention Networks

Generalize attention to incorporate latent structure
Exact inference through dynamic programming

Training remains end-to-end

Future work

Approximate differentiable inference in neural networks
Incorporate other probabilistic models into deep learning

Compare further to methods using EM or hard structures
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